[BACK]Return to fac_ui.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gmp / mpz

Annotation of OpenXM_contrib/gmp/mpz/fac_ui.c, Revision 1.1.1.3

1.1       maekawa     1: /* mpz_fac_ui(result, n) -- Set RESULT to N!.
                      2:
1.1.1.3 ! ohara       3: Copyright 1991, 1993, 1994, 1995, 2000, 2001, 2002 Free Software Foundation,
        !             4: Inc.
1.1       maekawa     5:
                      6: This file is part of the GNU MP Library.
                      7:
                      8: The GNU MP Library is free software; you can redistribute it and/or modify
1.1.1.2   maekawa     9: it under the terms of the GNU Lesser General Public License as published by
                     10: the Free Software Foundation; either version 2.1 of the License, or (at your
1.1       maekawa    11: option) any later version.
                     12:
                     13: The GNU MP Library is distributed in the hope that it will be useful, but
                     14: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
1.1.1.2   maekawa    15: or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
1.1       maekawa    16: License for more details.
                     17:
1.1.1.2   maekawa    18: You should have received a copy of the GNU Lesser General Public License
1.1       maekawa    19: along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
                     20: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
                     21: MA 02111-1307, USA. */
                     22:
                     23: #include "gmp.h"
                     24: #include "gmp-impl.h"
                     25: #include "longlong.h"
                     26:
1.1.1.3 ! ohara      27:
        !            28: /* Enhancements:
        !            29:
        !            30:    Data tables could be used for results up to 3 or 4 limbs to avoid
        !            31:    fiddling around with small quantities.
        !            32:
        !            33:    The product accumulation might be worth splitting out into something that
        !            34:    could be used elsewhere too.
        !            35:
        !            36:    The tree of partial products should be done with TMP_ALLOC, not mpz_init.
        !            37:    It should be possible to know a maximum size at each level.
        !            38:
        !            39:    Factors of two could be stripped from k to save some multiplying (but not
        !            40:    very much).  The same could be done with factors of 3, perhaps.
        !            41:
        !            42:    The prime factorization of n! is easy to determine, it might be worth
        !            43:    using that rather than a simple 1 to n.  The powering of primes could do
        !            44:    some squaring instead of multiplying.  There's probably other ways to use
        !            45:    some squaring too.  */
        !            46:
        !            47:
        !            48: /* for single non-zero limb */
        !            49: #define MPZ_SET_1_NZ(z,n)       \
        !            50:   do {                          \
        !            51:     mpz_ptr  __z = (z);         \
        !            52:     ASSERT ((n) != 0);          \
        !            53:     PTR(__z)[0] = (n);          \
        !            54:     SIZ(__z) = 1;               \
        !            55:   } while (0)
        !            56:
        !            57: /* for single non-zero limb */
        !            58: #define MPZ_INIT_SET_1_NZ(z,n)                  \
        !            59:   do {                                          \
        !            60:     mpz_ptr  __iz = (z);                        \
        !            61:     ALLOC(__iz) = 1;                            \
        !            62:     PTR(__iz) = __GMP_ALLOCATE_FUNC_LIMBS (1);  \
        !            63:     MPZ_SET_1_NZ (__iz, n);                     \
        !            64:   } while (0)
        !            65:
        !            66: /* for src>0 and n>0 */
        !            67: #define MPZ_MUL_1_POS(dst,src,n)                        \
        !            68:   do {                                                  \
        !            69:     mpz_ptr    __dst = (dst);                           \
        !            70:     mpz_srcptr __src = (src);                           \
        !            71:     mp_size_t  __size = SIZ(__src);                     \
        !            72:     mp_ptr     __dst_p;                                 \
        !            73:     mp_limb_t  __c;                                     \
        !            74:                                                         \
        !            75:     ASSERT (__size > 0);                                \
        !            76:     ASSERT ((n) != 0);                                  \
        !            77:                                                         \
        !            78:     MPZ_REALLOC (__dst, __size+1);                      \
        !            79:     __dst_p = PTR(__dst);                               \
        !            80:                                                         \
        !            81:     __c = mpn_mul_1 (__dst_p, PTR(__src), __size, n);   \
        !            82:     __dst_p[__size] = __c;                              \
        !            83:     SIZ(__dst) = __size + (__c != 0);                   \
        !            84:                                                         \
        !            85:   } while (0)
        !            86:
        !            87:
1.1       maekawa    88: void
                     89: mpz_fac_ui (mpz_ptr result, unsigned long int n)
                     90: {
                     91: #if SIMPLE_FAC
                     92:   /* Be silly.  Just multiply the numbers in ascending order.  O(n**2).  */
                     93:   unsigned long int k;
                     94:   mpz_set_ui (result, 1L);
                     95:   for (k = 2; k <= n; k++)
                     96:     mpz_mul_ui (result, result, k);
                     97: #else
                     98:
                     99:   /* Be smarter.  Multiply groups of numbers in ascending order until the
                    100:      product doesn't fit in a limb.  Multiply these partial product in a
                    101:      balanced binary tree fashion, to make the operand have as equal sizes
                    102:      as possible.  When the operands have about the same size, mpn_mul
                    103:      becomes faster.  */
                    104:
1.1.1.3 ! ohara     105:   unsigned long  k;
        !           106:   mp_limb_t      p, p1, p0;
1.1       maekawa   107:
                    108:   /* Stack of partial products, used to make the computation balanced
                    109:      (i.e. make the sizes of the multiplication operands equal).  The
                    110:      topmost position of MP_STACK will contain a one-limb partial product,
                    111:      the second topmost will contain a two-limb partial product, and so
                    112:      on.  MP_STACK[0] will contain a partial product with 2**t limbs.
                    113:      To compute n! MP_STACK needs to be less than
                    114:      log(n)**2/log(BITS_PER_MP_LIMB), so 30 is surely enough.  */
                    115: #define MP_STACK_SIZE 30
                    116:   mpz_t mp_stack[MP_STACK_SIZE];
                    117:
                    118:   /* TOP is an index into MP_STACK, giving the topmost element.
                    119:      TOP_LIMIT_SO_FAR is the largets value it has taken so far.  */
                    120:   int top, top_limit_so_far;
                    121:
                    122:   /* Count of the total number of limbs put on MP_STACK so far.  This
                    123:      variable plays an essential role in making the compututation balanced.
                    124:      See below.  */
                    125:   unsigned int tree_cnt;
                    126:
1.1.1.3 ! ohara     127:   /* for testing with small limbs */
        !           128:   if (MP_LIMB_T_MAX < ULONG_MAX)
        !           129:     ASSERT_ALWAYS (n <= MP_LIMB_T_MAX);
        !           130:
1.1       maekawa   131:   top = top_limit_so_far = -1;
                    132:   tree_cnt = 0;
                    133:   p = 1;
                    134:   for (k = 2; k <= n; k++)
                    135:     {
                    136:       /* Multiply the partial product in P with K.  */
1.1.1.3 ! ohara     137:       umul_ppmm (p1, p0, p, (mp_limb_t) k);
1.1       maekawa   138:
1.1.1.3 ! ohara     139: #if GMP_NAIL_BITS == 0
        !           140: #define OVERFLOW (p1 != 0)
        !           141: #else
        !           142: #define OVERFLOW ((p1 | (p0 >> GMP_NUMB_BITS)) != 0)
        !           143: #endif
1.1       maekawa   144:       /* Did we get overflow into the high limb, i.e. is the partial
                    145:         product now more than one limb?  */
1.1.1.3 ! ohara     146:       if OVERFLOW
1.1       maekawa   147:        {
                    148:          tree_cnt++;
                    149:
                    150:          if (tree_cnt % 2 == 0)
                    151:            {
                    152:              mp_size_t i;
                    153:
                    154:              /* TREE_CNT is even (i.e. we have generated an even number of
                    155:                 one-limb partial products), which means that we have a
                    156:                 single-limb product on the top of MP_STACK.  */
                    157:
1.1.1.3 ! ohara     158:              MPZ_MUL_1_POS (mp_stack[top], mp_stack[top], p);
1.1       maekawa   159:
                    160:              /* If TREE_CNT is divisable by 4, 8,..., we have two
                    161:                 similar-sized partial products with 2, 4,... limbs at
                    162:                 the topmost two positions of MP_STACK.  Multiply them
                    163:                 to form a new partial product with 4, 8,... limbs.  */
                    164:              for (i = 4; (tree_cnt & (i - 1)) == 0; i <<= 1)
                    165:                {
                    166:                  mpz_mul (mp_stack[top - 1],
                    167:                           mp_stack[top], mp_stack[top - 1]);
                    168:                  top--;
                    169:                }
                    170:            }
                    171:          else
                    172:            {
                    173:              /* Put the single-limb partial product in P on the stack.
                    174:                 (The next time we get a single-limb product, we will
                    175:                 multiply the two together.)  */
                    176:              top++;
                    177:              if (top > top_limit_so_far)
                    178:                {
                    179:                  if (top > MP_STACK_SIZE)
                    180:                    abort();
                    181:                  /* The stack is now bigger than ever, initialize the top
                    182:                     element.  */
1.1.1.3 ! ohara     183:                  MPZ_INIT_SET_1_NZ (mp_stack[top], p);
1.1       maekawa   184:                  top_limit_so_far++;
                    185:                }
                    186:              else
1.1.1.3 ! ohara     187:                MPZ_SET_1_NZ (mp_stack[top], p);
1.1       maekawa   188:            }
                    189:
                    190:          /* We ignored the last result from umul_ppmm.  Put K in P as the
                    191:             first component of the next single-limb partial product.  */
                    192:          p = k;
                    193:        }
                    194:       else
                    195:        /* We didn't get overflow in umul_ppmm.  Put p0 in P and try
                    196:           with one more value of K.  */
1.1.1.3 ! ohara     197:        p = p0;
1.1       maekawa   198:     }
                    199:
                    200:   /* We have partial products in mp_stack[0..top], in descending order.
                    201:      We also have a small partial product in p.
                    202:      Their product is the final result.  */
                    203:   if (top < 0)
1.1.1.3 ! ohara     204:     MPZ_SET_1_NZ (result, p);
1.1       maekawa   205:   else
1.1.1.3 ! ohara     206:     MPZ_MUL_1_POS (result, mp_stack[top--], p);
1.1       maekawa   207:   while (top >= 0)
                    208:     mpz_mul (result, result, mp_stack[top--]);
                    209:
                    210:   /* Free the storage allocated for MP_STACK.  */
                    211:   for (top = top_limit_so_far; top >= 0; top--)
                    212:     mpz_clear (mp_stack[top]);
                    213: #endif
                    214: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>