[BACK]Return to mod_1.asm CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gmp / mpn / x86 / pentium

Annotation of OpenXM_contrib/gmp/mpn/x86/pentium/mod_1.asm, Revision 1.1.1.1

1.1       ohara       1: dnl  Intel P5 mpn_mod_1 -- mpn by limb remainder.
                      2:
                      3: dnl  Copyright 1999, 2000, 2002 Free Software Foundation, Inc.
                      4: dnl
                      5: dnl  This file is part of the GNU MP Library.
                      6: dnl
                      7: dnl  The GNU MP Library is free software; you can redistribute it and/or
                      8: dnl  modify it under the terms of the GNU Lesser General Public License as
                      9: dnl  published by the Free Software Foundation; either version 2.1 of the
                     10: dnl  License, or (at your option) any later version.
                     11: dnl
                     12: dnl  The GNU MP Library is distributed in the hope that it will be useful,
                     13: dnl  but WITHOUT ANY WARRANTY; without even the implied warranty of
                     14: dnl  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
                     15: dnl  Lesser General Public License for more details.
                     16: dnl
                     17: dnl  You should have received a copy of the GNU Lesser General Public
                     18: dnl  License along with the GNU MP Library; see the file COPYING.LIB.  If
                     19: dnl  not, write to the Free Software Foundation, Inc., 59 Temple Place -
                     20: dnl  Suite 330, Boston, MA 02111-1307, USA.
                     21:
                     22: include(`../config.m4')
                     23:
                     24:
                     25: C P5: 28.0 cycles/limb
                     26:
                     27:
                     28: C mp_limb_t mpn_mod_1 (mp_srcptr src, mp_size_t size, mp_limb_t divisor);
                     29: C mp_limb_t mpn_mod_1c (mp_srcptr src, mp_size_t size, mp_limb_t divisor,
                     30: C                       mp_limb_t carry);
                     31: C mp_limb_t mpn_preinv_mod_1 (mp_srcptr src, mp_size_t size, mp_limb_t divisor,
                     32: C                             mp_limb_t inverse);
                     33: C
                     34: C This code is not unlike mpn/x86/p6/mod_1.asm, it does the same sort of
                     35: C multiply by inverse without on-the-fly shifts.  See that code for some
                     36: C general comments.
                     37: C
                     38: C Alternatives:
                     39: C
                     40: C P5 shldl is 4 cycles, so shifting on the fly would be at least 5 cycles
                     41: C slower, probably more depending what it did to register usage.  Using MMX
                     42: C on P55 would be better, but still at least 4 or 5 instructions and so 2 or
                     43: C 3 cycles.
                     44:
                     45:
                     46: dnl  These thresholds are the sizes where the multiply by inverse method is
                     47: dnl  used, rather than plain "divl"s.  Minimum value 2.
                     48: dnl
                     49: dnl  MUL_NORM_THRESHOLD is for an already normalized divisor (high bit set),
                     50: dnl  MUL_UNNORM_THRESHOLD for an unnormalized divisor.
                     51: dnl
                     52: dnl  With the divl loop at 44 c/l and the inverse at 28 c/l with about 70
                     53: dnl  cycles to setup, the threshold should be about ceil(70/16)==5, which is
                     54: dnl  what happens in practice.
                     55: dnl
                     56: dnl  An unnormalized divisor gets an extra 40 cycles at the end for the
                     57: dnl  final (r*2^n)%(d*2^n) and shift.  This increases the threshold by about
                     58: dnl  40/16=3.
                     59: dnl
                     60: dnl  PIC adds between 4 and 7 cycles (not sure why it varies), but this
                     61: dnl  doesn't change the thresholds.
                     62: dnl
                     63: dnl  The entry sequence code that chooses between MUL_NORM_THRESHOLD and
                     64: dnl  MUL_UNNORM_THRESHOLD is a bit horrible, but it adds only 2 cycles
                     65: dnl  (branch free) and ensures the choice between div or mul is optimal.
                     66:
                     67: deflit(MUL_NORM_THRESHOLD,   ifdef(`PIC',5,5))
                     68: deflit(MUL_UNNORM_THRESHOLD, ifdef(`PIC',8,8))
                     69:
                     70: deflit(MUL_NORM_DELTA, eval(MUL_NORM_THRESHOLD - MUL_UNNORM_THRESHOLD))
                     71:
                     72:
                     73: defframe(PARAM_INVERSE, 16)   dnl mpn_preinv_mod_1
                     74: defframe(PARAM_CARRY,   16)   dnl mpn_mod_1c
                     75: defframe(PARAM_DIVISOR, 12)
                     76: defframe(PARAM_SIZE,     8)
                     77: defframe(PARAM_SRC,      4)
                     78:
                     79: dnl  re-using parameter space
                     80: define(VAR_NORM,    `PARAM_DIVISOR')
                     81: define(VAR_INVERSE, `PARAM_SIZE')
                     82:
                     83:        TEXT
                     84:
                     85:        ALIGN(8)
                     86: PROLOGUE(mpn_preinv_mod_1)
                     87: deflit(`FRAME',0)
                     88:
                     89:        pushl   %ebp    FRAME_pushl()
                     90:        pushl   %esi    FRAME_pushl()
                     91:
                     92:        movl    PARAM_SRC, %esi
                     93:        movl    PARAM_SIZE, %edx
                     94:
                     95:        pushl   %edi    FRAME_pushl()
                     96:        pushl   %ebx    FRAME_pushl()
                     97:
                     98:        movl    PARAM_DIVISOR, %ebp
                     99:        movl    PARAM_INVERSE, %eax
                    100:
                    101:        movl    -4(%esi,%edx,4), %edi   C src high limb
                    102:        leal    -8(%esi,%edx,4), %esi   C &src[size-2]
                    103:
                    104:        movl    $0, VAR_NORM
                    105:        decl    %edx
                    106:
                    107:        jnz     L(start_preinv)
                    108:
                    109:        subl    %ebp, %edi              C src-divisor
                    110:        popl    %ebx
                    111:
                    112:        sbbl    %ecx, %ecx              C -1 if underflow
                    113:        movl    %edi, %eax              C src-divisor
                    114:
                    115:        andl    %ebp, %ecx              C d if underflow
                    116:        popl    %edi
                    117:
                    118:        addl    %ecx, %eax              C remainder, with possible addback
                    119:        popl    %esi
                    120:
                    121:        popl    %ebp
                    122:
                    123:        ret
                    124:
                    125: EPILOGUE()
                    126:
                    127:
                    128:        ALIGN(8)
                    129: PROLOGUE(mpn_mod_1c)
                    130: deflit(`FRAME',0)
                    131:
                    132:        movl    PARAM_DIVISOR, %eax
                    133:        movl    PARAM_SIZE, %ecx
                    134:
                    135:        sarl    $31, %eax                       C d highbit
                    136:        movl    PARAM_CARRY, %edx
                    137:
                    138:        orl     %ecx, %ecx
                    139:        jz      L(done_edx)                     C result==carry if size==0
                    140:
                    141:        andl    $MUL_NORM_DELTA, %eax
                    142:        pushl   %ebp            FRAME_pushl()
                    143:
                    144:        addl    $MUL_UNNORM_THRESHOLD, %eax     C norm or unnorm thresh
                    145:        pushl   %esi            FRAME_pushl()
                    146:
                    147:        movl    PARAM_SRC, %esi
                    148:        movl    PARAM_DIVISOR, %ebp
                    149:
                    150:        cmpl    %eax, %ecx
                    151:        jb      L(divide_top)
                    152:
                    153:        movl    %edx, %eax              C carry as pretend src high limb
                    154:        leal    1(%ecx), %edx           C size+1
                    155:
                    156:        cmpl    $0x1000000, %ebp
                    157:        jmp     L(mul_by_inverse_1c)
                    158:
                    159: EPILOGUE()
                    160:
                    161:
                    162:        ALIGN(8)
                    163: PROLOGUE(mpn_mod_1)
                    164: deflit(`FRAME',0)
                    165:
                    166:        movl    PARAM_SIZE, %ecx
                    167:        pushl   %ebp            FRAME_pushl()
                    168:
                    169:        orl     %ecx, %ecx
                    170:        jz      L(done_zero)
                    171:
                    172:        movl    PARAM_SRC, %eax
                    173:        movl    PARAM_DIVISOR, %ebp
                    174:
                    175:        sarl    $31, %ebp               C -1 if divisor normalized
                    176:        movl    -4(%eax,%ecx,4), %eax   C src high limb
                    177:
                    178:        movl    PARAM_DIVISOR, %edx
                    179:        pushl   %esi            FRAME_pushl()
                    180:
                    181:        andl    $MUL_NORM_DELTA, %ebp
                    182:        cmpl    %edx, %eax              C carry flag if high<divisor
                    183:
                    184:        sbbl    %edx, %edx              C -1 if high<divisor
                    185:        addl    $MUL_UNNORM_THRESHOLD, %ebp C norm or unnorm thresh
                    186:
                    187:        addl    %edx, %ecx              C size-1 if high<divisor
                    188:        jz      L(done_eax)
                    189:
                    190:        cmpl    %ebp, %ecx
                    191:        movl    PARAM_DIVISOR, %ebp
                    192:
                    193:        movl    PARAM_SRC, %esi
                    194:        jae     L(mul_by_inverse)
                    195:
                    196:        andl    %eax, %edx              C high as initial carry if high<divisor
                    197:
                    198:
                    199: L(divide_top):
                    200:        C eax   scratch (quotient)
                    201:        C ebx
                    202:        C ecx   counter, limbs, decrementing
                    203:        C edx   scratch (remainder)
                    204:        C esi   src
                    205:        C edi
                    206:        C ebp   divisor
                    207:
                    208:        movl    -4(%esi,%ecx,4), %eax
                    209:
                    210:        divl    %ebp
                    211:
                    212:        decl    %ecx
                    213:        jnz     L(divide_top)
                    214:
                    215:
                    216:        popl    %esi
                    217:        popl    %ebp
                    218:
                    219: L(done_edx):
                    220:        movl    %edx, %eax
                    221:
                    222:        ret
                    223:
                    224:
                    225: L(done_zero):
                    226:        xorl    %eax, %eax
                    227:        popl    %ebp
                    228:
                    229:        ret
                    230:
                    231:
                    232: C -----------------------------------------------------------------------------
                    233: C
                    234: C The divisor is normalized using the same code as the pentium
                    235: C count_leading_zeros in longlong.h.  Going through the GOT for PIC costs a
                    236: C couple of cycles, but is more or less unavoidable.
                    237:
                    238:
                    239:        ALIGN(8)
                    240: L(mul_by_inverse):
                    241:        C eax   src high limb
                    242:        C ebx
                    243:        C ecx   size or size-1
                    244:        C edx
                    245:        C esi   src
                    246:        C edi
                    247:        C ebp   divisor
                    248:
                    249:        movl    PARAM_SIZE, %edx
                    250:        cmpl    $0x1000000, %ebp
                    251:
                    252: L(mul_by_inverse_1c):
                    253:        sbbl    %ecx, %ecx
                    254:        cmpl    $0x10000, %ebp
                    255:
                    256:        sbbl    $0, %ecx
                    257:        cmpl    $0x100, %ebp
                    258:
                    259:        sbbl    $0, %ecx
                    260:        pushl   %edi            FRAME_pushl()
                    261:
                    262:        pushl   %ebx            FRAME_pushl()
                    263:        movl    %ebp, %ebx              C d
                    264:
                    265: ifdef(`PIC',`
                    266:        call    L(here)
                    267: L(here):
                    268:        popl    %edi
                    269:        leal    25(,%ecx,8), %ecx       C 0,-1,-2,-3 -> 25,17,9,1
                    270:
                    271:        shrl    %cl, %ebx
                    272:        addl    $_GLOBAL_OFFSET_TABLE_+[.-L(here)], %edi
                    273:
                    274:        C AGI
                    275:        movl    __clz_tab@GOT(%edi), %edi
                    276:        addl    $-34, %ecx
                    277:
                    278:        C AGI
                    279:        movb    (%ebx,%edi), %bl
                    280:
                    281: ',`
                    282:        leal    25(,%ecx,8), %ecx       C 0,-1,-2,-3 -> 25,17,9,1
                    283:
                    284:        shrl    %cl, %ebx
                    285:        addl    $-34, %ecx
                    286:
                    287:        C AGI
                    288:        movb    __clz_tab(%ebx), %bl
                    289: ')
                    290:        movl    %eax, %edi              C carry -> n1
                    291:
                    292:        addl    %ebx, %ecx              C -34 + c + __clz_tab[d>>c] = -clz-1
                    293:        leal    -8(%esi,%edx,4), %esi   C &src[size-2]
                    294:
                    295:        xorl    $-1, %ecx               C clz
                    296:        movl    $-1, %edx
                    297:
                    298:        ASSERT(e,`pushl %eax            C clz calculation same as bsrl
                    299:                bsrl    %ebp, %eax
                    300:                xorl    $31, %eax
                    301:                cmpl    %eax, %ecx
                    302:                popl    %eax')
                    303:
                    304:        shll    %cl, %ebp               C d normalized
                    305:        movl    %ecx, VAR_NORM
                    306:
                    307:        subl    %ebp, %edx              C (b-d)-1, so edx:eax = b*(b-d)-1
                    308:        movl    $-1, %eax
                    309:
                    310:        divl    %ebp                    C floor (b*(b-d)-1) / d
                    311:
                    312: L(start_preinv):
                    313:        movl    %eax, VAR_INVERSE
                    314:        movl    %ebp, %eax              C d
                    315:
                    316:        movl    %ecx, %edx              C fake high, will cancel
                    317:
                    318:
                    319: C For mpn_mod_1 and mpn_preinv_mod_1, the initial carry in %edi is the src
                    320: C high limb, and this may be greater than the divisor and may need one copy
                    321: C of the divisor subtracted (only one, because the divisor is normalized).
                    322: C This is accomplished by having the initial ecx:edi act as a fake previous
                    323: C n2:n10.  The initial edx:eax is d, acting as a fake (q1+1)*d which is
                    324: C subtracted from ecx:edi, with the usual addback if it produces an
                    325: C underflow.
                    326:
                    327:
                    328: L(inverse_top):
                    329:        C eax   scratch (n10, n1, q1, etc)
                    330:        C ebx   scratch (nadj, src limit)
                    331:        C ecx   old n2
                    332:        C edx   scratch
                    333:        C esi   src pointer, &src[size-2] to &src[0]
                    334:        C edi   old n10
                    335:        C ebp   d
                    336:
                    337:        subl    %eax, %edi         C low  n - (q1+1)*d
                    338:        movl    (%esi), %eax       C new n10
                    339:
                    340:        sbbl    %edx, %ecx         C high n - (q1+1)*d, 0 or -1
                    341:        movl    %ebp, %ebx         C d
                    342:
                    343:        sarl    $31, %eax          C -n1
                    344:        andl    %ebp, %ecx         C d if underflow
                    345:
                    346:        addl    %edi, %ecx         C remainder -> n2, and possible addback
                    347:        ASSERT(b,`cmpl %ebp, %ecx')
                    348:        andl    %eax, %ebx         C -n1 & d
                    349:
                    350:        movl    (%esi), %edi       C n10
                    351:        andl    $1, %eax           C n1
                    352:
                    353:        addl    %ecx, %eax         C n2+n1
                    354:        addl    %edi, %ebx         C nadj = n10 + (-n1 & d), ignoring overflow
                    355:
                    356:        mull    VAR_INVERSE        C m*(n2+n1)
                    357:
                    358:        addl    %eax, %ebx         C low(m*(n2+n1) + nadj), giving carry flag
                    359:        leal    1(%ecx), %eax      C 1+n2
                    360:
                    361:        adcl    %edx, %eax         C 1 + high[n2<<32 + m*(n2+n1) + nadj] = q1+1
                    362:        movl    PARAM_SRC, %ebx
                    363:
                    364:        sbbl    $0, %eax           C use q1 if q1+1 overflows
                    365:        subl    $4, %esi           C step src ptr
                    366:
                    367:        mull    %ebp               C (q1+1)*d
                    368:
                    369:        cmpl    %ebx, %esi
                    370:        jae     L(inverse_top)
                    371:
                    372:
                    373:
                    374:        C %edi (after subtract and addback) is the remainder modulo d*2^n
                    375:        C and must be reduced to 0<=r<d by calculating r*2^n mod d*2^n and
                    376:        C right shifting by n.
                    377:        C
                    378:        C If d was already normalized on entry so that n==0 then nothing is
                    379:        C needed here.  This is always the case for preinv_mod_1.  For mod_1
                    380:        C or mod_1c the chance of n==0 is low, but about 40 cycles can be
                    381:        C saved.
                    382:
                    383:        subl    %eax, %edi         C low  n - (q1+1)*d
                    384:        movl    %ecx, %ebx         C n2
                    385:
                    386:        sbbl    %edx, %ebx         C high n - (q1+1)*d, 0 or -1
                    387:        xorl    %esi, %esi         C next n2
                    388:
                    389:        andl    %ebp, %ebx         C d if underflow
                    390:        movl    VAR_NORM, %ecx
                    391:
                    392:        addl    %ebx, %edi         C remainder, with possible addback
                    393:        orl     %ecx, %ecx
                    394:
                    395:        jz      L(done_mul_edi)
                    396:
                    397:
                    398:        C Here using %esi=n2 and %edi=n10, unlike the above
                    399:
                    400:        shldl(  %cl, %edi, %esi)   C n2
                    401:
                    402:        shll    %cl, %edi          C n10
                    403:
                    404:        movl    %edi, %eax         C n10
                    405:        movl    %edi, %ebx         C n10
                    406:
                    407:        sarl    $31, %ebx          C -n1
                    408:
                    409:        shrl    $31, %eax          C n1
                    410:        andl    %ebp, %ebx         C -n1 & d
                    411:
                    412:        addl    %esi, %eax         C n2+n1
                    413:        addl    %edi, %ebx         C nadj = n10 + (-n1 & d), ignoring overflow
                    414:
                    415:        mull    VAR_INVERSE        C m*(n2+n1)
                    416:
                    417:        addl    %eax, %ebx         C m*(n2+n1) + nadj, low giving carry flag
                    418:        leal    1(%esi), %eax      C 1+n2
                    419:
                    420:        adcl    %edx, %eax         C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
                    421:
                    422:        sbbl    $0, %eax           C use q1 if q1+1 overflows
                    423:
                    424:        mull    %ebp               C (q1+1)*d
                    425:
                    426:        subl    %eax, %edi         C low  n - (q1+1)*d
                    427:        popl    %ebx
                    428:
                    429:        sbbl    %edx, %esi         C high n - (q1+1)*d, 0 or -1
                    430:        movl    %edi, %eax
                    431:
                    432:        andl    %ebp, %esi         C d if underflow
                    433:        popl    %edi
                    434:
                    435:        addl    %esi, %eax         C addback if underflow
                    436:        popl    %esi
                    437:
                    438:        shrl    %cl, %eax          C denorm remainder
                    439:        popl    %ebp
                    440:
                    441:        ret
                    442:
                    443:
                    444: L(done_mul_edi):
                    445:        movl    %edi, %eax
                    446:        popl    %ebx
                    447:
                    448:        popl    %edi
                    449: L(done_eax):
                    450:        popl    %esi
                    451:
                    452:        popl    %ebp
                    453:
                    454:        ret
                    455:
                    456: EPILOGUE()

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>