Annotation of OpenXM_contrib/gmp/mpn/generic/perfsqr.c, Revision 1.1.1.1
1.1 maekawa 1: /* mpn_perfect_square_p(u,usize) -- Return non-zero if U is a perfect square,
2: zero otherwise.
3:
4: Copyright (C) 1991, 1993, 1994, 1996 Free Software Foundation, Inc.
5:
6: This file is part of the GNU MP Library.
7:
8: The GNU MP Library is free software; you can redistribute it and/or modify
9: it under the terms of the GNU Library General Public License as published by
10: the Free Software Foundation; either version 2 of the License, or (at your
11: option) any later version.
12:
13: The GNU MP Library is distributed in the hope that it will be useful, but
14: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15: or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
16: License for more details.
17:
18: You should have received a copy of the GNU Library General Public License
19: along with the GNU MP Library; see the file COPYING.LIB. If not, write to
20: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
21: MA 02111-1307, USA. */
22:
23: #include "gmp.h"
24: #include "gmp-impl.h"
25: #include "longlong.h"
26:
27: #ifndef UMUL_TIME
28: #define UMUL_TIME 1
29: #endif
30:
31: #ifndef UDIV_TIME
32: #define UDIV_TIME UMUL_TIME
33: #endif
34:
35: #if BITS_PER_MP_LIMB == 32
36: #define PP 0xC0CFD797L /* 3 x 5 x 7 x 11 x 13 x ... x 29 */
37: #define PP_INVERTED 0x53E5645CL
38: #endif
39:
40: #if BITS_PER_MP_LIMB == 64
41: #define PP 0xE221F97C30E94E1DL /* 3 x 5 x 7 x 11 x 13 x ... x 53 */
42: #define PP_INVERTED 0x21CFE6CFC938B36BL
43: #endif
44:
45: /* sq_res_0x100[x mod 0x100] == 1 iff x mod 0x100 is a quadratic residue
46: modulo 0x100. */
47: static unsigned char const sq_res_0x100[0x100] =
48: {
49: 1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
50: 0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
51: 1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
52: 0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
53: 0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
54: 0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
55: 0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
56: 0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
57: };
58:
59: int
60: #if __STDC__
61: mpn_perfect_square_p (mp_srcptr up, mp_size_t usize)
62: #else
63: mpn_perfect_square_p (up, usize)
64: mp_srcptr up;
65: mp_size_t usize;
66: #endif
67: {
68: mp_limb_t rem;
69: mp_ptr root_ptr;
70: int res;
71: TMP_DECL (marker);
72:
73: /* The first test excludes 55/64 (85.9%) of the perfect square candidates
74: in O(1) time. */
75: if ((sq_res_0x100[(unsigned int) up[0] % 0x100] & 1) == 0)
76: return 0;
77:
78: #if defined (PP)
79: /* The second test excludes 30652543/30808063 (99.5%) of the remaining
80: perfect square candidates in O(n) time. */
81:
82: /* Firstly, compute REM = A mod PP. */
83: if (UDIV_TIME > (2 * UMUL_TIME + 6))
84: rem = mpn_preinv_mod_1 (up, usize, (mp_limb_t) PP, (mp_limb_t) PP_INVERTED);
85: else
86: rem = mpn_mod_1 (up, usize, (mp_limb_t) PP);
87:
88: /* Now decide if REM is a quadratic residue modulo the factors in PP. */
89:
90: /* If A is just a few limbs, computing the square root does not take long
91: time, so things might run faster if we limit this loop according to the
92: size of A. */
93:
94: #if BITS_PER_MP_LIMB == 64
95: if (((0x12DD703303AED3L >> rem % 53) & 1) == 0)
96: return 0;
97: if (((0x4351B2753DFL >> rem % 47) & 1) == 0)
98: return 0;
99: if (((0x35883A3EE53L >> rem % 43) & 1) == 0)
100: return 0;
101: if (((0x1B382B50737L >> rem % 41) & 1) == 0)
102: return 0;
103: if (((0x165E211E9BL >> rem % 37) & 1) == 0)
104: return 0;
105: if (((0x121D47B7L >> rem % 31) & 1) == 0)
106: return 0;
107: #endif
108: if (((0x13D122F3L >> rem % 29) & 1) == 0)
109: return 0;
110: if (((0x5335FL >> rem % 23) & 1) == 0)
111: return 0;
112: if (((0x30AF3L >> rem % 19) & 1) == 0)
113: return 0;
114: if (((0x1A317L >> rem % 17) & 1) == 0)
115: return 0;
116: if (((0x161BL >> rem % 13) & 1) == 0)
117: return 0;
118: if (((0x23BL >> rem % 11) & 1) == 0)
119: return 0;
120: if (((0x017L >> rem % 7) & 1) == 0)
121: return 0;
122: if (((0x13L >> rem % 5) & 1) == 0)
123: return 0;
124: if (((0x3L >> rem % 3) & 1) == 0)
125: return 0;
126: #endif
127:
128: TMP_MARK (marker);
129:
130: /* For the third and last test, we finally compute the square root,
131: to make sure we've really got a perfect square. */
132: root_ptr = (mp_ptr) TMP_ALLOC ((usize + 1) / 2 * BYTES_PER_MP_LIMB);
133:
134: /* Iff mpn_sqrtrem returns zero, the square is perfect. */
135: res = ! mpn_sqrtrem (root_ptr, NULL, up, usize);
136: TMP_FREE (marker);
137: return res;
138: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>