Annotation of OpenXM_contrib/gmp/mpn/generic/sqrtrem.c, Revision 1.1.1.2
1.1 maekawa 1: /* mpn_sqrtrem (root_ptr, rem_ptr, op_ptr, op_size)
2:
3: Write the square root of {OP_PTR, OP_SIZE} at ROOT_PTR.
4: Write the remainder at REM_PTR, if REM_PTR != NULL.
5: Return the size of the remainder.
6: (The size of the root is always half of the size of the operand.)
7:
8: OP_PTR and ROOT_PTR may not point to the same object.
9: OP_PTR and REM_PTR may point to the same object.
10:
11: If REM_PTR is NULL, only the root is computed and the return value of
12: the function is 0 if OP is a perfect square, and *any* non-zero number
13: otherwise.
14:
1.1.1.2 ! maekawa 15: Copyright (C) 1993, 1994, 1996, 1997, 1998, 1999, 2000 Free Software
! 16: Foundation, Inc.
1.1 maekawa 17:
18: This file is part of the GNU MP Library.
19:
20: The GNU MP Library is free software; you can redistribute it and/or modify
1.1.1.2 ! maekawa 21: it under the terms of the GNU Lesser General Public License as published by
! 22: the Free Software Foundation; either version 2.1 of the License, or (at your
1.1 maekawa 23: option) any later version.
24:
25: The GNU MP Library is distributed in the hope that it will be useful, but
26: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
1.1.1.2 ! maekawa 27: or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
1.1 maekawa 28: License for more details.
29:
1.1.1.2 ! maekawa 30: You should have received a copy of the GNU Lesser General Public License
1.1 maekawa 31: along with the GNU MP Library; see the file COPYING.LIB. If not, write to
32: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
33: MA 02111-1307, USA. */
34:
35: /* This code is just correct if "unsigned char" has at least 8 bits. It
36: doesn't help to use CHAR_BIT from limits.h, as the real problem is
37: the static arrays. */
38:
1.1.1.2 ! maekawa 39: #include <stdio.h> /* for NULL */
1.1 maekawa 40: #include "gmp.h"
41: #include "gmp-impl.h"
42: #include "longlong.h"
43:
44: /* Square root algorithm:
45:
46: 1. Shift OP (the input) to the left an even number of bits s.t. there
47: are an even number of words and either (or both) of the most
48: significant bits are set. This way, sqrt(OP) has exactly half as
49: many words as OP, and has its most significant bit set.
50:
51: 2. Get a 9-bit approximation to sqrt(OP) using the pre-computed tables.
52: This approximation is used for the first single-precision
53: iterations of Newton's method, yielding a full-word approximation
54: to sqrt(OP).
55:
56: 3. Perform multiple-precision Newton iteration until we have the
57: exact result. Only about half of the input operand is used in
58: this calculation, as the square root is perfectly determinable
59: from just the higher half of a number. */
60:
61: /* Define this macro for IEEE P854 machines with a fast sqrt instruction. */
62: #if defined __GNUC__ && ! defined __SOFT_FLOAT
63:
1.1.1.2 ! maekawa 64: #if defined (__sparc__) && BITS_PER_MP_LIMB == 32
1.1 maekawa 65: #define SQRT(a) \
66: ({ \
67: double __sqrt_res; \
68: asm ("fsqrtd %1,%0" : "=f" (__sqrt_res) : "f" (a)); \
69: __sqrt_res; \
70: })
71: #endif
72:
1.1.1.2 ! maekawa 73: #if defined (__HAVE_68881__)
1.1 maekawa 74: #define SQRT(a) \
75: ({ \
76: double __sqrt_res; \
77: asm ("fsqrtx %1,%0" : "=f" (__sqrt_res) : "f" (a)); \
78: __sqrt_res; \
79: })
80: #endif
81:
1.1.1.2 ! maekawa 82: #if defined (__hppa) && BITS_PER_MP_LIMB == 32
1.1 maekawa 83: #define SQRT(a) \
84: ({ \
85: double __sqrt_res; \
86: asm ("fsqrt,dbl %1,%0" : "=fx" (__sqrt_res) : "fx" (a)); \
87: __sqrt_res; \
88: })
89: #endif
90:
1.1.1.2 ! maekawa 91: #if defined (_ARCH_PWR2) && BITS_PER_MP_LIMB == 32
1.1 maekawa 92: #define SQRT(a) \
93: ({ \
94: double __sqrt_res; \
95: asm ("fsqrt %0,%1" : "=f" (__sqrt_res) : "f" (a)); \
96: __sqrt_res; \
97: })
98: #endif
99:
1.1.1.2 ! maekawa 100: #if 0
! 101: #if defined (__i386__) || defined (__i486__)
! 102: #define SQRT(a) \
! 103: ({ \
! 104: double __sqrt_res; \
! 105: asm ("fsqrt" : "=t" (__sqrt_res) : "0" (a)); \
! 106: __sqrt_res; \
! 107: })
! 108: #endif
! 109: #endif
! 110:
1.1 maekawa 111: #endif
112:
113: #ifndef SQRT
114:
115: /* Tables for initial approximation of the square root. These are
116: indexed with bits 1-8 of the operand for which the square root is
117: calculated, where bit 0 is the most significant non-zero bit. I.e.
118: the most significant one-bit is not used, since that per definition
119: is one. Likewise, the tables don't return the highest bit of the
120: result. That bit must be inserted by or:ing the returned value with
121: 0x100. This way, we get a 9-bit approximation from 8-bit tables! */
122:
123: /* Table to be used for operands with an even total number of bits.
124: (Exactly as in the decimal system there are similarities between the
125: square root of numbers with the same initial digits and an even
126: difference in the total number of digits. Consider the square root
127: of 1, 10, 100, 1000, ...) */
1.1.1.2 ! maekawa 128: static const unsigned char even_approx_tab[256] =
1.1 maekawa 129: {
130: 0x6a, 0x6a, 0x6b, 0x6c, 0x6c, 0x6d, 0x6e, 0x6e,
131: 0x6f, 0x70, 0x71, 0x71, 0x72, 0x73, 0x73, 0x74,
132: 0x75, 0x75, 0x76, 0x77, 0x77, 0x78, 0x79, 0x79,
133: 0x7a, 0x7b, 0x7b, 0x7c, 0x7d, 0x7d, 0x7e, 0x7f,
134: 0x80, 0x80, 0x81, 0x81, 0x82, 0x83, 0x83, 0x84,
135: 0x85, 0x85, 0x86, 0x87, 0x87, 0x88, 0x89, 0x89,
136: 0x8a, 0x8b, 0x8b, 0x8c, 0x8d, 0x8d, 0x8e, 0x8f,
137: 0x8f, 0x90, 0x90, 0x91, 0x92, 0x92, 0x93, 0x94,
138: 0x94, 0x95, 0x96, 0x96, 0x97, 0x97, 0x98, 0x99,
139: 0x99, 0x9a, 0x9b, 0x9b, 0x9c, 0x9c, 0x9d, 0x9e,
140: 0x9e, 0x9f, 0xa0, 0xa0, 0xa1, 0xa1, 0xa2, 0xa3,
141: 0xa3, 0xa4, 0xa4, 0xa5, 0xa6, 0xa6, 0xa7, 0xa7,
142: 0xa8, 0xa9, 0xa9, 0xaa, 0xaa, 0xab, 0xac, 0xac,
143: 0xad, 0xad, 0xae, 0xaf, 0xaf, 0xb0, 0xb0, 0xb1,
144: 0xb2, 0xb2, 0xb3, 0xb3, 0xb4, 0xb5, 0xb5, 0xb6,
145: 0xb6, 0xb7, 0xb7, 0xb8, 0xb9, 0xb9, 0xba, 0xba,
146: 0xbb, 0xbb, 0xbc, 0xbd, 0xbd, 0xbe, 0xbe, 0xbf,
147: 0xc0, 0xc0, 0xc1, 0xc1, 0xc2, 0xc2, 0xc3, 0xc3,
148: 0xc4, 0xc5, 0xc5, 0xc6, 0xc6, 0xc7, 0xc7, 0xc8,
149: 0xc9, 0xc9, 0xca, 0xca, 0xcb, 0xcb, 0xcc, 0xcc,
150: 0xcd, 0xce, 0xce, 0xcf, 0xcf, 0xd0, 0xd0, 0xd1,
151: 0xd1, 0xd2, 0xd3, 0xd3, 0xd4, 0xd4, 0xd5, 0xd5,
152: 0xd6, 0xd6, 0xd7, 0xd7, 0xd8, 0xd9, 0xd9, 0xda,
153: 0xda, 0xdb, 0xdb, 0xdc, 0xdc, 0xdd, 0xdd, 0xde,
154: 0xde, 0xdf, 0xe0, 0xe0, 0xe1, 0xe1, 0xe2, 0xe2,
155: 0xe3, 0xe3, 0xe4, 0xe4, 0xe5, 0xe5, 0xe6, 0xe6,
156: 0xe7, 0xe7, 0xe8, 0xe8, 0xe9, 0xea, 0xea, 0xeb,
157: 0xeb, 0xec, 0xec, 0xed, 0xed, 0xee, 0xee, 0xef,
158: 0xef, 0xf0, 0xf0, 0xf1, 0xf1, 0xf2, 0xf2, 0xf3,
159: 0xf3, 0xf4, 0xf4, 0xf5, 0xf5, 0xf6, 0xf6, 0xf7,
160: 0xf7, 0xf8, 0xf8, 0xf9, 0xf9, 0xfa, 0xfa, 0xfb,
161: 0xfb, 0xfc, 0xfc, 0xfd, 0xfd, 0xfe, 0xfe, 0xff,
162: };
163:
164: /* Table to be used for operands with an odd total number of bits.
165: (Further comments before previous table.) */
1.1.1.2 ! maekawa 166: static const unsigned char odd_approx_tab[256] =
1.1 maekawa 167: {
168: 0x00, 0x00, 0x00, 0x01, 0x01, 0x02, 0x02, 0x03,
169: 0x03, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07,
170: 0x07, 0x08, 0x08, 0x09, 0x09, 0x0a, 0x0a, 0x0b,
171: 0x0b, 0x0c, 0x0c, 0x0d, 0x0d, 0x0e, 0x0e, 0x0f,
172: 0x0f, 0x10, 0x10, 0x10, 0x11, 0x11, 0x12, 0x12,
173: 0x13, 0x13, 0x14, 0x14, 0x15, 0x15, 0x16, 0x16,
174: 0x16, 0x17, 0x17, 0x18, 0x18, 0x19, 0x19, 0x1a,
175: 0x1a, 0x1b, 0x1b, 0x1b, 0x1c, 0x1c, 0x1d, 0x1d,
176: 0x1e, 0x1e, 0x1f, 0x1f, 0x20, 0x20, 0x20, 0x21,
177: 0x21, 0x22, 0x22, 0x23, 0x23, 0x23, 0x24, 0x24,
178: 0x25, 0x25, 0x26, 0x26, 0x27, 0x27, 0x27, 0x28,
179: 0x28, 0x29, 0x29, 0x2a, 0x2a, 0x2a, 0x2b, 0x2b,
180: 0x2c, 0x2c, 0x2d, 0x2d, 0x2d, 0x2e, 0x2e, 0x2f,
181: 0x2f, 0x30, 0x30, 0x30, 0x31, 0x31, 0x32, 0x32,
182: 0x32, 0x33, 0x33, 0x34, 0x34, 0x35, 0x35, 0x35,
183: 0x36, 0x36, 0x37, 0x37, 0x37, 0x38, 0x38, 0x39,
184: 0x39, 0x39, 0x3a, 0x3a, 0x3b, 0x3b, 0x3b, 0x3c,
185: 0x3c, 0x3d, 0x3d, 0x3d, 0x3e, 0x3e, 0x3f, 0x3f,
186: 0x40, 0x40, 0x40, 0x41, 0x41, 0x41, 0x42, 0x42,
187: 0x43, 0x43, 0x43, 0x44, 0x44, 0x45, 0x45, 0x45,
188: 0x46, 0x46, 0x47, 0x47, 0x47, 0x48, 0x48, 0x49,
189: 0x49, 0x49, 0x4a, 0x4a, 0x4b, 0x4b, 0x4b, 0x4c,
190: 0x4c, 0x4c, 0x4d, 0x4d, 0x4e, 0x4e, 0x4e, 0x4f,
191: 0x4f, 0x50, 0x50, 0x50, 0x51, 0x51, 0x51, 0x52,
192: 0x52, 0x53, 0x53, 0x53, 0x54, 0x54, 0x54, 0x55,
193: 0x55, 0x56, 0x56, 0x56, 0x57, 0x57, 0x57, 0x58,
194: 0x58, 0x59, 0x59, 0x59, 0x5a, 0x5a, 0x5a, 0x5b,
195: 0x5b, 0x5b, 0x5c, 0x5c, 0x5d, 0x5d, 0x5d, 0x5e,
196: 0x5e, 0x5e, 0x5f, 0x5f, 0x60, 0x60, 0x60, 0x61,
197: 0x61, 0x61, 0x62, 0x62, 0x62, 0x63, 0x63, 0x63,
198: 0x64, 0x64, 0x65, 0x65, 0x65, 0x66, 0x66, 0x66,
199: 0x67, 0x67, 0x67, 0x68, 0x68, 0x68, 0x69, 0x69,
200: };
201: #endif
202:
203:
204: mp_size_t
205: #if __STDC__
206: mpn_sqrtrem (mp_ptr root_ptr, mp_ptr rem_ptr, mp_srcptr op_ptr, mp_size_t op_size)
207: #else
208: mpn_sqrtrem (root_ptr, rem_ptr, op_ptr, op_size)
209: mp_ptr root_ptr;
210: mp_ptr rem_ptr;
211: mp_srcptr op_ptr;
212: mp_size_t op_size;
213: #endif
214: {
215: /* R (root result) */
216: mp_ptr rp; /* Pointer to least significant word */
217: mp_size_t rsize; /* The size in words */
218:
219: /* T (OP shifted to the left a.k.a. normalized) */
220: mp_ptr tp; /* Pointer to least significant word */
221: mp_size_t tsize; /* The size in words */
222: mp_ptr t_end_ptr; /* Pointer right beyond most sign. word */
223: mp_limb_t t_high0, t_high1; /* The two most significant words */
224:
225: /* TT (temporary for numerator/remainder) */
226: mp_ptr ttp; /* Pointer to least significant word */
227:
228: /* X (temporary for quotient in main loop) */
229: mp_ptr xp; /* Pointer to least significant word */
230: mp_size_t xsize; /* The size in words */
231:
232: unsigned cnt;
233: mp_limb_t initial_approx; /* Initially made approximation */
234: mp_size_t tsizes[BITS_PER_MP_LIMB]; /* Successive calculation precisions */
235: mp_size_t tmp;
236: mp_size_t i;
237:
238: mp_limb_t cy_limb;
239: TMP_DECL (marker);
240:
241: /* If OP is zero, both results are zero. */
242: if (op_size == 0)
243: return 0;
244:
245: count_leading_zeros (cnt, op_ptr[op_size - 1]);
246: tsize = op_size;
247: if ((tsize & 1) != 0)
248: {
249: cnt += BITS_PER_MP_LIMB;
250: tsize++;
251: }
252:
253: rsize = tsize / 2;
254: rp = root_ptr;
255:
256: TMP_MARK (marker);
257:
258: /* Shift OP an even number of bits into T, such that either the most or
259: the second most significant bit is set, and such that the number of
260: words in T becomes even. This way, the number of words in R=sqrt(OP)
261: is exactly half as many as in OP, and the most significant bit of R
262: is set.
263:
264: Also, the initial approximation is simplified by this up-shifted OP.
265:
266: Finally, the Newtonian iteration which is the main part of this
267: program performs division by R. The fast division routine expects
268: the divisor to be "normalized" in exactly the sense of having the
269: most significant bit set. */
270:
271: tp = (mp_ptr) TMP_ALLOC (tsize * BYTES_PER_MP_LIMB);
272:
273: if ((cnt & ~1) % BITS_PER_MP_LIMB != 0)
274: t_high0 = mpn_lshift (tp + cnt / BITS_PER_MP_LIMB, op_ptr, op_size,
275: (cnt & ~1) % BITS_PER_MP_LIMB);
276: else
277: MPN_COPY (tp + cnt / BITS_PER_MP_LIMB, op_ptr, op_size);
278:
279: if (cnt >= BITS_PER_MP_LIMB)
280: tp[0] = 0;
281:
282: t_high0 = tp[tsize - 1];
283: t_high1 = tp[tsize - 2]; /* Never stray. TSIZE is >= 2. */
284:
285: /* Is there a fast sqrt instruction defined for this machine? */
286: #ifdef SQRT
287: {
1.1.1.2 ! maekawa 288: initial_approx = SQRT (t_high0 * MP_BASE_AS_DOUBLE + t_high1);
1.1 maekawa 289: /* If t_high0,,t_high1 is big, the result in INITIAL_APPROX might have
290: become incorrect due to overflow in the conversion from double to
291: mp_limb_t above. It will typically be zero in that case, but might be
292: a small number on some machines. The most significant bit of
293: INITIAL_APPROX should be set, so that bit is a good overflow
294: indication. */
295: if ((mp_limb_signed_t) initial_approx >= 0)
296: initial_approx = ~(mp_limb_t)0;
297: }
298: #else
299: /* Get a 9 bit approximation from the tables. The tables expect to
300: be indexed with the 8 high bits right below the highest bit.
301: Also, the highest result bit is not returned by the tables, and
302: must be or:ed into the result. The scheme gives 9 bits of start
303: approximation with just 256-entry 8 bit tables. */
304:
305: if ((cnt & 1) == 0)
306: {
1.1.1.2 ! maekawa 307: /* The most significant bit of t_high0 is set. */
1.1 maekawa 308: initial_approx = t_high0 >> (BITS_PER_MP_LIMB - 8 - 1);
309: initial_approx &= 0xff;
310: initial_approx = even_approx_tab[initial_approx];
311: }
312: else
313: {
1.1.1.2 ! maekawa 314: /* The most significant bit of t_high0 is unset,
1.1 maekawa 315: the second most significant is set. */
316: initial_approx = t_high0 >> (BITS_PER_MP_LIMB - 8 - 2);
317: initial_approx &= 0xff;
318: initial_approx = odd_approx_tab[initial_approx];
319: }
320: initial_approx |= 0x100;
321: initial_approx <<= BITS_PER_MP_LIMB - 8 - 1;
322:
323: /* Perform small precision Newtonian iterations to get a full word
1.1.1.2 ! maekawa 324: approximation. For small operands, these iterations will do the
1.1 maekawa 325: entire job. */
326: if (t_high0 == ~(mp_limb_t)0)
327: initial_approx = t_high0;
328: else
329: {
330: mp_limb_t quot;
331:
332: if (t_high0 >= initial_approx)
333: initial_approx = t_high0 + 1;
334:
335: /* First get about 18 bits with pure C arithmetics. */
336: quot = t_high0 / (initial_approx >> BITS_PER_MP_LIMB/2) << BITS_PER_MP_LIMB/2;
337: initial_approx = (initial_approx + quot) / 2;
338: initial_approx |= (mp_limb_t) 1 << (BITS_PER_MP_LIMB - 1);
339:
340: /* Now get a full word by one (or for > 36 bit machines) several
341: iterations. */
1.1.1.2 ! maekawa 342: for (i = 18; i < BITS_PER_MP_LIMB; i <<= 1)
1.1 maekawa 343: {
344: mp_limb_t ignored_remainder;
345:
346: udiv_qrnnd (quot, ignored_remainder,
347: t_high0, t_high1, initial_approx);
348: initial_approx = (initial_approx + quot) / 2;
349: initial_approx |= (mp_limb_t) 1 << (BITS_PER_MP_LIMB - 1);
350: }
351: }
352: #endif
353:
354: rp[0] = initial_approx;
355: rsize = 1;
356:
1.1.1.2 ! maekawa 357: #ifdef SQRT_DEBUG
1.1 maekawa 358: printf ("\n\nT = ");
359: mpn_dump (tp, tsize);
360: #endif
361:
362: if (tsize > 2)
363: {
364: /* Determine the successive precisions to use in the iteration. We
365: minimize the precisions, beginning with the highest (i.e. last
366: iteration) to the lowest (i.e. first iteration). */
367:
368: xp = (mp_ptr) TMP_ALLOC (tsize * BYTES_PER_MP_LIMB);
369: ttp = (mp_ptr) TMP_ALLOC (tsize * BYTES_PER_MP_LIMB);
370:
371: t_end_ptr = tp + tsize;
372:
373: tmp = tsize / 2;
374: for (i = 0;; i++)
375: {
376: tsize = (tmp + 1) / 2;
377: if (tmp == tsize)
378: break;
379: tsizes[i] = tsize + tmp;
380: tmp = tsize;
381: }
382:
383: /* Main Newton iteration loop. For big arguments, most of the
384: time is spent here. */
385:
386: /* It is possible to do a great optimization here. The successive
1.1.1.2 ! maekawa 387: divisors in the mpn_divmod call below have more and more leading
1.1 maekawa 388: words equal to its predecessor. Therefore the beginning of
389: each division will repeat the same work as did the last
390: division. If we could guarantee that the leading words of two
391: consecutive divisors are the same (i.e. in this case, a later
392: divisor has just more digits at the end) it would be a simple
393: matter of just using the old remainder of the last division in
394: a subsequent division, to take care of this optimization. This
395: idea would surely make a difference even for small arguments. */
396:
397: /* Loop invariants:
398:
399: R <= shiftdown_to_same_size(floor(sqrt(OP))) < R + 1.
400: X - 1 < shiftdown_to_same_size(floor(sqrt(OP))) <= X.
401: R <= shiftdown_to_same_size(X). */
402:
403: while (--i >= 0)
404: {
405: mp_limb_t cy;
1.1.1.2 ! maekawa 406: #ifdef SQRT_DEBUG
1.1 maekawa 407: mp_limb_t old_least_sign_r = rp[0];
408: mp_size_t old_rsize = rsize;
409:
410: printf ("R = ");
411: mpn_dump (rp, rsize);
412: #endif
413: tsize = tsizes[i];
414:
415: /* Need to copy the numerator into temporary space, as
416: mpn_divmod overwrites its numerator argument with the
417: remainder (which we currently ignore). */
418: MPN_COPY (ttp, t_end_ptr - tsize, tsize);
419: cy = mpn_divmod (xp, ttp, tsize, rp, rsize);
420: xsize = tsize - rsize;
421:
1.1.1.2 ! maekawa 422: #ifdef SQRT_DEBUG
1.1 maekawa 423: printf ("X =%d ", cy);
424: mpn_dump (xp, xsize);
425: #endif
426:
427: /* Add X and R with the most significant limbs aligned,
428: temporarily ignoring at least one limb at the low end of X. */
429: tmp = xsize - rsize;
430: cy += mpn_add_n (xp + tmp, rp, xp + tmp, rsize);
431:
432: /* If T begins with more than 2 x BITS_PER_MP_LIMB of ones, we get
433: intermediate roots that'd need an extra bit. We don't want to
434: handle that since it would make the subsequent divisor
435: non-normalized, so round such roots down to be only ones in the
436: current precision. */
437: if (cy == 2)
438: {
439: mp_size_t j;
440: for (j = xsize; j >= 0; j--)
441: xp[j] = ~(mp_limb_t)0;
442: }
443:
444: /* Divide X by 2 and put the result in R. This is the new
445: approximation. Shift in the carry from the addition. */
446: mpn_rshift (rp, xp, xsize, 1);
447: rp[xsize - 1] |= ((mp_limb_t) 1 << (BITS_PER_MP_LIMB - 1));
448: rsize = xsize;
1.1.1.2 ! maekawa 449: #ifdef SQRT_DEBUG
1.1 maekawa 450: if (old_least_sign_r != rp[rsize - old_rsize])
451: printf (">>>>>>>> %d: %0*lX, %0*lX <<<<<<<<\n",
452: i, 2 * BYTES_PER_MP_LIMB, old_least_sign_r,
453: 2 * BYTES_PER_MP_LIMB, rp[rsize - old_rsize]);
454: #endif
455: }
456: }
457:
1.1.1.2 ! maekawa 458: #ifdef SQRT_DEBUG
1.1 maekawa 459: printf ("(final) R = ");
460: mpn_dump (rp, rsize);
461: #endif
462:
463: /* We computed the square root of OP * 2**(2*floor(cnt/2)).
464: This has resulted in R being 2**floor(cnt/2) to large.
465: Shift it down here to fix that. */
466: if (cnt / 2 != 0)
467: {
468: mpn_rshift (rp, rp, rsize, cnt/2);
469: rsize -= rp[rsize - 1] == 0;
470: }
471:
472: /* Calculate the remainder. */
473: mpn_mul_n (tp, rp, rp, rsize);
474: tsize = rsize + rsize;
475: tsize -= tp[tsize - 1] == 0;
476: if (op_size < tsize
477: || (op_size == tsize && mpn_cmp (op_ptr, tp, op_size) < 0))
478: {
479: /* R is too large. Decrement it. */
480:
481: /* These operations can't overflow. */
482: cy_limb = mpn_sub_n (tp, tp, rp, rsize);
483: cy_limb += mpn_sub_n (tp, tp, rp, rsize);
1.1.1.2 ! maekawa 484: mpn_decr_u (tp + rsize, cy_limb);
! 485: mpn_incr_u (tp, (mp_limb_t) 1);
1.1 maekawa 486:
1.1.1.2 ! maekawa 487: mpn_decr_u (rp, (mp_limb_t) 1);
1.1 maekawa 488:
1.1.1.2 ! maekawa 489: #ifdef SQRT_DEBUG
1.1 maekawa 490: printf ("(adjusted) R = ");
491: mpn_dump (rp, rsize);
492: #endif
493: }
494:
495: if (rem_ptr != NULL)
496: {
497: cy_limb = mpn_sub (rem_ptr, op_ptr, op_size, tp, tsize);
498: MPN_NORMALIZE (rem_ptr, op_size);
499: TMP_FREE (marker);
500: return op_size;
501: }
502: else
503: {
504: int res;
505: res = op_size != tsize || mpn_cmp (op_ptr, tp, op_size);
506: TMP_FREE (marker);
507: return res;
508: }
509: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>