[BACK]Return to get_d.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gmp / mpq

Annotation of OpenXM_contrib/gmp/mpq/get_d.c, Revision 1.1.1.2

1.1       maekawa     1: /* double mpq_get_d (mpq_t src) -- Return the double approximation to SRC.
                      2:
                      3: Copyright (C) 1995, 1996 Free Software Foundation, Inc.
                      4:
                      5: This file is part of the GNU MP Library.
                      6:
                      7: The GNU MP Library is free software; you can redistribute it and/or modify
1.1.1.2 ! maekawa     8: it under the terms of the GNU Lesser General Public License as published by
        !             9: the Free Software Foundation; either version 2.1 of the License, or (at your
1.1       maekawa    10: option) any later version.
                     11:
                     12: The GNU MP Library is distributed in the hope that it will be useful, but
                     13: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
1.1.1.2 ! maekawa    14: or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
1.1       maekawa    15: License for more details.
                     16:
1.1.1.2 ! maekawa    17: You should have received a copy of the GNU Lesser General Public License
1.1       maekawa    18: along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
                     19: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
                     20: MA 02111-1307, USA. */
                     21:
                     22: #include "gmp.h"
                     23: #include "gmp-impl.h"
                     24: #include "longlong.h"
                     25:
                     26: /* Algorithm:
                     27:    1. Develop >= n bits of src.num / src.den, where n is the number of bits
                     28:       in a double.  This (partial) division will use all bits from the
                     29:       denominator.
                     30:    2. Use the remainder to determine how to round the result.
                     31:    3. Assign the integral result to a temporary double.
                     32:    4. Scale the temporary double, and return the result.
                     33:
                     34:    An alternative algorithm, that would be faster:
                     35:    0. Let n be somewhat larger than the number of significant bits in a double.
                     36:    1. Extract the most significant n bits of the denominator, and an equal
                     37:       number of bits from the numerator.
                     38:    2. Interpret the extracted numbers as integers, call them a and b
                     39:       respectively, and develop n bits of the fractions ((a + 1) / b) and
                     40:       (a / (b + 1)) using mpn_divrem.
                     41:    3. If the computed values are identical UP TO THE POSITION WE CARE ABOUT,
                     42:       we are done.  If they are different, repeat the algorithm from step 1,
                     43:       but first let n = n * 2.
                     44:    4. If we end up using all bits from the numerator and denominator, fall
                     45:       back to the first algorithm above.
                     46:    5. Just to make life harder, The computation of a + 1 and b + 1 above
                     47:       might give carry-out...  Needs special handling.  It might work to
                     48:       subtract 1 in both cases instead.
                     49: */
                     50:
                     51: double
                     52: #if __STDC__
                     53: mpq_get_d (const MP_RAT *src)
                     54: #else
                     55: mpq_get_d (src)
                     56:      const MP_RAT *src;
                     57: #endif
                     58: {
                     59:   mp_ptr np, dp;
                     60:   mp_ptr rp;
                     61:   mp_size_t nsize = src->_mp_num._mp_size;
                     62:   mp_size_t dsize = src->_mp_den._mp_size;
                     63:   mp_size_t qsize, rsize;
                     64:   mp_size_t sign_quotient = nsize ^ dsize;
                     65:   unsigned normalization_steps;
                     66:   mp_limb_t qlimb;
                     67: #define N_QLIMBS (1 + (sizeof (double) + BYTES_PER_MP_LIMB-1) / BYTES_PER_MP_LIMB)
1.1.1.2 ! maekawa    68:   mp_limb_t qarr[N_QLIMBS + 1];
        !            69:   mp_ptr qp = qarr;
1.1       maekawa    70:   TMP_DECL (marker);
                     71:
                     72:   if (nsize == 0)
                     73:     return 0.0;
                     74:
                     75:   TMP_MARK (marker);
                     76:   nsize = ABS (nsize);
                     77:   dsize = ABS (dsize);
                     78:   np = src->_mp_num._mp_d;
                     79:   dp = src->_mp_den._mp_d;
                     80:
                     81:   rsize = dsize + N_QLIMBS;
                     82:   rp = (mp_ptr) TMP_ALLOC ((rsize + 1) * BYTES_PER_MP_LIMB);
                     83:
                     84:   count_leading_zeros (normalization_steps, dp[dsize - 1]);
                     85:
                     86:   /* Normalize the denominator, i.e. make its most significant bit set by
                     87:      shifting it NORMALIZATION_STEPS bits to the left.  Also shift the
                     88:      numerator the same number of steps (to keep the quotient the same!).  */
                     89:   if (normalization_steps != 0)
                     90:     {
                     91:       mp_ptr tp;
                     92:       mp_limb_t nlimb;
                     93:
                     94:       /* Shift up the denominator setting the most significant bit of
                     95:         the most significant limb.  Use temporary storage not to clobber
                     96:         the original contents of the denominator.  */
                     97:       tp = (mp_ptr) TMP_ALLOC (dsize * BYTES_PER_MP_LIMB);
                     98:       mpn_lshift (tp, dp, dsize, normalization_steps);
                     99:       dp = tp;
                    100:
                    101:       if (rsize > nsize)
                    102:        {
                    103:          MPN_ZERO (rp, rsize - nsize);
                    104:          nlimb = mpn_lshift (rp + (rsize - nsize),
                    105:                              np, nsize, normalization_steps);
                    106:        }
                    107:       else
                    108:        {
                    109:          nlimb = mpn_lshift (rp, np + (nsize - rsize),
                    110:                              rsize, normalization_steps);
                    111:        }
                    112:       if (nlimb != 0)
                    113:        {
                    114:          rp[rsize] = nlimb;
                    115:          rsize++;
                    116:        }
                    117:     }
                    118:   else
                    119:     {
                    120:       if (rsize > nsize)
                    121:        {
                    122:          MPN_ZERO (rp, rsize - nsize);
                    123:          MPN_COPY (rp + (rsize - nsize), np, nsize);
                    124:        }
                    125:       else
                    126:        {
                    127:          MPN_COPY (rp, np + (nsize - rsize), rsize);
                    128:        }
                    129:     }
                    130:
                    131:   qlimb = mpn_divmod (qp, rp, rsize, dp, dsize);
                    132:   qsize = rsize - dsize;
                    133:   if (qlimb)
                    134:     {
                    135:       qp[qsize] = qlimb;
                    136:       qsize++;
                    137:     }
                    138:
                    139:   {
                    140:     double res;
                    141:     mp_size_t i;
1.1.1.2 ! maekawa   142:     int scale = nsize - dsize - N_QLIMBS;
        !           143:
        !           144: #if defined (__vax__)
        !           145:     /* Ignore excess quotient limbs.  This is necessary on a vax
        !           146:        with its small double exponent, since we'd otherwise get
        !           147:        exponent overflow while forming RES.  */
        !           148:     if (qsize > N_QLIMBS)
        !           149:       {
        !           150:        qp += qsize - N_QLIMBS;
        !           151:        scale += qsize - N_QLIMBS;
        !           152:        qsize = N_QLIMBS;
        !           153:       }
        !           154: #endif
1.1       maekawa   155:
                    156:     res = qp[qsize - 1];
                    157:     for (i = qsize - 2; i >= 0; i--)
                    158:       res = res * MP_BASE_AS_DOUBLE + qp[i];
                    159:
1.1.1.2 ! maekawa   160:     res = __gmp_scale2 (res, BITS_PER_MP_LIMB * scale);
1.1       maekawa   161:
                    162:     TMP_FREE (marker);
                    163:     return sign_quotient >= 0 ? res : -res;
                    164:   }
                    165: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>