[BACK]Return to mul_1.s CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gmp / mpn / power

File: [local] / OpenXM_contrib / gmp / mpn / power / Attic / mul_1.s (download)

Revision 1.1.1.2 (vendor branch), Sat Sep 9 14:12:38 2000 UTC (23 years, 9 months ago) by maekawa
Branch: GMP
CVS Tags: maekawa-ipv6, VERSION_3_1_1, VERSION_3_1, RELEASE_1_2_2, RELEASE_1_2_1, RELEASE_1_1_3
Changes since 1.1.1.1: +22 -23 lines

Import gmp 3.1

# IBM POWER __gmpn_mul_1 -- Multiply a limb vector with a limb and store
# the result in a second limb vector.

# Copyright (C) 1992, 1994, 1999, 2000 Free Software Foundation, Inc.

# This file is part of the GNU MP Library.

# The GNU MP Library is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation; either version 2.1 of the License, or (at your
# option) any later version.

# The GNU MP Library is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
# License for more details.

# You should have received a copy of the GNU Lesser General Public License
# along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
# the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
# MA 02111-1307, USA.


# INPUT PARAMETERS
# res_ptr	r3
# s1_ptr	r4
# size		r5
# s2_limb	r6

# The POWER architecture has no unsigned 32x32->64 bit multiplication
# instruction.  To obtain that operation, we have to use the 32x32->64 signed
# multiplication instruction, and add the appropriate compensation to the high
# limb of the result.  We add the multiplicand if the multiplier has its most
# significant bit set, and we add the multiplier if the multiplicand has its
# most significant bit set.  We need to preserve the carry flag between each
# iteration, so we have to compute the compensation carefully (the natural,
# srai+and doesn't work).  Since the POWER architecture has a branch unit we
# can branch in zero cycles, so that's how we perform the additions.

	.toc
	.globl	__gmpn_mul_1
	.globl	.__gmpn_mul_1
	.csect	__gmpn_mul_1[DS]
__gmpn_mul_1:
	.long	.__gmpn_mul_1, TOC[tc0], 0
	.csect	.text[PR]
	.align	2
.__gmpn_mul_1:

	cal	3,-4(3)
	l	0,0(4)
	cmpi	0,6,0
	mtctr	5
	mul	9,0,6
	srai	7,0,31
	and	7,7,6
	mfmq	8
	ai	0,0,0		# reset carry
	cax	9,9,7
	blt	Lneg
Lpos:	bdz	Lend
Lploop:	lu	0,4(4)
	stu	8,4(3)
	cmpi	0,0,0
	mul	10,0,6
	mfmq	0
	ae	8,0,9
	bge	Lp0
	cax	10,10,6		# adjust high limb for negative limb from s1
Lp0:	bdz	Lend0
	lu	0,4(4)
	stu	8,4(3)
	cmpi	0,0,0
	mul	9,0,6
	mfmq	0
	ae	8,0,10
	bge	Lp1
	cax	9,9,6		# adjust high limb for negative limb from s1
Lp1:	bdn	Lploop
	b	Lend

Lneg:	cax	9,9,0
	bdz	Lend
Lnloop:	lu	0,4(4)
	stu	8,4(3)
	cmpi	0,0,0
	mul	10,0,6
	cax	10,10,0		# adjust high limb for negative s2_limb
	mfmq	0
	ae	8,0,9
	bge	Ln0
	cax	10,10,6		# adjust high limb for negative limb from s1
Ln0:	bdz	Lend0
	lu	0,4(4)
	stu	8,4(3)
	cmpi	0,0,0
	mul	9,0,6
	cax	9,9,0		# adjust high limb for negative s2_limb
	mfmq	0
	ae	8,0,10
	bge	Ln1
	cax	9,9,6		# adjust high limb for negative limb from s1
Ln1:	bdn	Lnloop
	b	Lend

Lend0:	cal	9,0(10)
Lend:	st	8,4(3)
	aze	3,9
	br