[BACK]Return to mul_n.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gmp / mpn / generic

Annotation of OpenXM_contrib/gmp/mpn/generic/mul_n.c, Revision 1.1

1.1     ! maekawa     1: /* mpn_mul_n -- Multiply two natural numbers of length n.
        !             2:
        !             3: Copyright (C) 1991, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
        !             4:
        !             5: This file is part of the GNU MP Library.
        !             6:
        !             7: The GNU MP Library is free software; you can redistribute it and/or modify
        !             8: it under the terms of the GNU Library General Public License as published by
        !             9: the Free Software Foundation; either version 2 of the License, or (at your
        !            10: option) any later version.
        !            11:
        !            12: The GNU MP Library is distributed in the hope that it will be useful, but
        !            13: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
        !            14: or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
        !            15: License for more details.
        !            16:
        !            17: You should have received a copy of the GNU Library General Public License
        !            18: along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
        !            19: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
        !            20: MA 02111-1307, USA. */
        !            21:
        !            22: #include "gmp.h"
        !            23: #include "gmp-impl.h"
        !            24:
        !            25: /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
        !            26:    both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
        !            27:    always stored.  Return the most significant limb.
        !            28:
        !            29:    Argument constraints:
        !            30:    1. PRODP != UP and PRODP != VP, i.e. the destination
        !            31:       must be distinct from the multiplier and the multiplicand.  */
        !            32:
        !            33: /* If KARATSUBA_THRESHOLD is not already defined, define it to a
        !            34:    value which is good on most machines.  */
        !            35: #ifndef KARATSUBA_THRESHOLD
        !            36: #define KARATSUBA_THRESHOLD 32
        !            37: #endif
        !            38:
        !            39: /* The code can't handle KARATSUBA_THRESHOLD smaller than 2.  */
        !            40: #if KARATSUBA_THRESHOLD < 2
        !            41: #undef KARATSUBA_THRESHOLD
        !            42: #define KARATSUBA_THRESHOLD 2
        !            43: #endif
        !            44:
        !            45: /* Handle simple cases with traditional multiplication.
        !            46:
        !            47:    This is the most critical code of multiplication.  All multiplies rely
        !            48:    on this, both small and huge.  Small ones arrive here immediately.  Huge
        !            49:    ones arrive here as this is the base case for Karatsuba's recursive
        !            50:    algorithm below.  */
        !            51:
        !            52: void
        !            53: #if __STDC__
        !            54: impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
        !            55: #else
        !            56: impn_mul_n_basecase (prodp, up, vp, size)
        !            57:      mp_ptr prodp;
        !            58:      mp_srcptr up;
        !            59:      mp_srcptr vp;
        !            60:      mp_size_t size;
        !            61: #endif
        !            62: {
        !            63:   mp_size_t i;
        !            64:   mp_limb_t cy_limb;
        !            65:   mp_limb_t v_limb;
        !            66:
        !            67:   /* Multiply by the first limb in V separately, as the result can be
        !            68:      stored (not added) to PROD.  We also avoid a loop for zeroing.  */
        !            69:   v_limb = vp[0];
        !            70:   if (v_limb <= 1)
        !            71:     {
        !            72:       if (v_limb == 1)
        !            73:        MPN_COPY (prodp, up, size);
        !            74:       else
        !            75:        MPN_ZERO (prodp, size);
        !            76:       cy_limb = 0;
        !            77:     }
        !            78:   else
        !            79:     cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
        !            80:
        !            81:   prodp[size] = cy_limb;
        !            82:   prodp++;
        !            83:
        !            84:   /* For each iteration in the outer loop, multiply one limb from
        !            85:      U with one limb from V, and add it to PROD.  */
        !            86:   for (i = 1; i < size; i++)
        !            87:     {
        !            88:       v_limb = vp[i];
        !            89:       if (v_limb <= 1)
        !            90:        {
        !            91:          cy_limb = 0;
        !            92:          if (v_limb == 1)
        !            93:            cy_limb = mpn_add_n (prodp, prodp, up, size);
        !            94:        }
        !            95:       else
        !            96:        cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
        !            97:
        !            98:       prodp[size] = cy_limb;
        !            99:       prodp++;
        !           100:     }
        !           101: }
        !           102:
        !           103: void
        !           104: #if __STDC__
        !           105: impn_mul_n (mp_ptr prodp,
        !           106:             mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace)
        !           107: #else
        !           108: impn_mul_n (prodp, up, vp, size, tspace)
        !           109:      mp_ptr prodp;
        !           110:      mp_srcptr up;
        !           111:      mp_srcptr vp;
        !           112:      mp_size_t size;
        !           113:      mp_ptr tspace;
        !           114: #endif
        !           115: {
        !           116:   if ((size & 1) != 0)
        !           117:     {
        !           118:       /* The size is odd, the code code below doesn't handle that.
        !           119:         Multiply the least significant (size - 1) limbs with a recursive
        !           120:         call, and handle the most significant limb of S1 and S2
        !           121:         separately.  */
        !           122:       /* A slightly faster way to do this would be to make the Karatsuba
        !           123:         code below behave as if the size were even, and let it check for
        !           124:         odd size in the end.  I.e., in essence move this code to the end.
        !           125:         Doing so would save us a recursive call, and potentially make the
        !           126:         stack grow a lot less.  */
        !           127:
        !           128:       mp_size_t esize = size - 1;      /* even size */
        !           129:       mp_limb_t cy_limb;
        !           130:
        !           131:       MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace);
        !           132:       cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]);
        !           133:       prodp[esize + esize] = cy_limb;
        !           134:       cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]);
        !           135:
        !           136:       prodp[esize + size] = cy_limb;
        !           137:     }
        !           138:   else
        !           139:     {
        !           140:       /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
        !           141:
        !           142:         Split U in two pieces, U1 and U0, such that
        !           143:         U = U0 + U1*(B**n),
        !           144:         and V in V1 and V0, such that
        !           145:         V = V0 + V1*(B**n).
        !           146:
        !           147:         UV is then computed recursively using the identity
        !           148:
        !           149:                2n   n          n                     n
        !           150:         UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
        !           151:                        1 1        1  0   0  1              0 0
        !           152:
        !           153:         Where B = 2**BITS_PER_MP_LIMB.  */
        !           154:
        !           155:       mp_size_t hsize = size >> 1;
        !           156:       mp_limb_t cy;
        !           157:       int negflg;
        !           158:
        !           159:       /*** Product H.   ________________  ________________
        !           160:                        |_____U1 x V1____||____U0 x V0_____|  */
        !           161:       /* Put result in upper part of PROD and pass low part of TSPACE
        !           162:         as new TSPACE.  */
        !           163:       MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace);
        !           164:
        !           165:       /*** Product M.   ________________
        !           166:                        |_(U1-U0)(V0-V1)_|  */
        !           167:       if (mpn_cmp (up + hsize, up, hsize) >= 0)
        !           168:        {
        !           169:          mpn_sub_n (prodp, up + hsize, up, hsize);
        !           170:          negflg = 0;
        !           171:        }
        !           172:       else
        !           173:        {
        !           174:          mpn_sub_n (prodp, up, up + hsize, hsize);
        !           175:          negflg = 1;
        !           176:        }
        !           177:       if (mpn_cmp (vp + hsize, vp, hsize) >= 0)
        !           178:        {
        !           179:          mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize);
        !           180:          negflg ^= 1;
        !           181:        }
        !           182:       else
        !           183:        {
        !           184:          mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize);
        !           185:          /* No change of NEGFLG.  */
        !           186:        }
        !           187:       /* Read temporary operands from low part of PROD.
        !           188:         Put result in low part of TSPACE using upper part of TSPACE
        !           189:         as new TSPACE.  */
        !           190:       MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size);
        !           191:
        !           192:       /*** Add/copy product H.  */
        !           193:       MPN_COPY (prodp + hsize, prodp + size, hsize);
        !           194:       cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
        !           195:
        !           196:       /*** Add product M (if NEGFLG M is a negative number).  */
        !           197:       if (negflg)
        !           198:        cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
        !           199:       else
        !           200:        cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
        !           201:
        !           202:       /*** Product L.   ________________  ________________
        !           203:                        |________________||____U0 x V0_____|  */
        !           204:       /* Read temporary operands from low part of PROD.
        !           205:         Put result in low part of TSPACE using upper part of TSPACE
        !           206:         as new TSPACE.  */
        !           207:       MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size);
        !           208:
        !           209:       /*** Add/copy Product L (twice).  */
        !           210:
        !           211:       cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
        !           212:       if (cy)
        !           213:        mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
        !           214:
        !           215:       MPN_COPY (prodp, tspace, hsize);
        !           216:       cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
        !           217:       if (cy)
        !           218:        mpn_add_1 (prodp + size, prodp + size, size, 1);
        !           219:     }
        !           220: }
        !           221:
        !           222: void
        !           223: #if __STDC__
        !           224: impn_sqr_n_basecase (mp_ptr prodp, mp_srcptr up, mp_size_t size)
        !           225: #else
        !           226: impn_sqr_n_basecase (prodp, up, size)
        !           227:      mp_ptr prodp;
        !           228:      mp_srcptr up;
        !           229:      mp_size_t size;
        !           230: #endif
        !           231: {
        !           232:   mp_size_t i;
        !           233:   mp_limb_t cy_limb;
        !           234:   mp_limb_t v_limb;
        !           235:
        !           236:   /* Multiply by the first limb in V separately, as the result can be
        !           237:      stored (not added) to PROD.  We also avoid a loop for zeroing.  */
        !           238:   v_limb = up[0];
        !           239:   if (v_limb <= 1)
        !           240:     {
        !           241:       if (v_limb == 1)
        !           242:        MPN_COPY (prodp, up, size);
        !           243:       else
        !           244:        MPN_ZERO (prodp, size);
        !           245:       cy_limb = 0;
        !           246:     }
        !           247:   else
        !           248:     cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
        !           249:
        !           250:   prodp[size] = cy_limb;
        !           251:   prodp++;
        !           252:
        !           253:   /* For each iteration in the outer loop, multiply one limb from
        !           254:      U with one limb from V, and add it to PROD.  */
        !           255:   for (i = 1; i < size; i++)
        !           256:     {
        !           257:       v_limb = up[i];
        !           258:       if (v_limb <= 1)
        !           259:        {
        !           260:          cy_limb = 0;
        !           261:          if (v_limb == 1)
        !           262:            cy_limb = mpn_add_n (prodp, prodp, up, size);
        !           263:        }
        !           264:       else
        !           265:        cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
        !           266:
        !           267:       prodp[size] = cy_limb;
        !           268:       prodp++;
        !           269:     }
        !           270: }
        !           271:
        !           272: void
        !           273: #if __STDC__
        !           274: impn_sqr_n (mp_ptr prodp,
        !           275:             mp_srcptr up, mp_size_t size, mp_ptr tspace)
        !           276: #else
        !           277: impn_sqr_n (prodp, up, size, tspace)
        !           278:      mp_ptr prodp;
        !           279:      mp_srcptr up;
        !           280:      mp_size_t size;
        !           281:      mp_ptr tspace;
        !           282: #endif
        !           283: {
        !           284:   if ((size & 1) != 0)
        !           285:     {
        !           286:       /* The size is odd, the code code below doesn't handle that.
        !           287:         Multiply the least significant (size - 1) limbs with a recursive
        !           288:         call, and handle the most significant limb of S1 and S2
        !           289:         separately.  */
        !           290:       /* A slightly faster way to do this would be to make the Karatsuba
        !           291:         code below behave as if the size were even, and let it check for
        !           292:         odd size in the end.  I.e., in essence move this code to the end.
        !           293:         Doing so would save us a recursive call, and potentially make the
        !           294:         stack grow a lot less.  */
        !           295:
        !           296:       mp_size_t esize = size - 1;      /* even size */
        !           297:       mp_limb_t cy_limb;
        !           298:
        !           299:       MPN_SQR_N_RECURSE (prodp, up, esize, tspace);
        !           300:       cy_limb = mpn_addmul_1 (prodp + esize, up, esize, up[esize]);
        !           301:       prodp[esize + esize] = cy_limb;
        !           302:       cy_limb = mpn_addmul_1 (prodp + esize, up, size, up[esize]);
        !           303:
        !           304:       prodp[esize + size] = cy_limb;
        !           305:     }
        !           306:   else
        !           307:     {
        !           308:       mp_size_t hsize = size >> 1;
        !           309:       mp_limb_t cy;
        !           310:
        !           311:       /*** Product H.   ________________  ________________
        !           312:                        |_____U1 x U1____||____U0 x U0_____|  */
        !           313:       /* Put result in upper part of PROD and pass low part of TSPACE
        !           314:         as new TSPACE.  */
        !           315:       MPN_SQR_N_RECURSE (prodp + size, up + hsize, hsize, tspace);
        !           316:
        !           317:       /*** Product M.   ________________
        !           318:                        |_(U1-U0)(U0-U1)_|  */
        !           319:       if (mpn_cmp (up + hsize, up, hsize) >= 0)
        !           320:        {
        !           321:          mpn_sub_n (prodp, up + hsize, up, hsize);
        !           322:        }
        !           323:       else
        !           324:        {
        !           325:          mpn_sub_n (prodp, up, up + hsize, hsize);
        !           326:        }
        !           327:
        !           328:       /* Read temporary operands from low part of PROD.
        !           329:         Put result in low part of TSPACE using upper part of TSPACE
        !           330:         as new TSPACE.  */
        !           331:       MPN_SQR_N_RECURSE (tspace, prodp, hsize, tspace + size);
        !           332:
        !           333:       /*** Add/copy product H.  */
        !           334:       MPN_COPY (prodp + hsize, prodp + size, hsize);
        !           335:       cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
        !           336:
        !           337:       /*** Add product M (if NEGFLG M is a negative number).  */
        !           338:       cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
        !           339:
        !           340:       /*** Product L.   ________________  ________________
        !           341:                        |________________||____U0 x U0_____|  */
        !           342:       /* Read temporary operands from low part of PROD.
        !           343:         Put result in low part of TSPACE using upper part of TSPACE
        !           344:         as new TSPACE.  */
        !           345:       MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size);
        !           346:
        !           347:       /*** Add/copy Product L (twice).  */
        !           348:
        !           349:       cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
        !           350:       if (cy)
        !           351:        mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
        !           352:
        !           353:       MPN_COPY (prodp, tspace, hsize);
        !           354:       cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
        !           355:       if (cy)
        !           356:        mpn_add_1 (prodp + size, prodp + size, size, 1);
        !           357:     }
        !           358: }
        !           359:
        !           360: /* This should be made into an inline function in gmp.h.  */
        !           361: inline void
        !           362: #if __STDC__
        !           363: mpn_mul_n (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
        !           364: #else
        !           365: mpn_mul_n (prodp, up, vp, size)
        !           366:      mp_ptr prodp;
        !           367:      mp_srcptr up;
        !           368:      mp_srcptr vp;
        !           369:      mp_size_t size;
        !           370: #endif
        !           371: {
        !           372:   TMP_DECL (marker);
        !           373:   TMP_MARK (marker);
        !           374:   if (up == vp)
        !           375:     {
        !           376:       if (size < KARATSUBA_THRESHOLD)
        !           377:        {
        !           378:          impn_sqr_n_basecase (prodp, up, size);
        !           379:        }
        !           380:       else
        !           381:        {
        !           382:          mp_ptr tspace;
        !           383:          tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
        !           384:          impn_sqr_n (prodp, up, size, tspace);
        !           385:        }
        !           386:     }
        !           387:   else
        !           388:     {
        !           389:       if (size < KARATSUBA_THRESHOLD)
        !           390:        {
        !           391:          impn_mul_n_basecase (prodp, up, vp, size);
        !           392:        }
        !           393:       else
        !           394:        {
        !           395:          mp_ptr tspace;
        !           396:          tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
        !           397:          impn_mul_n (prodp, up, vp, size, tspace);
        !           398:        }
        !           399:     }
        !           400:   TMP_FREE (marker);
        !           401: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>