Annotation of OpenXM_contrib/gmp/mpfr/tests/tmul_ui.c, Revision 1.1.1.2
1.1 maekawa 1: /* Test file for mpfr_mul_ui.
2:
1.1.1.2 ! ohara 3: Copyright 1999, 2000, 2001, 2002 Free Software Foundation.
1.1 maekawa 4:
5: This file is part of the MPFR Library.
6:
7: The MPFR Library is free software; you can redistribute it and/or modify
1.1.1.2 ! ohara 8: it under the terms of the GNU Lesser General Public License as published by
! 9: the Free Software Foundation; either version 2.1 of the License, or (at your
1.1 maekawa 10: option) any later version.
11:
12: The MPFR Library is distributed in the hope that it will be useful, but
13: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
1.1.1.2 ! ohara 14: or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
1.1 maekawa 15: License for more details.
16:
1.1.1.2 ! ohara 17: You should have received a copy of the GNU Lesser General Public License
1.1 maekawa 18: along with the MPFR Library; see the file COPYING.LIB. If not, write to
19: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
20: MA 02111-1307, USA. */
21:
22: #include <stdio.h>
23: #include <stdlib.h>
1.1.1.2 ! ohara 24: #include <math.h>
1.1 maekawa 25: #include "gmp.h"
26: #include "gmp-impl.h"
27: #include "mpfr.h"
1.1.1.2 ! ohara 28: #include "mpfr-impl.h"
! 29: #include "mpfr-test.h"
! 30:
! 31: void check_inexact _PROTO((mp_prec_t));
! 32:
! 33: void
! 34: check_inexact (mp_prec_t p)
! 35: {
! 36: mpfr_t x, y, z;
! 37: unsigned long u;
! 38: mp_prec_t q;
! 39: int inexact, cmp;
! 40: mp_rnd_t rnd;
! 41:
! 42: mpfr_init2 (x, p);
! 43: mpfr_init (y);
! 44: mpfr_init2 (z, p + mp_bits_per_limb);
! 45: mpfr_random (x);
! 46: u = LONG_RAND();
! 47: if (mpfr_mul_ui (z, x, u, GMP_RNDN))
! 48: {
! 49: fprintf (stderr, "Error: result should be exact\n");
! 50: exit (1);
! 51: }
! 52:
! 53: for (q=2; q<=p; q++)
! 54: for (rnd=0; rnd<4; rnd++)
! 55: {
! 56: mpfr_set_prec (y, q);
! 57: inexact = mpfr_mul_ui (y, x, u, rnd);
! 58: cmp = mpfr_cmp (y, z);
! 59: if (((inexact == 0) && (cmp != 0)) ||
! 60: ((inexact < 0) && (cmp >= 0)) ||
! 61: ((inexact > 0) && (cmp <= 0)))
! 62: {
! 63: fprintf (stderr, "Wrong inexact flag for p=%u, q=%u, rnd=%s\n",
! 64: (unsigned) p, (unsigned) q, mpfr_print_rnd_mode (rnd));
! 65: exit (1);
! 66: }
! 67: }
! 68:
! 69: mpfr_set_prec (x, 2);
! 70: mpfr_set_ui (x, 1, GMP_RNDN);
! 71: if (mpfr_mul_ui (x, x, 5, GMP_RNDZ) == 0)
! 72: {
! 73: fprintf (stderr, "mul_ui(1, 5) cannot be exact with prec=2\n");
! 74: exit (1);
! 75: }
! 76:
! 77: mpfr_clear (x);
! 78: mpfr_clear (y);
! 79: mpfr_clear (z);
! 80: }
1.1 maekawa 81:
82: int
1.1.1.2 ! ohara 83: main (int argc, char *argv[])
1.1 maekawa 84: {
85: mpfr_t x, y;
1.1.1.2 ! ohara 86: unsigned int xprec, yprec, i;
! 87: mp_prec_t p;
! 88:
! 89: for (p=2; p<100; p++)
! 90: for (i=1; i<50; i++)
! 91: check_inexact (p);
1.1 maekawa 92:
1.1.1.2 ! ohara 93: mpfr_init2 (x, 53);
! 94: mpfr_init2 (y, 53);
1.1 maekawa 95:
96: /* checks that result is normalized */
1.1.1.2 ! ohara 97: mpfr_set_d (y, 6.93147180559945286227e-01, GMP_RNDZ);
! 98: mpfr_mul_ui (x, y, 1, GMP_RNDZ);
! 99: if (MPFR_MANT(x)[MPFR_PREC(x)/mp_bits_per_limb] >> (mp_bits_per_limb-1) == 0)
! 100: {
! 101: fprintf (stderr, "Error in mpfr_mul_ui: result not normalized\n");
! 102: exit (1);
! 103: }
! 104: if (mpfr_cmp (x, y))
! 105: {
! 106: fprintf (stderr, "Error in mpfr_mul_ui: 1*y != y\n");
! 107: printf ("y= "); mpfr_print_binary (y); putchar ('\n');
! 108: printf ("1*y="); mpfr_print_binary (x); putchar ('\n');
! 109: exit (1);
1.1 maekawa 110: }
111:
1.1.1.2 ! ohara 112:
! 113: mpfr_set_inf (x, 1);
! 114: mpfr_mul_ui (x, x, 3, GMP_RNDU);
! 115: if (!mpfr_inf_p (x) || (mpfr_sgn (x) <= 0))
! 116: {
! 117: fprintf (stderr, "Error in mpfr_mul_ui: +Inf*3 does not give +Inf\n");
! 118: exit (1);
! 119: }
! 120:
! 121: mpfr_set_inf (x, -1);
! 122: mpfr_mul_ui (x, x, 3, GMP_RNDU);
! 123: if (!mpfr_inf_p (x) || (mpfr_sgn (x) >= 0))
! 124: {
! 125: fprintf (stderr, "Error in mpfr_mul_ui: -Inf*3 does not give -Inf\n");
! 126: exit (1);
! 127: }
! 128:
! 129: mpfr_set_nan (x);
! 130: mpfr_mul_ui (x, x, 3, GMP_RNDU);
! 131: if (!mpfr_nan_p(x))
! 132: {
! 133: fprintf (stderr, "Error in mpfr_mul_ui: NaN*3 does not give NaN\n");
! 134: exit (1);
! 135: }
! 136:
! 137: mpfr_set_d (x, 1.0/3.0, GMP_RNDZ);
! 138: mpfr_mul_ui (x, x, 3, GMP_RNDU);
! 139: if (mpfr_get_d1 (x) != 1.0)
! 140: {
! 141: fprintf (stderr, "Error in mpfr_mul_ui: U(Z(1/3)*3) does not give 1\n");
! 142: exit (1);
! 143: }
1.1 maekawa 144:
145: /* checks sign is correct */
146: mpfr_set_d(x, -2.0, GMP_RNDZ);
147: mpfr_set_d(y, 3.0, GMP_RNDZ);
148: mpfr_mul_ui(x, y, 4, GMP_RNDZ);
1.1.1.2 ! ohara 149: if (mpfr_cmp_ui(x, 0) <= 0) {
! 150: fprintf(stderr, "Error in mpfr_mul_ui: 4*3.0 does not give a positive result:\n");
! 151: mpfr_print_binary(x); putchar('\n');
! 152: printf("mpfr_cmp_ui(x, 0) = %d\n", mpfr_cmp_ui(x, 0));
! 153: exit(1);
! 154: }
! 155:
! 156: mpfr_set_prec (x, 9);
! 157: mpfr_set_prec (y, 9);
! 158: mpfr_set_str_raw (y, "0.100001111E9"); /* 271 */
! 159: mpfr_mul_ui (x, y, 1335, GMP_RNDN);
! 160: mpfr_set_str_raw (y, "0.101100001E19"); /* 361472 */
! 161: if (mpfr_cmp (x, y))
! 162: {
! 163: fprintf (stderr, "Error in mul_ui for 1335*(0.100001111E9)\n");
! 164: printf ("got "); mpfr_print_binary (x); putchar ('\n');
! 165: exit(1);
! 166: }
! 167:
! 168: mpfr_set_prec(y, 100);
! 169: mpfr_set_prec(x, 100);
! 170: /* y = 1199781142214086656 */
! 171: mpfr_set_str_raw(y, "0.1000010100110011110101001011110010101111000100001E61");
! 172: mpfr_mul_ui(x, y, 121, GMP_RNDD);
! 173: /* 121*y = 145173518207904485376, representable exactly */
! 174: mpfr_set_str_raw(y, "0.1111101111010101111111100011010010111010111110110011001E67");
! 175: if (mpfr_cmp(x, y)) {
! 176: printf("Error for 121*y: expected result is:\n");
! 177: mpfr_print_binary(y); putchar('\n');
1.1 maekawa 178: }
179:
1.1.1.2 ! ohara 180: mpfr_set_prec (x, 32);
! 181: mpfr_set_str_raw (x, "0.10000000000000000000000000000000E1");
! 182: mpfr_set_prec (y, 93);
! 183: mpfr_mul_ui (y, x, 1, GMP_RNDN);
! 184:
! 185: mpfr_set_prec (x, 287);
! 186: mpfr_set_str_raw (x, "0.1111E7");
! 187: mpfr_set_prec (y, 289);
! 188: mpfr_mul_ui (y, x, 6, GMP_RNDN);
! 189: mpfr_set_str_raw (x, "0.101101E10");
! 190: if (mpfr_cmp (x, y))
! 191: {
! 192: printf ("Error for 6 * 120\n");
! 193: exit (1);
! 194: }
! 195:
! 196: mpfr_set_prec (x, 68);
! 197: mpfr_set_prec (y, 64);
! 198: mpfr_set_d (x, 2143861251406875.0, GMP_RNDN);
! 199: mpfr_mul_ui (y, x, 23, GMP_RNDN);
! 200: mpfr_set_str_raw (x, "10101111001011100001100110101111110001010010011001101101.0");
! 201: if (mpfr_cmp (x, y))
! 202: {
! 203: printf ("Error for 23 * 2143861251406875.0\n");
! 204: printf ("expected "); mpfr_print_binary (x); putchar ('\n');
! 205: printf ("got "); mpfr_print_binary (y); putchar ('\n');
! 206: exit (1);
! 207: }
! 208:
! 209:
! 210: for (xprec = 53; xprec <= 128; xprec++)
! 211: {
! 212: mpfr_set_prec (x, xprec);
! 213: mpfr_set_str_raw (x, "0.1100100100001111110011111000000011011100001100110111E2");
! 214: for (yprec = 53; yprec <= 128; yprec++)
! 215: {
! 216: mpfr_set_prec (y, yprec);
! 217: mpfr_mul_ui (y, x, 1, GMP_RNDN);
! 218: if (mpfr_get_d1 (x) != mpfr_get_d1 (y))
! 219: {
! 220: fprintf (stderr, "multiplication by 1.0 fails for xprec=%u, yprec=%u\n", xprec, yprec);
! 221: printf ("expected "); mpfr_print_binary (x); putchar ('\n');
! 222: printf ("got "); mpfr_print_binary (y); putchar ('\n');
! 223: exit (1);
! 224: }
! 225: }
! 226: }
! 227:
! 228: mpfr_set_prec (x, 128);
! 229: mpfr_set_ui (x, 17, GMP_RNDN);
! 230: mpfr_mul_ui (x, x, ULONG_HIGHBIT, GMP_RNDN);
! 231: mpfr_set_prec (y, 128);
! 232: mpfr_set_ui (y, ULONG_HIGHBIT, GMP_RNDN);
! 233: mpfr_mul_ui (y, y, 17, GMP_RNDN);
! 234: if (mpfr_cmp (x, y))
! 235: {
! 236: printf ("Error for 17 * ULONG_HIGHBIT\n");
! 237: exit (1);
! 238: }
! 239:
! 240:
1.1 maekawa 241: mpfr_clear(x); mpfr_clear(y);
1.1.1.2 ! ohara 242:
! 243: return 0;
1.1 maekawa 244: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>