Annotation of OpenXM_contrib/gmp/mpn/m88k/mul_1.s, Revision 1.1
1.1 ! maekawa 1: ; mc88100 __mpn_mul_1 -- Multiply a limb vector with a single limb and
! 2: ; store the product in a second limb vector.
! 3:
! 4: ; Copyright (C) 1992, 1994, 1995 Free Software Foundation, Inc.
! 5:
! 6: ; This file is part of the GNU MP Library.
! 7:
! 8: ; The GNU MP Library is free software; you can redistribute it and/or modify
! 9: ; it under the terms of the GNU Library General Public License as published by
! 10: ; the Free Software Foundation; either version 2 of the License, or (at your
! 11: ; option) any later version.
! 12:
! 13: ; The GNU MP Library is distributed in the hope that it will be useful, but
! 14: ; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
! 15: ; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
! 16: ; License for more details.
! 17:
! 18: ; You should have received a copy of the GNU Library General Public License
! 19: ; along with the GNU MP Library; see the file COPYING.LIB. If not, write to
! 20: ; the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
! 21: ; MA 02111-1307, USA.
! 22:
! 23:
! 24: ; INPUT PARAMETERS
! 25: ; res_ptr r2
! 26: ; s1_ptr r3
! 27: ; size r4
! 28: ; s2_limb r5
! 29:
! 30: ; Common overhead is about 11 cycles/invocation.
! 31:
! 32: ; The speed for S2_LIMB >= 0x10000 is approximately 21 cycles/limb. (The
! 33: ; pipeline stalls 2 cycles due to WB contention.)
! 34:
! 35: ; The speed for S2_LIMB < 0x10000 is approximately 16 cycles/limb. (The
! 36: ; pipeline stalls 2 cycles due to WB contention and 1 cycle due to latency.)
! 37:
! 38: ; To enhance speed:
! 39: ; 1. Unroll main loop 4-8 times.
! 40: ; 2. Schedule code to avoid WB contention. It might be tempting to move the
! 41: ; ld instruction in the loops down to save 2 cycles (less WB contention),
! 42: ; but that looses because the ultimate value will be read from outside
! 43: ; the allocated space. But if we handle the ultimate multiplication in
! 44: ; the tail, we can do this.
! 45: ; 3. Make the multiplication with less instructions. I think the code for
! 46: ; (S2_LIMB >= 0x10000) is not minimal.
! 47: ; With these techniques the (S2_LIMB >= 0x10000) case would run in 17 or
! 48: ; less cycles/limb; the (S2_LIMB < 0x10000) case would run in 11
! 49: ; cycles/limb. (Assuming infinite unrolling.)
! 50:
! 51: text
! 52: align 16
! 53: global ___mpn_mul_1
! 54: ___mpn_mul_1:
! 55:
! 56: ; Make S1_PTR and RES_PTR point at the end of their blocks
! 57: ; and negate SIZE.
! 58: lda r3,r3[r4]
! 59: lda r6,r2[r4] ; RES_PTR in r6 since r2 is retval
! 60: subu r4,r0,r4
! 61:
! 62: addu.co r2,r0,r0 ; r2 = cy = 0
! 63: ld r9,r3[r4]
! 64: mask r7,r5,0xffff ; r7 = lo(S2_LIMB)
! 65: extu r8,r5,16 ; r8 = hi(S2_LIMB)
! 66: bcnd.n eq0,r8,Lsmall ; jump if (hi(S2_LIMB) == 0)
! 67: subu r6,r6,4
! 68:
! 69: ; General code for any value of S2_LIMB.
! 70:
! 71: ; Make a stack frame and save r25 and r26
! 72: subu r31,r31,16
! 73: st.d r25,r31,8
! 74:
! 75: ; Enter the loop in the middle
! 76: br.n L1
! 77: addu r4,r4,1
! 78:
! 79: Loop: ld r9,r3[r4]
! 80: st r26,r6[r4]
! 81: ; bcnd ne0,r0,0 ; bubble
! 82: addu r4,r4,1
! 83: L1: mul r26,r9,r5 ; low word of product mul_1 WB ld
! 84: mask r12,r9,0xffff ; r12 = lo(s1_limb) mask_1
! 85: mul r11,r12,r7 ; r11 = prod_0 mul_2 WB mask_1
! 86: mul r10,r12,r8 ; r10 = prod_1a mul_3
! 87: extu r13,r9,16 ; r13 = hi(s1_limb) extu_1 WB mul_1
! 88: mul r12,r13,r7 ; r12 = prod_1b mul_4 WB extu_1
! 89: mul r25,r13,r8 ; r25 = prod_2 mul_5 WB mul_2
! 90: extu r11,r11,16 ; r11 = hi(prod_0) extu_2 WB mul_3
! 91: addu r10,r10,r11 ; addu_1 WB extu_2
! 92: ; bcnd ne0,r0,0 ; bubble WB addu_1
! 93: addu.co r10,r10,r12 ; WB mul_4
! 94: mask.u r10,r10,0xffff ; move the 16 most significant bits...
! 95: addu.ci r10,r10,r0 ; ...to the low half of the word...
! 96: rot r10,r10,16 ; ...and put carry in pos 16.
! 97: addu.co r26,r26,r2 ; add old carry limb
! 98: bcnd.n ne0,r4,Loop
! 99: addu.ci r2,r25,r10 ; compute new carry limb
! 100:
! 101: st r26,r6[r4]
! 102: ld.d r25,r31,8
! 103: jmp.n r1
! 104: addu r31,r31,16
! 105:
! 106: ; Fast code for S2_LIMB < 0x10000
! 107: Lsmall:
! 108: ; Enter the loop in the middle
! 109: br.n SL1
! 110: addu r4,r4,1
! 111:
! 112: SLoop: ld r9,r3[r4] ;
! 113: st r8,r6[r4] ;
! 114: addu r4,r4,1 ;
! 115: SL1: mul r8,r9,r5 ; low word of product
! 116: mask r12,r9,0xffff ; r12 = lo(s1_limb)
! 117: extu r13,r9,16 ; r13 = hi(s1_limb)
! 118: mul r11,r12,r7 ; r11 = prod_0
! 119: mul r12,r13,r7 ; r12 = prod_1b
! 120: addu.cio r8,r8,r2 ; add old carry limb
! 121: extu r10,r11,16 ; r11 = hi(prod_0)
! 122: addu r10,r10,r12 ;
! 123: bcnd.n ne0,r4,SLoop
! 124: extu r2,r10,16 ; r2 = new carry limb
! 125:
! 126: jmp.n r1
! 127: st r8,r6[r4]
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>