[BACK]Return to divmod_1.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gmp / mpn / generic

Annotation of OpenXM_contrib/gmp/mpn/generic/divmod_1.c, Revision 1.1.1.1

1.1       maekawa     1: /* mpn_divmod_1(quot_ptr, dividend_ptr, dividend_size, divisor_limb) --
                      2:    Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
                      3:    Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
                      4:    Return the single-limb remainder.
                      5:    There are no constraints on the value of the divisor.
                      6:
                      7:    QUOT_PTR and DIVIDEND_PTR might point to the same limb.
                      8:
                      9: Copyright (C) 1991, 1993, 1994, 1996 Free Software Foundation, Inc.
                     10:
                     11: This file is part of the GNU MP Library.
                     12:
                     13: The GNU MP Library is free software; you can redistribute it and/or modify
                     14: it under the terms of the GNU Library General Public License as published by
                     15: the Free Software Foundation; either version 2 of the License, or (at your
                     16: option) any later version.
                     17:
                     18: The GNU MP Library is distributed in the hope that it will be useful, but
                     19: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
                     20: or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
                     21: License for more details.
                     22:
                     23: You should have received a copy of the GNU Library General Public License
                     24: along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
                     25: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
                     26: MA 02111-1307, USA. */
                     27:
                     28: #include "gmp.h"
                     29: #include "gmp-impl.h"
                     30: #include "longlong.h"
                     31:
                     32: #ifndef UMUL_TIME
                     33: #define UMUL_TIME 1
                     34: #endif
                     35:
                     36: #ifndef UDIV_TIME
                     37: #define UDIV_TIME UMUL_TIME
                     38: #endif
                     39:
                     40: /* FIXME: We should be using invert_limb (or invert_normalized_limb)
                     41:    here (not udiv_qrnnd).  */
                     42:
                     43: mp_limb_t
                     44: #if __STDC__
                     45: mpn_divmod_1 (mp_ptr quot_ptr,
                     46:              mp_srcptr dividend_ptr, mp_size_t dividend_size,
                     47:              mp_limb_t divisor_limb)
                     48: #else
                     49: mpn_divmod_1 (quot_ptr, dividend_ptr, dividend_size, divisor_limb)
                     50:      mp_ptr quot_ptr;
                     51:      mp_srcptr dividend_ptr;
                     52:      mp_size_t dividend_size;
                     53:      mp_limb_t divisor_limb;
                     54: #endif
                     55: {
                     56:   mp_size_t i;
                     57:   mp_limb_t n1, n0, r;
                     58:   int dummy;
                     59:
                     60:   /* ??? Should this be handled at all?  Rely on callers?  */
                     61:   if (dividend_size == 0)
                     62:     return 0;
                     63:
                     64:   /* If multiplication is much faster than division, and the
                     65:      dividend is large, pre-invert the divisor, and use
                     66:      only multiplications in the inner loop.  */
                     67:
                     68:   /* This test should be read:
                     69:        Does it ever help to use udiv_qrnnd_preinv?
                     70:         && Does what we save compensate for the inversion overhead?  */
                     71:   if (UDIV_TIME > (2 * UMUL_TIME + 6)
                     72:       && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME)
                     73:     {
                     74:       int normalization_steps;
                     75:
                     76:       count_leading_zeros (normalization_steps, divisor_limb);
                     77:       if (normalization_steps != 0)
                     78:        {
                     79:          mp_limb_t divisor_limb_inverted;
                     80:
                     81:          divisor_limb <<= normalization_steps;
                     82:
                     83:          /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
                     84:             result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
                     85:             most significant bit (with weight 2**N) implicit.  */
                     86:
                     87:          /* Special case for DIVISOR_LIMB == 100...000.  */
                     88:          if (divisor_limb << 1 == 0)
                     89:            divisor_limb_inverted = ~(mp_limb_t) 0;
                     90:          else
                     91:            udiv_qrnnd (divisor_limb_inverted, dummy,
                     92:                        -divisor_limb, 0, divisor_limb);
                     93:
                     94:          n1 = dividend_ptr[dividend_size - 1];
                     95:          r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
                     96:
                     97:          /* Possible optimization:
                     98:             if (r == 0
                     99:             && divisor_limb > ((n1 << normalization_steps)
                    100:                             | (dividend_ptr[dividend_size - 2] >> ...)))
                    101:             ...one division less... */
                    102:
                    103:          for (i = dividend_size - 2; i >= 0; i--)
                    104:            {
                    105:              n0 = dividend_ptr[i];
                    106:              udiv_qrnnd_preinv (quot_ptr[i + 1], r, r,
                    107:                                 ((n1 << normalization_steps)
                    108:                                  | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
                    109:                                 divisor_limb, divisor_limb_inverted);
                    110:              n1 = n0;
                    111:            }
                    112:          udiv_qrnnd_preinv (quot_ptr[0], r, r,
                    113:                             n1 << normalization_steps,
                    114:                             divisor_limb, divisor_limb_inverted);
                    115:          return r >> normalization_steps;
                    116:        }
                    117:       else
                    118:        {
                    119:          mp_limb_t divisor_limb_inverted;
                    120:
                    121:          /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
                    122:             result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
                    123:             most significant bit (with weight 2**N) implicit.  */
                    124:
                    125:          /* Special case for DIVISOR_LIMB == 100...000.  */
                    126:          if (divisor_limb << 1 == 0)
                    127:            divisor_limb_inverted = ~(mp_limb_t) 0;
                    128:          else
                    129:            udiv_qrnnd (divisor_limb_inverted, dummy,
                    130:                        -divisor_limb, 0, divisor_limb);
                    131:
                    132:          i = dividend_size - 1;
                    133:          r = dividend_ptr[i];
                    134:
                    135:          if (r >= divisor_limb)
                    136:            r = 0;
                    137:          else
                    138:            {
                    139:              quot_ptr[i] = 0;
                    140:              i--;
                    141:            }
                    142:
                    143:          for (; i >= 0; i--)
                    144:            {
                    145:              n0 = dividend_ptr[i];
                    146:              udiv_qrnnd_preinv (quot_ptr[i], r, r,
                    147:                                 n0, divisor_limb, divisor_limb_inverted);
                    148:            }
                    149:          return r;
                    150:        }
                    151:     }
                    152:   else
                    153:     {
                    154:       if (UDIV_NEEDS_NORMALIZATION)
                    155:        {
                    156:          int normalization_steps;
                    157:
                    158:          count_leading_zeros (normalization_steps, divisor_limb);
                    159:          if (normalization_steps != 0)
                    160:            {
                    161:              divisor_limb <<= normalization_steps;
                    162:
                    163:              n1 = dividend_ptr[dividend_size - 1];
                    164:              r = n1 >> (BITS_PER_MP_LIMB - normalization_steps);
                    165:
                    166:              /* Possible optimization:
                    167:                 if (r == 0
                    168:                 && divisor_limb > ((n1 << normalization_steps)
                    169:                                 | (dividend_ptr[dividend_size - 2] >> ...)))
                    170:                 ...one division less... */
                    171:
                    172:              for (i = dividend_size - 2; i >= 0; i--)
                    173:                {
                    174:                  n0 = dividend_ptr[i];
                    175:                  udiv_qrnnd (quot_ptr[i + 1], r, r,
                    176:                              ((n1 << normalization_steps)
                    177:                               | (n0 >> (BITS_PER_MP_LIMB - normalization_steps))),
                    178:                              divisor_limb);
                    179:                  n1 = n0;
                    180:                }
                    181:              udiv_qrnnd (quot_ptr[0], r, r,
                    182:                          n1 << normalization_steps,
                    183:                          divisor_limb);
                    184:              return r >> normalization_steps;
                    185:            }
                    186:        }
                    187:       /* No normalization needed, either because udiv_qrnnd doesn't require
                    188:         it, or because DIVISOR_LIMB is already normalized.  */
                    189:
                    190:       i = dividend_size - 1;
                    191:       r = dividend_ptr[i];
                    192:
                    193:       if (r >= divisor_limb)
                    194:        r = 0;
                    195:       else
                    196:        {
                    197:          quot_ptr[i] = 0;
                    198:          i--;
                    199:        }
                    200:
                    201:       for (; i >= 0; i--)
                    202:        {
                    203:          n0 = dividend_ptr[i];
                    204:          udiv_qrnnd (quot_ptr[i], r, r, n0, divisor_limb);
                    205:        }
                    206:       return r;
                    207:     }
                    208: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>