[BACK]Return to mul_1.asm CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gmp / mpn / x86 / k6

File: [local] / OpenXM_contrib / gmp / mpn / x86 / k6 / Attic / mul_1.asm (download)

Revision 1.1.1.2 (vendor branch), Mon Aug 25 16:06:28 2003 UTC (20 years, 10 months ago) by ohara
Branch: GMP
CVS Tags: VERSION_4_1_2, RELEASE_1_2_3, RELEASE_1_2_2_KNOPPIX_b, RELEASE_1_2_2_KNOPPIX
Changes since 1.1.1.1: +6 -7 lines

Import gmp 4.1.2

dnl  AMD K6 mpn_mul_1 -- mpn by limb multiply.

dnl  Copyright 1999, 2000, 2002 Free Software Foundation, Inc.
dnl 
dnl  This file is part of the GNU MP Library.
dnl 
dnl  The GNU MP Library is free software; you can redistribute it and/or
dnl  modify it under the terms of the GNU Lesser General Public License as
dnl  published by the Free Software Foundation; either version 2.1 of the
dnl  License, or (at your option) any later version.
dnl 
dnl  The GNU MP Library is distributed in the hope that it will be useful,
dnl  but WITHOUT ANY WARRANTY; without even the implied warranty of
dnl  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
dnl  Lesser General Public License for more details.
dnl 
dnl  You should have received a copy of the GNU Lesser General Public
dnl  License along with the GNU MP Library; see the file COPYING.LIB.  If
dnl  not, write to the Free Software Foundation, Inc., 59 Temple Place -
dnl  Suite 330, Boston, MA 02111-1307, USA.

include(`../config.m4')


C K6: 6.25 cycles/limb.


C mp_limb_t mpn_mul_1 (mp_ptr dst, mp_srcptr src, mp_size_t size,
C                      mp_limb_t multiplier);
C mp_limb_t mpn_mul_1c (mp_ptr dst, mp_srcptr src, mp_size_t size,
C                       mp_limb_t multiplier, mp_limb_t carry);
C
C Multiply src,size by mult and store the result in dst,size.
C Return the carry limb from the top of the result.
C
C mpn_mul_1c() accepts an initial carry for the calculation, it's added into
C the low limb of the result.

defframe(PARAM_CARRY,     20)
defframe(PARAM_MULTIPLIER,16)
defframe(PARAM_SIZE,      12)
defframe(PARAM_SRC,       8)
defframe(PARAM_DST,       4)

dnl  minimum 5 because the unrolled code can't handle less
deflit(UNROLL_THRESHOLD, 5)

	TEXT
	ALIGN(32)

PROLOGUE(mpn_mul_1c)
	pushl	%esi
deflit(`FRAME',4)
	movl	PARAM_CARRY, %esi
	jmp	L(start_nc)
EPILOGUE()


PROLOGUE(mpn_mul_1)
	push	%esi
deflit(`FRAME',4)
	xorl	%esi, %esi	C initial carry

L(start_nc):
	mov	PARAM_SIZE, %ecx
	push	%ebx
FRAME_pushl()

	movl	PARAM_SRC, %ebx
	push	%edi
FRAME_pushl()

	movl	PARAM_DST, %edi
	pushl	%ebp
FRAME_pushl()

	cmpl	$UNROLL_THRESHOLD, %ecx
	movl	PARAM_MULTIPLIER, %ebp

	jae	L(unroll)


	C code offset 0x22 here, close enough to aligned
L(simple):
	C eax	scratch
	C ebx	src
	C ecx	counter
	C edx	scratch
	C esi	carry
	C edi	dst
	C ebp	multiplier
	C
	C this loop 8 cycles/limb

	movl	(%ebx), %eax
	addl	$4, %ebx

	mull	%ebp

	addl	%esi, %eax
	movl	$0, %esi

	adcl	%edx, %esi

	movl	%eax, (%edi)
	addl	$4, %edi

	loop	L(simple)


	popl	%ebp

	popl	%edi
	popl	%ebx

	movl	%esi, %eax
	popl	%esi

	ret


C -----------------------------------------------------------------------------
C The code for each limb is 6 cycles, with instruction decoding being the
C limiting factor.  At 4 limbs/loop and 1 cycle/loop of overhead it's 6.25
C cycles/limb in total.
C
C The secret ingredient to get 6.25 is to start the loop with the mul and
C have the load/store pair at the end.  Rotating the load/store to the top
C is an 0.5 c/l slowdown.  (Some address generation effect probably.)
C
C The whole unrolled loop fits nicely in exactly 80 bytes.


	ALIGN(16)	C already aligned to 16 here actually
L(unroll):
	movl	(%ebx), %eax
	leal	-16(%ebx,%ecx,4), %ebx

	leal	-16(%edi,%ecx,4), %edi
	subl	$4, %ecx

	negl	%ecx


	ALIGN(16)	C one byte nop for this alignment
L(top):
	C eax	scratch
	C ebx	&src[size-4]
	C ecx	counter
	C edx	scratch
	C esi	carry
	C edi	&dst[size-4]
	C ebp	multiplier

	mull	%ebp

	addl	%esi, %eax
	movl	$0, %esi

	adcl	%edx, %esi

	movl	%eax, (%edi,%ecx,4)
	movl	4(%ebx,%ecx,4), %eax


	mull	%ebp

	addl	%esi, %eax
	movl	$0, %esi

	adcl	%edx, %esi

	movl	%eax, 4(%edi,%ecx,4)
	movl	8(%ebx,%ecx,4), %eax


	mull	%ebp

	addl	%esi, %eax
	movl	$0, %esi

	adcl	%edx, %esi

	movl	%eax, 8(%edi,%ecx,4)
	movl	12(%ebx,%ecx,4), %eax


	mull	%ebp

	addl	%esi, %eax
	movl	$0, %esi

	adcl	%edx, %esi

	movl	%eax, 12(%edi,%ecx,4)
	movl	16(%ebx,%ecx,4), %eax


	addl	$4, %ecx
	js	L(top)



	C eax	next src limb
	C ebx	&src[size-4]
	C ecx	0 to 3 representing respectively 4 to 1 further limbs
	C edx
	C esi	carry
	C edi	&dst[size-4]

	testb	$2, %cl
	jnz	L(finish_not_two)

	mull	%ebp

	addl	%esi, %eax
	movl	$0, %esi

	adcl	%edx, %esi

	movl	%eax, (%edi,%ecx,4)
	movl	4(%ebx,%ecx,4), %eax


	mull	%ebp

	addl	%esi, %eax
	movl	$0, %esi

	adcl	%edx, %esi

	movl	%eax, 4(%edi,%ecx,4)
	movl	8(%ebx,%ecx,4), %eax

	addl	$2, %ecx
L(finish_not_two):


	testb	$1, %cl
	jnz	L(finish_not_one)

	mull	%ebp

	addl	%esi, %eax
	movl	$0, %esi

	adcl	%edx, %esi

	movl	%eax, 8(%edi)
	movl	12(%ebx), %eax
L(finish_not_one):


	mull	%ebp

	addl	%esi, %eax
	popl	%ebp

	adcl	$0, %edx

	movl	%eax, 12(%edi)
	popl	%edi

	popl	%ebx
	movl	%edx, %eax

	popl	%esi

	ret

EPILOGUE()