[BACK]Return to mod_1.asm CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gmp / mpn / x86 / k7 / mmx

Annotation of OpenXM_contrib/gmp/mpn/x86/k7/mmx/mod_1.asm, Revision 1.1.1.1

1.1       maekawa     1: dnl  AMD K7 mpn_mod_1 -- mpn by limb remainder.
                      2: dnl
                      3: dnl  K7: 17.0 cycles/limb.
                      4:
                      5:
                      6: dnl  Copyright (C) 1999, 2000 Free Software Foundation, Inc.
                      7: dnl
                      8: dnl  This file is part of the GNU MP Library.
                      9: dnl
                     10: dnl  The GNU MP Library is free software; you can redistribute it and/or
                     11: dnl  modify it under the terms of the GNU Lesser General Public License as
                     12: dnl  published by the Free Software Foundation; either version 2.1 of the
                     13: dnl  License, or (at your option) any later version.
                     14: dnl
                     15: dnl  The GNU MP Library is distributed in the hope that it will be useful,
                     16: dnl  but WITHOUT ANY WARRANTY; without even the implied warranty of
                     17: dnl  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
                     18: dnl  Lesser General Public License for more details.
                     19: dnl
                     20: dnl  You should have received a copy of the GNU Lesser General Public
                     21: dnl  License along with the GNU MP Library; see the file COPYING.LIB.  If
                     22: dnl  not, write to the Free Software Foundation, Inc., 59 Temple Place -
                     23: dnl  Suite 330, Boston, MA 02111-1307, USA.
                     24:
                     25:
                     26: include(`../config.m4')
                     27:
                     28:
                     29: C mp_limb_t mpn_mod_1 (mp_srcptr src, mp_size_t size, mp_limb_t divisor);
                     30: C mp_limb_t mpn_mod_1c (mp_srcptr src, mp_size_t size, mp_limb_t divisor,
                     31: C                       mp_limb_t carry);
                     32: C
                     33: C The code here is the same as mpn_divrem_1, but with the quotient
                     34: C discarded.  See mpn/x86/k7/mmx/divrem_1.c for some comments.
                     35:
                     36:
                     37: dnl  MUL_THRESHOLD is the size at which the multiply by inverse method is
                     38: dnl  used, rather than plain "divl"s.  Minimum value 2.
                     39: dnl
                     40: dnl  The inverse takes about 50 cycles to calculate, but after that the
                     41: dnl  multiply is 17 c/l versus division at 41 c/l.
                     42: dnl
                     43: dnl  Using mul or div is about the same speed at 3 limbs, so the threshold
                     44: dnl  is set to 4 to get the smaller div code used at 3.
                     45:
                     46: deflit(MUL_THRESHOLD, 4)
                     47:
                     48:
                     49: defframe(PARAM_CARRY,  16)
                     50: defframe(PARAM_DIVISOR,12)
                     51: defframe(PARAM_SIZE,    8)
                     52: defframe(PARAM_SRC,     4)
                     53:
                     54: defframe(SAVE_EBX,    -4)
                     55: defframe(SAVE_ESI,    -8)
                     56: defframe(SAVE_EDI,    -12)
                     57: defframe(SAVE_EBP,    -16)
                     58:
                     59: defframe(VAR_NORM,    -20)
                     60: defframe(VAR_INVERSE, -24)
                     61: defframe(VAR_SRC_STOP,-28)
                     62:
                     63: deflit(STACK_SPACE, 28)
                     64:
                     65:        .text
                     66:        ALIGN(32)
                     67:
                     68: PROLOGUE(mpn_mod_1c)
                     69: deflit(`FRAME',0)
                     70:        movl    PARAM_CARRY, %edx
                     71:        movl    PARAM_SIZE, %ecx
                     72:        subl    $STACK_SPACE, %esp
                     73: deflit(`FRAME',STACK_SPACE)
                     74:
                     75:        movl    %ebp, SAVE_EBP
                     76:        movl    PARAM_DIVISOR, %ebp
                     77:
                     78:        movl    %esi, SAVE_ESI
                     79:        movl    PARAM_SRC, %esi
                     80:        jmp     LF(mpn_mod_1,start_1c)
                     81:
                     82: EPILOGUE()
                     83:
                     84:
                     85:        ALIGN(32)
                     86: PROLOGUE(mpn_mod_1)
                     87: deflit(`FRAME',0)
                     88:
                     89:        movl    PARAM_SIZE, %ecx
                     90:        movl    $0, %edx                C initial carry (if can't skip a div)
                     91:        subl    $STACK_SPACE, %esp
                     92: deflit(`FRAME',STACK_SPACE)
                     93:
                     94:        movl    %esi, SAVE_ESI
                     95:        movl    PARAM_SRC, %esi
                     96:
                     97:        movl    %ebp, SAVE_EBP
                     98:        movl    PARAM_DIVISOR, %ebp
                     99:
                    100:        orl     %ecx, %ecx
                    101:        jz      L(divide_done)
                    102:
                    103:        movl    -4(%esi,%ecx,4), %eax   C src high limb
                    104:
                    105:        cmpl    %ebp, %eax              C carry flag if high<divisor
                    106:
                    107:        cmovc(  %eax, %edx)             C src high limb as initial carry
                    108:        sbbl    $0, %ecx                C size-1 to skip one div
                    109:        jz      L(divide_done)
                    110:
                    111:
                    112:        ALIGN(16)
                    113: L(start_1c):
                    114:        C eax
                    115:        C ebx
                    116:        C ecx   size
                    117:        C edx   carry
                    118:        C esi   src
                    119:        C edi
                    120:        C ebp   divisor
                    121:
                    122:        cmpl    $MUL_THRESHOLD, %ecx
                    123:        jae     L(mul_by_inverse)
                    124:
                    125:
                    126:
                    127: C With a MUL_THRESHOLD of 4, this "loop" only ever does 1 to 3 iterations,
                    128: C but it's already fast and compact, and there's nothing to gain by
                    129: C expanding it out.
                    130: C
                    131: C Using PARAM_DIVISOR in the divl is a couple of cycles faster than %ebp.
                    132:
                    133:        orl     %ecx, %ecx
                    134:        jz      L(divide_done)
                    135:
                    136:
                    137: L(divide_top):
                    138:        C eax   scratch (quotient)
                    139:        C ebx
                    140:        C ecx   counter, limbs, decrementing
                    141:        C edx   scratch (remainder)
                    142:        C esi   src
                    143:        C edi
                    144:        C ebp
                    145:
                    146:        movl    -4(%esi,%ecx,4), %eax
                    147:
                    148:        divl    PARAM_DIVISOR
                    149:
                    150:        decl    %ecx
                    151:        jnz     L(divide_top)
                    152:
                    153:
                    154: L(divide_done):
                    155:        movl    SAVE_ESI, %esi
                    156:        movl    SAVE_EBP, %ebp
                    157:        addl    $STACK_SPACE, %esp
                    158:
                    159:        movl    %edx, %eax
                    160:
                    161:        ret
                    162:
                    163:
                    164:
                    165: C -----------------------------------------------------------------------------
                    166:
                    167: L(mul_by_inverse):
                    168:        C eax
                    169:        C ebx
                    170:        C ecx   size
                    171:        C edx   carry
                    172:        C esi   src
                    173:        C edi
                    174:        C ebp   divisor
                    175:
                    176:        bsrl    %ebp, %eax              C 31-l
                    177:
                    178:        movl    %ebx, SAVE_EBX
                    179:        leal    -4(%esi), %ebx
                    180:
                    181:        movl    %ebx, VAR_SRC_STOP
                    182:        movl    %edi, SAVE_EDI
                    183:
                    184:        movl    %ecx, %ebx              C size
                    185:        movl    $31, %ecx
                    186:
                    187:        movl    %edx, %edi              C carry
                    188:        movl    $-1, %edx
                    189:
                    190:        C
                    191:
                    192:        xorl    %eax, %ecx              C l
                    193:        incl    %eax                    C 32-l
                    194:
                    195:        shll    %cl, %ebp               C d normalized
                    196:        movl    %ecx, VAR_NORM
                    197:
                    198:        movd    %eax, %mm7
                    199:
                    200:        movl    $-1, %eax
                    201:        subl    %ebp, %edx              C (b-d)-1 so  edx:eax = b*(b-d)-1
                    202:
                    203:        divl    %ebp                    C floor (b*(b-d)-1) / d
                    204:
                    205:        C
                    206:
                    207:        movl    %eax, VAR_INVERSE
                    208:        leal    -12(%esi,%ebx,4), %eax  C &src[size-3]
                    209:
                    210:        movl    8(%eax), %esi           C src high limb
                    211:        movl    4(%eax), %edx           C src second highest limb
                    212:
                    213:        shldl(  %cl, %esi, %edi)        C n2 = carry,high << l
                    214:
                    215:        shldl(  %cl, %edx, %esi)        C n10 = high,second << l
                    216:
                    217:        movl    %eax, %ecx              C &src[size-3]
                    218:
                    219:
                    220: ifelse(MUL_THRESHOLD,2,`
                    221:        cmpl    $2, %ebx
                    222:        je      L(inverse_two_left)
                    223: ')
                    224:
                    225:
                    226: C The dependent chain here is the same as in mpn_divrem_1, but a few
                    227: C instructions are saved by not needing to store the quotient limbs.
                    228: C Unfortunately this doesn't get the code down to the theoretical 16 c/l.
                    229: C
                    230: C There's four dummy instructions in the loop, all of which are necessary
                    231: C for the claimed 17 c/l.  It's a 1 to 3 cycle slowdown if any are removed,
                    232: C or changed from load to store or vice versa.  They're not completely
                    233: C random, since they correspond to what mpn_divrem_1 has, but there's no
                    234: C obvious reason why they're necessary.  Presumably they induce something
                    235: C good in the out of order execution, perhaps through some load/store
                    236: C ordering and/or decoding effects.
                    237: C
                    238: C The q1==0xFFFFFFFF case is handled here the same as in mpn_divrem_1.  On
                    239: C on special data that comes out as q1==0xFFFFFFFF always, the loop runs at
                    240: C about 13.5 c/l.
                    241:
                    242:        ALIGN(32)
                    243: L(inverse_top):
                    244:        C eax   scratch
                    245:        C ebx   scratch (nadj, q1)
                    246:        C ecx   src pointer, decrementing
                    247:        C edx   scratch
                    248:        C esi   n10
                    249:        C edi   n2
                    250:        C ebp   divisor
                    251:        C
                    252:        C mm0   scratch (src qword)
                    253:        C mm7   rshift for normalization
                    254:
                    255:        cmpl    $0x80000000, %esi  C n1 as 0=c, 1=nc
                    256:        movl    %edi, %eax         C n2
                    257:        movl    PARAM_SIZE, %ebx   C dummy
                    258:
                    259:        leal    (%ebp,%esi), %ebx
                    260:        cmovc(  %esi, %ebx)        C nadj = n10 + (-n1 & d), ignoring overflow
                    261:        sbbl    $-1, %eax          C n2+n1
                    262:
                    263:        mull    VAR_INVERSE        C m*(n2+n1)
                    264:
                    265:        movq    (%ecx), %mm0       C next src limb and the one below it
                    266:        subl    $4, %ecx
                    267:
                    268:        movl    %ecx, PARAM_SIZE   C dummy
                    269:
                    270:        C
                    271:
                    272:        addl    %ebx, %eax         C m*(n2+n1) + nadj, low giving carry flag
                    273:        leal    1(%edi), %ebx      C n2<<32 + m*(n2+n1))
                    274:        movl    %ebp, %eax         C d
                    275:
                    276:        C
                    277:
                    278:        adcl    %edx, %ebx         C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
                    279:        jz      L(q1_ff)
                    280:        nop                        C dummy
                    281:
                    282:        mull    %ebx               C (q1+1)*d
                    283:
                    284:        psrlq   %mm7, %mm0
                    285:        leal    0(%ecx), %ecx      C dummy
                    286:
                    287:        C
                    288:
                    289:        C
                    290:
                    291:        subl    %eax, %esi
                    292:        movl    VAR_SRC_STOP, %eax
                    293:
                    294:        C
                    295:
                    296:        sbbl    %edx, %edi         C n - (q1+1)*d
                    297:        movl    %esi, %edi         C remainder -> n2
                    298:        leal    (%ebp,%esi), %edx
                    299:
                    300:        movd    %mm0, %esi
                    301:
                    302:        cmovc(  %edx, %edi)        C n - q1*d if underflow from using q1+1
                    303:        cmpl    %eax, %ecx
                    304:        jne     L(inverse_top)
                    305:
                    306:
                    307: L(inverse_loop_done):
                    308:
                    309:
                    310: C -----------------------------------------------------------------------------
                    311:
                    312: L(inverse_two_left):
                    313:        C eax   scratch
                    314:        C ebx   scratch (nadj, q1)
                    315:        C ecx   &src[-1]
                    316:        C edx   scratch
                    317:        C esi   n10
                    318:        C edi   n2
                    319:        C ebp   divisor
                    320:        C
                    321:        C mm0   scratch (src dword)
                    322:        C mm7   rshift
                    323:
                    324:        cmpl    $0x80000000, %esi  C n1 as 0=c, 1=nc
                    325:        movl    %edi, %eax         C n2
                    326:
                    327:        leal    (%ebp,%esi), %ebx
                    328:        cmovc(  %esi, %ebx)        C nadj = n10 + (-n1 & d), ignoring overflow
                    329:        sbbl    $-1, %eax          C n2+n1
                    330:
                    331:        mull    VAR_INVERSE        C m*(n2+n1)
                    332:
                    333:        movd    4(%ecx), %mm0      C src low limb
                    334:
                    335:        C
                    336:
                    337:        C
                    338:
                    339:        addl    %ebx, %eax         C m*(n2+n1) + nadj, low giving carry flag
                    340:        leal    1(%edi), %ebx      C n2<<32 + m*(n2+n1))
                    341:        movl    %ebp, %eax         C d
                    342:
                    343:        adcl    %edx, %ebx         C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
                    344:
                    345:        sbbl    $0, %ebx
                    346:
                    347:        mull    %ebx               C (q1+1)*d
                    348:
                    349:        psllq   $32, %mm0
                    350:
                    351:        psrlq   %mm7, %mm0
                    352:
                    353:        C
                    354:
                    355:        subl    %eax, %esi
                    356:
                    357:        C
                    358:
                    359:        sbbl    %edx, %edi         C n - (q1+1)*d
                    360:        movl    %esi, %edi         C remainder -> n2
                    361:        leal    (%ebp,%esi), %edx
                    362:
                    363:        movd    %mm0, %esi
                    364:
                    365:        cmovc(  %edx, %edi)        C n - q1*d if underflow from using q1+1
                    366:
                    367:
                    368: C One limb left
                    369:
                    370:        C eax   scratch
                    371:        C ebx   scratch (nadj, q1)
                    372:        C ecx
                    373:        C edx   scratch
                    374:        C esi   n10
                    375:        C edi   n2
                    376:        C ebp   divisor
                    377:        C
                    378:        C mm0   src limb, shifted
                    379:        C mm7   rshift
                    380:
                    381:        cmpl    $0x80000000, %esi  C n1 as 0=c, 1=nc
                    382:        movl    %edi, %eax         C n2
                    383:
                    384:        leal    (%ebp,%esi), %ebx
                    385:        cmovc(  %esi, %ebx)        C nadj = n10 + (-n1 & d), ignoring overflow
                    386:        sbbl    $-1, %eax          C n2+n1
                    387:
                    388:        mull    VAR_INVERSE        C m*(n2+n1)
                    389:
                    390:        movl    VAR_NORM, %ecx     C for final denorm
                    391:
                    392:        C
                    393:
                    394:        C
                    395:
                    396:        addl    %ebx, %eax         C m*(n2+n1) + nadj, low giving carry flag
                    397:        leal    1(%edi), %ebx      C n2<<32 + m*(n2+n1))
                    398:        movl    %ebp, %eax         C d
                    399:
                    400:        C
                    401:
                    402:        adcl    %edx, %ebx         C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
                    403:
                    404:        sbbl    $0, %ebx
                    405:
                    406:        mull    %ebx               C (q1+1)*d
                    407:
                    408:        movl    SAVE_EBX, %ebx
                    409:
                    410:        C
                    411:
                    412:        C
                    413:
                    414:        subl    %eax, %esi
                    415:
                    416:        movl    %esi, %eax         C remainder
                    417:        movl    SAVE_ESI, %esi
                    418:
                    419:        sbbl    %edx, %edi         C n - (q1+1)*d
                    420:        leal    (%ebp,%eax), %edx
                    421:        movl    SAVE_EBP, %ebp
                    422:
                    423:        cmovc(  %edx, %eax)        C n - q1*d if underflow from using q1+1
                    424:        movl    SAVE_EDI, %edi
                    425:
                    426:        shrl    %cl, %eax          C denorm remainder
                    427:        addl    $STACK_SPACE, %esp
                    428:        emms
                    429:
                    430:        ret
                    431:
                    432:
                    433: C -----------------------------------------------------------------------------
                    434: C
                    435: C Special case for q1=0xFFFFFFFF, giving q=0xFFFFFFFF meaning the low dword
                    436: C of q*d is simply -d and the remainder n-q*d = n10+d
                    437:
                    438: L(q1_ff):
                    439:        C eax   (divisor)
                    440:        C ebx   (q1+1 == 0)
                    441:        C ecx   src pointer
                    442:        C edx
                    443:        C esi   n10
                    444:        C edi   (n2)
                    445:        C ebp   divisor
                    446:
                    447:        movl    VAR_SRC_STOP, %edx
                    448:        leal    (%ebp,%esi), %edi       C n-q*d remainder -> next n2
                    449:        psrlq   %mm7, %mm0
                    450:
                    451:        movd    %mm0, %esi              C next n10
                    452:
                    453:        cmpl    %ecx, %edx
                    454:        jne     L(inverse_top)
                    455:        jmp     L(inverse_loop_done)
                    456:
                    457: EPILOGUE()

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>