[BACK]Return to and.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gmp / mpz

Annotation of OpenXM_contrib/gmp/mpz/and.c, Revision 1.1.1.2

1.1       maekawa     1: /* mpz_and -- Logical and.
                      2:
1.1.1.2 ! maekawa     3: Copyright (C) 1991, 1993, 1994, 1996, 1997, 2000 Free Software Foundation,
        !             4: Inc.
1.1       maekawa     5:
                      6: This file is part of the GNU MP Library.
                      7:
                      8: The GNU MP Library is free software; you can redistribute it and/or modify
1.1.1.2 ! maekawa     9: it under the terms of the GNU Lesser General Public License as published by
        !            10: the Free Software Foundation; either version 2.1 of the License, or (at your
1.1       maekawa    11: option) any later version.
                     12:
                     13: The GNU MP Library is distributed in the hope that it will be useful, but
                     14: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
1.1.1.2 ! maekawa    15: or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
1.1       maekawa    16: License for more details.
                     17:
1.1.1.2 ! maekawa    18: You should have received a copy of the GNU Lesser General Public License
1.1       maekawa    19: along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
                     20: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
                     21: MA 02111-1307, USA. */
                     22:
                     23: #include "gmp.h"
                     24: #include "gmp-impl.h"
                     25:
                     26: void
                     27: #if __STDC__
                     28: mpz_and (mpz_ptr res, mpz_srcptr op1, mpz_srcptr op2)
                     29: #else
                     30: mpz_and (res, op1, op2)
                     31:      mpz_ptr res;
                     32:      mpz_srcptr op1;
                     33:      mpz_srcptr op2;
                     34: #endif
                     35: {
                     36:   mp_srcptr op1_ptr, op2_ptr;
                     37:   mp_size_t op1_size, op2_size;
                     38:   mp_ptr res_ptr;
                     39:   mp_size_t res_size;
                     40:   mp_size_t i;
                     41:   TMP_DECL (marker);
                     42:
                     43:   TMP_MARK (marker);
                     44:   op1_size = op1->_mp_size;
                     45:   op2_size = op2->_mp_size;
                     46:
                     47:   op1_ptr = op1->_mp_d;
                     48:   op2_ptr = op2->_mp_d;
                     49:   res_ptr = res->_mp_d;
                     50:
                     51:   if (op1_size >= 0)
                     52:     {
                     53:       if (op2_size >= 0)
                     54:        {
                     55:          res_size = MIN (op1_size, op2_size);
                     56:          /* First loop finds the size of the result.  */
                     57:          for (i = res_size - 1; i >= 0; i--)
                     58:            if ((op1_ptr[i] & op2_ptr[i]) != 0)
                     59:              break;
                     60:          res_size = i + 1;
                     61:
                     62:          /* Handle allocation, now then we know exactly how much space is
                     63:             needed for the result.  */
                     64:          if (res->_mp_alloc < res_size)
                     65:            {
                     66:              _mpz_realloc (res, res_size);
                     67:              op1_ptr = op1->_mp_d;
                     68:              op2_ptr = op2->_mp_d;
                     69:              res_ptr = res->_mp_d;
                     70:            }
                     71:
                     72:          /* Second loop computes the real result.  */
                     73:          for (i = res_size - 1; i >= 0; i--)
                     74:            res_ptr[i] = op1_ptr[i] & op2_ptr[i];
                     75:
                     76:          res->_mp_size = res_size;
                     77:          return;
                     78:        }
                     79:       else /* op2_size < 0 */
                     80:        {
                     81:          /* Fall through to the code at the end of the function.  */
                     82:        }
                     83:     }
                     84:   else
                     85:     {
                     86:       if (op2_size < 0)
                     87:        {
                     88:          mp_ptr opx;
                     89:          mp_limb_t cy;
                     90:          mp_size_t res_alloc;
                     91:
                     92:          /* Both operands are negative, so will be the result.
                     93:             -((-OP1) & (-OP2)) = -(~(OP1 - 1) & ~(OP2 - 1)) =
                     94:             = ~(~(OP1 - 1) & ~(OP2 - 1)) + 1 =
                     95:             = ((OP1 - 1) | (OP2 - 1)) + 1      */
                     96:
                     97:          /* It might seem as we could end up with an (invalid) result with
                     98:             a leading zero-limb here when one of the operands is of the
                     99:             type 1,,0,,..,,.0.  But some analysis shows that we surely
                    100:             would get carry into the zero-limb in this situation...  */
                    101:
                    102:          op1_size = -op1_size;
                    103:          op2_size = -op2_size;
                    104:
                    105:          res_alloc = 1 + MAX (op1_size, op2_size);
                    106:
                    107:          opx = (mp_ptr) TMP_ALLOC (op1_size * BYTES_PER_MP_LIMB);
                    108:          mpn_sub_1 (opx, op1_ptr, op1_size, (mp_limb_t) 1);
                    109:          op1_ptr = opx;
                    110:
                    111:          opx = (mp_ptr) TMP_ALLOC (op2_size * BYTES_PER_MP_LIMB);
                    112:          mpn_sub_1 (opx, op2_ptr, op2_size, (mp_limb_t) 1);
                    113:          op2_ptr = opx;
                    114:
                    115:          if (res->_mp_alloc < res_alloc)
                    116:            {
                    117:              _mpz_realloc (res, res_alloc);
                    118:              res_ptr = res->_mp_d;
                    119:              /* Don't re-read OP1_PTR and OP2_PTR.  They point to
1.1.1.2 ! maekawa   120:                 temporary space--never to the space RES->_mp_d used
1.1       maekawa   121:                 to point to before reallocation.  */
                    122:            }
                    123:
                    124:          if (op1_size >= op2_size)
                    125:            {
                    126:              MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size,
                    127:                        op1_size - op2_size);
                    128:              for (i = op2_size - 1; i >= 0; i--)
                    129:                res_ptr[i] = op1_ptr[i] | op2_ptr[i];
                    130:              res_size = op1_size;
                    131:            }
                    132:          else
                    133:            {
                    134:              MPN_COPY (res_ptr + op1_size, op2_ptr + op1_size,
                    135:                        op2_size - op1_size);
                    136:              for (i = op1_size - 1; i >= 0; i--)
                    137:                res_ptr[i] = op1_ptr[i] | op2_ptr[i];
                    138:              res_size = op2_size;
                    139:            }
                    140:
                    141:          cy = mpn_add_1 (res_ptr, res_ptr, res_size, (mp_limb_t) 1);
                    142:          if (cy)
                    143:            {
                    144:              res_ptr[res_size] = cy;
                    145:              res_size++;
                    146:            }
                    147:
                    148:          res->_mp_size = -res_size;
                    149:          TMP_FREE (marker);
                    150:          return;
                    151:        }
                    152:       else
                    153:        {
                    154:          /* We should compute -OP1 & OP2.  Swap OP1 and OP2 and fall
                    155:             through to the code that handles OP1 & -OP2.  */
1.1.1.2 ! maekawa   156:           MPZ_SRCPTR_SWAP (op1, op2);
        !           157:           MPN_SRCPTR_SWAP (op1_ptr,op1_size, op2_ptr,op2_size);
1.1       maekawa   158:        }
                    159:
                    160:     }
                    161:
                    162:   {
                    163: #if ANDNEW
                    164:     mp_size_t op2_lim;
                    165:     mp_size_t count;
                    166:
                    167:     /* OP2 must be negated as with infinite precision.
                    168:
                    169:        Scan from the low end for a non-zero limb.  The first non-zero
                    170:        limb is simply negated (two's complement).  Any subsequent
                    171:        limbs are one's complemented.  Of course, we don't need to
                    172:        handle more limbs than there are limbs in the other, positive
                    173:        operand as the result for those limbs is going to become zero
                    174:        anyway.  */
                    175:
1.1.1.2 ! maekawa   176:     /* Scan for the least significant non-zero OP2 limb, and zero the
1.1       maekawa   177:        result meanwhile for those limb positions.  (We will surely
                    178:        find a non-zero limb, so we can write the loop with one
                    179:        termination condition only.)  */
                    180:     for (i = 0; op2_ptr[i] == 0; i++)
                    181:       res_ptr[i] = 0;
                    182:     op2_lim = i;
                    183:
                    184:     op2_size = -op2_size;
                    185:
                    186:     if (op1_size <= op2_size)
                    187:       {
                    188:        /* The ones-extended OP2 is >= than the zero-extended OP1.
                    189:           RES_SIZE <= OP1_SIZE.  Find the exact size.  */
                    190:        for (i = op1_size - 1; i > op2_lim; i--)
                    191:          if ((op1_ptr[i] & ~op2_ptr[i]) != 0)
                    192:            break;
                    193:        res_size = i + 1;
                    194:        for (i = res_size - 1; i > op2_lim; i--)
                    195:          res_ptr[i] = op1_ptr[i] & ~op2_ptr[i];
                    196:        res_ptr[op2_lim] = op1_ptr[op2_lim] & -op2_ptr[op2_lim];
                    197:        /* Yes, this *can* happen!  */
                    198:        MPN_NORMALIZE (res_ptr, res_size);
                    199:       }
                    200:     else
                    201:       {
                    202:        /* The ones-extended OP2 is < than the zero-extended OP1.
                    203:           RES_SIZE == OP1_SIZE, since OP1 is normalized.  */
                    204:        res_size = op1_size;
                    205:        MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size, op1_size - op2_size);
                    206:        for (i = op2_size - 1; i > op2_lim; i--)
                    207:          res_ptr[i] = op1_ptr[i] & ~op2_ptr[i];
                    208:        res_ptr[op2_lim] = op1_ptr[op2_lim] & -op2_ptr[op2_lim];
                    209:       }
                    210:
                    211:     res->_mp_size = res_size;
                    212: #else
                    213:
                    214:     /* OP1 is positive and zero-extended,
                    215:        OP2 is negative and ones-extended.
                    216:        The result will be positive.
                    217:        OP1 & -OP2 = OP1 & ~(OP2 - 1).  */
                    218:
                    219:     mp_ptr opx;
                    220:
                    221:     op2_size = -op2_size;
                    222:     opx = (mp_ptr) TMP_ALLOC (op2_size * BYTES_PER_MP_LIMB);
                    223:     mpn_sub_1 (opx, op2_ptr, op2_size, (mp_limb_t) 1);
                    224:     op2_ptr = opx;
                    225:
                    226:     if (op1_size > op2_size)
                    227:       {
                    228:        /* The result has the same size as OP1, since OP1 is normalized
                    229:           and longer than the ones-extended OP2.  */
                    230:        res_size = op1_size;
                    231:
                    232:        /* Handle allocation, now then we know exactly how much space is
                    233:           needed for the result.  */
                    234:        if (res->_mp_alloc < res_size)
                    235:          {
                    236:            _mpz_realloc (res, res_size);
                    237:            res_ptr = res->_mp_d;
                    238:            op1_ptr = op1->_mp_d;
                    239:            /* Don't re-read OP2_PTR.  It points to temporary space--never
1.1.1.2 ! maekawa   240:               to the space RES->_mp_d used to point to before reallocation.  */
1.1       maekawa   241:          }
                    242:
                    243:        MPN_COPY (res_ptr + op2_size, op1_ptr + op2_size,
                    244:                  res_size - op2_size);
                    245:        for (i = op2_size - 1; i >= 0; i--)
                    246:          res_ptr[i] = op1_ptr[i] & ~op2_ptr[i];
                    247:
                    248:        res->_mp_size = res_size;
                    249:       }
                    250:     else
                    251:       {
                    252:        /* Find out the exact result size.  Ignore the high limbs of OP2,
                    253:           OP1 is zero-extended and would make the result zero.  */
                    254:        for (i = op1_size - 1; i >= 0; i--)
                    255:          if ((op1_ptr[i] & ~op2_ptr[i]) != 0)
                    256:            break;
                    257:        res_size = i + 1;
                    258:
                    259:        /* Handle allocation, now then we know exactly how much space is
                    260:           needed for the result.  */
                    261:        if (res->_mp_alloc < res_size)
                    262:          {
                    263:            _mpz_realloc (res, res_size);
                    264:            res_ptr = res->_mp_d;
                    265:            op1_ptr = op1->_mp_d;
                    266:            /* Don't re-read OP2_PTR.  It points to temporary space--never
1.1.1.2 ! maekawa   267:               to the space RES->_mp_d used to point to before reallocation.  */
1.1       maekawa   268:          }
                    269:
                    270:        for (i = res_size - 1; i >= 0; i--)
                    271:          res_ptr[i] = op1_ptr[i] & ~op2_ptr[i];
                    272:
                    273:        res->_mp_size = res_size;
                    274:       }
                    275: #endif
                    276:   }
                    277:   TMP_FREE (marker);
                    278: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>