Annotation of OpenXM_contrib/gmp/tune/common.c, Revision 1.1.1.2
1.1.1.2 ! ohara 1: /* Shared speed subroutines.
1.1 maekawa 2:
1.1.1.2 ! ohara 3: Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
1.1 maekawa 4:
5: This file is part of the GNU MP Library.
6:
7: The GNU MP Library is free software; you can redistribute it and/or modify
8: it under the terms of the GNU Lesser General Public License as published by
9: the Free Software Foundation; either version 2.1 of the License, or (at your
10: option) any later version.
11:
12: The GNU MP Library is distributed in the hope that it will be useful, but
13: WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14: or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
15: License for more details.
16:
17: You should have received a copy of the GNU Lesser General Public License
18: along with the GNU MP Library; see the file COPYING.LIB. If not, write to
19: the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
1.1.1.2 ! ohara 20: MA 02111-1307, USA. */
1.1 maekawa 21:
22: #include <errno.h>
23: #include <fcntl.h>
24: #include <math.h>
25: #include <stdio.h>
26: #include <stdlib.h> /* for qsort */
27: #include <string.h>
28: #include <unistd.h>
29: #if 0
30: #include <sys/ioctl.h>
31: #endif
32:
33: #include "gmp.h"
34: #include "gmp-impl.h"
35: #include "longlong.h"
36:
1.1.1.2 ! ohara 37: #include "tests.h"
1.1 maekawa 38: #include "speed.h"
39:
40:
1.1.1.2 ! ohara 41: int speed_option_addrs = 0;
! 42: int speed_option_verbose = 0;
1.1 maekawa 43:
44:
1.1.1.2 ! ohara 45: /* Provide __clz_tab even if it's not required, for the benefit of new code
! 46: being tested with many.pl. */
! 47: #ifndef COUNT_LEADING_ZEROS_NEED_CLZ_TAB
! 48: #define COUNT_LEADING_ZEROS_NEED_CLZ_TAB
! 49: #include "mp_clz_tab.c"
! 50: #undef COUNT_LEADING_ZEROS_NEED_CLZ_TAB
! 51: #endif
1.1 maekawa 52:
53:
54: void
55: pentium_wbinvd(void)
56: {
57: #if 0
58: {
59: static int fd = -2;
60:
61: if (fd == -2)
62: {
63: fd = open ("/dev/wbinvd", O_RDWR);
64: if (fd == -1)
65: perror ("open /dev/wbinvd");
66: }
67:
68: if (fd != -1)
69: ioctl (fd, 0, 0);
70: }
71: #endif
72:
73: #if 0
74: #define WBINVDSIZE 1024*1024*2
75: {
76: static char *p = NULL;
77: int i, sum;
78:
79: if (p == NULL)
80: p = malloc (WBINVDSIZE);
81:
82: #if 0
83: for (i = 0; i < WBINVDSIZE; i++)
84: p[i] = i & 0xFF;
85: #endif
86:
87: sum = 0;
88: for (i = 0; i < WBINVDSIZE; i++)
89: sum += p[i];
90:
91: mpn_cache_fill_dummy (sum);
92: }
93: #endif
94: }
95:
1.1.1.2 ! ohara 96:
! 97: int
1.1 maekawa 98: double_cmp_ptr (const double *p, const double *q)
99: {
100: if (*p > *q) return 1;
101: if (*p < *q) return -1;
102: return 0;
103: }
104:
105:
106: /* Measure the speed of a given routine.
107:
108: The routine is run with enough repetitions to make it take at least
109: speed_precision * speed_unittime. This aims to minimize the effects of a
110: limited accuracy time base and the overhead of the measuring itself.
111:
112: Measurements are made looking for 4 results within TOLERANCE of each
113: other (or 3 for routines taking longer than 2 seconds). This aims to get
114: an accurate reading even if some runs are bloated by interrupts or task
115: switches or whatever.
116:
117: The given (*fun)() is expected to run its function "s->reps" many times
118: and return the total elapsed time measured using speed_starttime() and
119: speed_endtime(). If the function doesn't support the given s->size or
120: s->r, -1.0 should be returned. See the various base routines below. */
121:
122: double
123: speed_measure (double (*fun) _PROTO ((struct speed_params *s)),
124: struct speed_params *s)
125: {
126: #define TOLERANCE 1.005 /* 0.5% */
127:
128: struct speed_params s_dummy;
129: int i, j, e;
130: double t[30];
131: double t_unsorted[30];
1.1.1.2 ! ohara 132: double reps_d;
1.1 maekawa 133:
134: /* Use dummy parameters if caller doesn't provide any. Only a few special
135: "fun"s will cope with this, speed_noop() is one. */
136: if (s == NULL)
137: {
138: memset (&s_dummy, '\0', sizeof (s_dummy));
139: s = &s_dummy;
140: }
141:
142: s->reps = 1;
143: s->time_divisor = 1.0;
144: for (i = 0; i < numberof (t); i++)
145: {
146: for (;;)
147: {
148: s->src_num = 0;
149: s->dst_num = 0;
150:
151: t[i] = (*fun) (s);
152:
1.1.1.2 ! ohara 153: if (speed_option_verbose >= 3)
! 154: printf("size=%ld reps=%u r=%ld attempt=%d %.9f\n",
! 155: s->size, s->reps, s->r, i, t[i]);
1.1 maekawa 156:
157: if (t[i] == -1.0)
158: return -1.0;
159:
160: if (t[i] >= speed_unittime * speed_precision)
161: break;
162:
163: /* go to a value of reps to make t[i] >= precision */
1.1.1.2 ! ohara 164: reps_d = ceil (1.1 * s->reps
! 165: * speed_unittime * speed_precision
! 166: / MAX (t[i], speed_unittime));
! 167: if (reps_d > 2e9 || reps_d < 1.0)
! 168: {
! 169: fprintf (stderr, "Fatal error: new reps bad: %.2f\n", reps_d);
! 170: fprintf (stderr, " (old reps %u, unittime %.4g, precision %d, t[i] %.4g)\n",
! 171: s->reps, speed_unittime, speed_precision, t[i]);
! 172: abort ();
! 173: }
! 174: s->reps = (unsigned) reps_d;
1.1 maekawa 175: }
176: t[i] /= s->reps;
1.1.1.2 ! ohara 177: t_unsorted[i] = t[i];
1.1 maekawa 178:
179: if (speed_precision == 0)
180: return t[i];
181:
182: /* require 3 values within TOLERANCE when >= 2 secs, 4 when below */
183: if (t[0] >= 2.0)
184: e = 3;
185: else
186: e = 4;
187:
188: /* Look for e many t[]'s within TOLERANCE of each other to consider a
189: valid measurement. Return smallest among them. */
190: if (i >= e)
191: {
192: qsort (t, i+1, sizeof(t[0]), (qsort_function_t) double_cmp_ptr);
193: for (j = e-1; j < i; j++)
194: if (t[j] <= t[j-e+1] * TOLERANCE)
195: return t[j-e+1] / s->time_divisor;
196: }
197: }
198:
199: fprintf (stderr, "speed_measure() could not get %d results within %.1f%%\n",
200: e, (TOLERANCE-1.0)*100.0);
1.1.1.2 ! ohara 201: fprintf (stderr, " unsorted sorted\n");
! 202: fprintf (stderr, " %.12f %.12f is about 0.5%%\n",
! 203: t_unsorted[0]*(TOLERANCE-1.0), t[0]*(TOLERANCE-1.0));
1.1 maekawa 204: for (i = 0; i < numberof (t); i++)
1.1.1.2 ! ohara 205: fprintf (stderr, " %.09f %.09f\n", t_unsorted[i], t[i]);
1.1 maekawa 206:
207: return -1.0;
208: }
209:
210:
211: /* Read all of ptr,size to get it into the CPU memory cache.
212:
213: A call to mpn_cache_fill_dummy() is used to make sure the compiler
214: doesn't optimize away the whole loop. Using "volatile mp_limb_t sum"
215: would work too, but the function call means we don't rely on every
216: compiler actually implementing volatile properly.
217:
218: mpn_cache_fill_dummy() is in a separate source file to stop gcc thinking
219: it can inline it. */
220:
221: void
222: mpn_cache_fill (mp_srcptr ptr, mp_size_t size)
223: {
224: mp_limb_t sum = 0;
225: mp_size_t i;
226:
227: for (i = 0; i < size; i++)
228: sum += ptr[i];
229:
230: mpn_cache_fill_dummy(sum);
231: }
232:
233:
234: void
235: mpn_cache_fill_write (mp_ptr ptr, mp_size_t size)
236: {
237: mpn_cache_fill (ptr, size);
238:
239: #if 0
240: mpn_random (ptr, size);
241: #endif
242:
243: #if 0
244: mp_size_t i;
245:
246: for (i = 0; i < size; i++)
247: ptr[i] = i;
248: #endif
249: }
250:
251:
252: void
253: speed_operand_src (struct speed_params *s, mp_ptr ptr, mp_size_t size)
254: {
255: if (s->src_num >= numberof (s->src))
256: {
257: fprintf (stderr, "speed_operand_src: no room left in s->src[]\n");
258: abort ();
259: }
260: s->src[s->src_num].ptr = ptr;
261: s->src[s->src_num].size = size;
262: s->src_num++;
263: }
264:
265:
266: void
267: speed_operand_dst (struct speed_params *s, mp_ptr ptr, mp_size_t size)
268: {
269: if (s->dst_num >= numberof (s->dst))
270: {
271: fprintf (stderr, "speed_operand_dst: no room left in s->dst[]\n");
272: abort ();
273: }
274: s->dst[s->dst_num].ptr = ptr;
275: s->dst[s->dst_num].size = size;
276: s->dst_num++;
277: }
278:
279:
280: void
281: speed_cache_fill (struct speed_params *s)
282: {
283: static struct speed_params prev;
284: int i;
285:
286: /* FIXME: need a better way to get the format string for a pointer */
287:
288: if (speed_option_addrs)
289: {
290: int different;
291:
292: different = (s->dst_num != prev.dst_num || s->src_num != prev.src_num);
293: for (i = 0; i < s->dst_num; i++)
294: different |= (s->dst[i].ptr != prev.dst[i].ptr);
295: for (i = 0; i < s->src_num; i++)
296: different |= (s->src[i].ptr != prev.src[i].ptr);
297:
298: if (different)
299: {
300: if (s->dst_num != 0)
301: {
302: printf ("dst");
303: for (i = 0; i < s->dst_num; i++)
304: printf (" %08lX", (unsigned long) s->dst[i].ptr);
305: printf (" ");
306: }
307:
308: if (s->src_num != 0)
309: {
310: printf ("src");
311: for (i = 0; i < s->src_num; i++)
312: printf (" %08lX", (unsigned long) s->src[i].ptr);
313: printf (" ");
314: }
315: printf (" (cf sp approx %08lX)\n", (unsigned long) &different);
316:
317: }
318:
319: memcpy (&prev, s, sizeof(prev));
320: }
321:
322: switch (s->cache) {
323: case 0:
324: for (i = 0; i < s->dst_num; i++)
325: mpn_cache_fill_write (s->dst[i].ptr, s->dst[i].size);
326: for (i = 0; i < s->src_num; i++)
327: mpn_cache_fill (s->src[i].ptr, s->src[i].size);
328: break;
329: case 1:
330: pentium_wbinvd();
331: break;
332: }
333: }
334:
335:
336: /* Adjust ptr to align to CACHE_LINE_SIZE bytes plus "align" limbs. ptr
337: needs to have room for up to CACHE_LINE_SIZE-4 extra bytes. */
338:
339: mp_ptr
340: speed_tmp_alloc_adjust (void *ptr, mp_size_t align)
341: {
342: /*
343: printf("%p %ld -> %p %X %X\n", ptr, align,
344: (mp_ptr) ptr
345: + ((align - ((mp_size_t) ptr >> 2)) &
346: SPEED_TMP_ALLOC_ADJUST_MASK),
347: ((mp_size_t) ptr >> 2) & SPEED_TMP_ALLOC_ADJUST_MASK,
348: SPEED_TMP_ALLOC_ADJUST_MASK);
349: */
350:
351: return (mp_ptr) ptr
352: + ((align - ((mp_size_t) ptr >> 2)) & SPEED_TMP_ALLOC_ADJUST_MASK);
353: }
354:
355:
356: /* Miscellanous options accepted by tune and speed programs under -o. */
357:
358: void
359: speed_option_set (const char *s)
360: {
1.1.1.2 ! ohara 361: int n;
! 362:
! 363: if (strcmp (s, "addrs") == 0)
! 364: {
! 365: speed_option_addrs = 1;
! 366: }
! 367: else if (strcmp (s, "verbose") == 0)
! 368: {
! 369: speed_option_verbose++;
! 370: }
! 371: else if (sscanf (s, "verbose=%d", &n) == 1)
! 372: {
! 373: speed_option_verbose = n;
! 374: }
1.1 maekawa 375: else
376: {
377: printf ("Unrecognised -o option: %s\n", s);
378: exit (1);
379: }
380: }
381:
382:
383: /* The following are basic speed running routines for various gmp functions.
384: Many are very similar and use speed.h macros.
385:
386: Each routine allocates it's own destination space for the result of the
387: function, because only it can know what the function needs.
388:
389: speed_starttime() and speed_endtime() are put tight around the code to be
390: measured. Any setups are done outside the timed portion.
391:
392: Each routine is responsible for its own cache priming.
393: speed_cache_fill() is a good way to do this, see examples in speed.h.
394: One cache priming possibility, for CPUs with write-allocate cache, and
395: functions that don't take too long, is to do one dummy call before timing
396: so as to cache everything that gets used. But speed_measure() runs a
397: routine at least twice and will take the smaller time, so this might not
398: be necessary.
399:
400: Data alignment will be important, for source, destination and temporary
401: workspace. A routine can align its destination and workspace. Programs
402: using the routines will ensure s->xp and s->yp are aligned. Aligning
403: onto a CACHE_LINE_SIZE boundary is suggested. s->align_wp and
404: s->align_wp2 should be respected where it makes sense to do so.
405: SPEED_TMP_ALLOC_LIMBS is a good way to do this.
406:
407: A loop of the following form can be expected to turn into good assembler
408: code on most CPUs, thereby minimizing overhead in the measurement. It
409: can always be assumed s->reps >= 1.
410:
411: i = s->reps
412: do
413: foo();
414: while (--i != 0);
415:
416: Additional parameters might be added to "struct speed_params" in the
417: future. Routines should ignore anything they don't use.
418:
419: s->size can be used creatively, and s->xp and s->yp can be ignored. For
420: example, speed_mpz_fac_ui() uses s->size as n for the factorial. s->r is
421: just a user-supplied parameter. speed_mpn_lshift() uses it as a shift,
422: speed_mpn_mul_1() uses it as a multiplier. */
423:
424:
425: /* MPN_COPY etc can be macros, so the _CALL forms are necessary */
426: double
427: speed_MPN_COPY (struct speed_params *s)
428: {
1.1.1.2 ! ohara 429: SPEED_ROUTINE_MPN_COPY (MPN_COPY);
1.1 maekawa 430: }
431: double
432: speed_MPN_COPY_INCR (struct speed_params *s)
433: {
1.1.1.2 ! ohara 434: SPEED_ROUTINE_MPN_COPY (MPN_COPY_INCR);
1.1 maekawa 435: }
436: double
437: speed_MPN_COPY_DECR (struct speed_params *s)
438: {
1.1.1.2 ! ohara 439: SPEED_ROUTINE_MPN_COPY (MPN_COPY_DECR);
1.1 maekawa 440: }
1.1.1.2 ! ohara 441: #if HAVE_NATIVE_mpn_copyi
! 442: double
! 443: speed_mpn_copyi (struct speed_params *s)
! 444: {
! 445: SPEED_ROUTINE_MPN_COPY (mpn_copyi);
! 446: }
! 447: #endif
! 448: #if HAVE_NATIVE_mpn_copyd
! 449: double
! 450: speed_mpn_copyd (struct speed_params *s)
! 451: {
! 452: SPEED_ROUTINE_MPN_COPY (mpn_copyd);
! 453: }
! 454: #endif
1.1 maekawa 455: double
456: speed_memcpy (struct speed_params *s)
457: {
1.1.1.2 ! ohara 458: SPEED_ROUTINE_MPN_COPY_BYTES (memcpy);
! 459: }
! 460: double
! 461: speed_mpn_com_n (struct speed_params *s)
! 462: {
! 463: SPEED_ROUTINE_MPN_COPY (mpn_com_n);
1.1 maekawa 464: }
465:
466:
467: double
468: speed_mpn_addmul_1 (struct speed_params *s)
469: {
470: SPEED_ROUTINE_MPN_UNARY_1 (mpn_addmul_1);
471: }
472: double
473: speed_mpn_submul_1 (struct speed_params *s)
474: {
475: SPEED_ROUTINE_MPN_UNARY_1 (mpn_submul_1);
476: }
477:
478:
479: double
480: speed_mpn_mul_1 (struct speed_params *s)
481: {
482: SPEED_ROUTINE_MPN_UNARY_1 (mpn_mul_1);
483: }
1.1.1.2 ! ohara 484: double
! 485: speed_mpn_mul_1_inplace (struct speed_params *s)
! 486: {
! 487: SPEED_ROUTINE_MPN_UNARY_1_INPLACE (mpn_mul_1);
! 488: }
! 489:
! 490: #if HAVE_NATIVE_mpn_mul_2
! 491: double
! 492: speed_mpn_mul_2 (struct speed_params *s)
! 493: {
! 494: SPEED_ROUTINE_MPN_MUL_2 (mpn_mul_2);
! 495: }
! 496: #endif
1.1 maekawa 497:
498:
499: double
500: speed_mpn_lshift (struct speed_params *s)
501: {
502: SPEED_ROUTINE_MPN_UNARY_1 (mpn_lshift);
503: }
504: double
505: speed_mpn_rshift (struct speed_params *s)
506: {
507: SPEED_ROUTINE_MPN_UNARY_1 (mpn_rshift);
508: }
509:
510:
511: /* The carry-in variants (if available) are good for measuring because they
512: won't skip a division if high<divisor. Alternately, use -1 as a divisor
513: with the plain _1 forms. */
514: double
515: speed_mpn_divrem_1 (struct speed_params *s)
516: {
517: SPEED_ROUTINE_MPN_DIVREM_1 (mpn_divrem_1);
518: }
519: double
520: speed_mpn_divrem_1f (struct speed_params *s)
521: {
522: SPEED_ROUTINE_MPN_DIVREM_1F (mpn_divrem_1);
523: }
524: #if HAVE_NATIVE_mpn_divrem_1c
525: double
526: speed_mpn_divrem_1c (struct speed_params *s)
527: {
528: SPEED_ROUTINE_MPN_DIVREM_1C (mpn_divrem_1c);
529: }
530: double
531: speed_mpn_divrem_1cf (struct speed_params *s)
532: {
533: SPEED_ROUTINE_MPN_DIVREM_1CF (mpn_divrem_1c);
534: }
535: #endif
536:
537: double
1.1.1.2 ! ohara 538: speed_mpn_divrem_1_div (struct speed_params *s)
! 539: {
! 540: SPEED_ROUTINE_MPN_DIVREM_1 (mpn_divrem_1_div);
! 541: }
! 542: double
! 543: speed_mpn_divrem_1f_div (struct speed_params *s)
! 544: {
! 545: SPEED_ROUTINE_MPN_DIVREM_1F (mpn_divrem_1_div);
! 546: }
! 547: double
! 548: speed_mpn_divrem_1_inv (struct speed_params *s)
! 549: {
! 550: SPEED_ROUTINE_MPN_DIVREM_1 (mpn_divrem_1_inv);
! 551: }
! 552: double
! 553: speed_mpn_divrem_1f_inv (struct speed_params *s)
! 554: {
! 555: SPEED_ROUTINE_MPN_DIVREM_1F (mpn_divrem_1_inv);
! 556: }
! 557: double
! 558: speed_mpn_mod_1_div (struct speed_params *s)
! 559: {
! 560: SPEED_ROUTINE_MPN_MOD_1 (mpn_mod_1_div);
! 561: }
! 562: double
! 563: speed_mpn_mod_1_inv (struct speed_params *s)
! 564: {
! 565: SPEED_ROUTINE_MPN_MOD_1 (mpn_mod_1_inv);
! 566: }
! 567:
! 568: double
! 569: speed_mpn_preinv_divrem_1 (struct speed_params *s)
! 570: {
! 571: SPEED_ROUTINE_MPN_PREINV_DIVREM_1 (mpn_preinv_divrem_1);
! 572: }
! 573: double
! 574: speed_mpn_preinv_divrem_1f (struct speed_params *s)
! 575: {
! 576: SPEED_ROUTINE_MPN_PREINV_DIVREM_1F (mpn_preinv_divrem_1);
! 577: }
! 578:
! 579: double
! 580: speed_mpn_mod_34lsub1 (struct speed_params *s)
! 581: {
! 582: SPEED_ROUTINE_MPN_MOD_34LSUB1 (mpn_mod_34lsub1);
! 583: }
! 584:
! 585: double
1.1 maekawa 586: speed_mpn_divrem_2 (struct speed_params *s)
587: {
588: SPEED_ROUTINE_MPN_DIVREM_2 (mpn_divrem_2);
589: }
1.1.1.2 ! ohara 590: double
! 591: speed_mpn_divrem_2_div (struct speed_params *s)
! 592: {
! 593: SPEED_ROUTINE_MPN_DIVREM_2 (mpn_divrem_2_div);
! 594: }
! 595: double
! 596: speed_mpn_divrem_2_inv (struct speed_params *s)
! 597: {
! 598: SPEED_ROUTINE_MPN_DIVREM_2 (mpn_divrem_2_inv);
! 599: }
1.1 maekawa 600:
601: double
602: speed_mpn_mod_1 (struct speed_params *s)
603: {
604: SPEED_ROUTINE_MPN_MOD_1 (mpn_mod_1);
605: }
606: #if HAVE_NATIVE_mpn_mod_1c
607: double
608: speed_mpn_mod_1c (struct speed_params *s)
609: {
610: SPEED_ROUTINE_MPN_MOD_1C (mpn_mod_1c);
611: }
612: #endif
1.1.1.2 ! ohara 613: double
! 614: speed_mpn_preinv_mod_1 (struct speed_params *s)
! 615: {
! 616: SPEED_ROUTINE_MPN_PREINV_MOD_1 (mpn_preinv_mod_1);
! 617: }
! 618:
! 619: double
! 620: speed_mpn_divexact_1 (struct speed_params *s)
! 621: {
! 622: SPEED_ROUTINE_MPN_DIVEXACT_1 (mpn_divexact_1);
! 623: }
1.1 maekawa 624:
625: double
626: speed_mpn_divexact_by3 (struct speed_params *s)
627: {
1.1.1.2 ! ohara 628: SPEED_ROUTINE_MPN_COPY (mpn_divexact_by3);
! 629: }
! 630:
! 631: #if HAVE_NATIVE_mpn_modexact_1_odd
! 632: double
! 633: speed_mpn_modexact_1_odd (struct speed_params *s)
! 634: {
! 635: SPEED_ROUTINE_MPN_MODEXACT_1_ODD (mpn_modexact_1_odd);
! 636: }
! 637: #endif
! 638:
! 639: double
! 640: speed_mpn_modexact_1c_odd (struct speed_params *s)
! 641: {
! 642: SPEED_ROUTINE_MPN_MODEXACT_1C_ODD (mpn_modexact_1c_odd);
1.1 maekawa 643: }
644:
645:
646: double
1.1.1.2 ! ohara 647: speed_mpn_dc_tdiv_qr (struct speed_params *s)
! 648: {
! 649: SPEED_ROUTINE_MPN_DC_TDIV_QR (mpn_tdiv_qr);
! 650: }
! 651: double
! 652: speed_mpn_dc_divrem_n (struct speed_params *s)
! 653: {
! 654: SPEED_ROUTINE_MPN_DC_DIVREM_N (mpn_dc_divrem_n);
! 655: }
! 656: double
! 657: speed_mpn_dc_divrem_sb (struct speed_params *s)
! 658: {
! 659: SPEED_ROUTINE_MPN_DC_DIVREM_SB (mpn_sb_divrem_mn);
! 660: }
! 661: double
! 662: speed_mpn_dc_divrem_sb_div (struct speed_params *s)
! 663: {
! 664: SPEED_ROUTINE_MPN_DC_DIVREM_SB (mpn_sb_divrem_mn_div);
! 665: }
! 666: double
! 667: speed_mpn_dc_divrem_sb_inv (struct speed_params *s)
! 668: {
! 669: SPEED_ROUTINE_MPN_DC_DIVREM_SB (mpn_sb_divrem_mn_inv);
! 670: }
! 671:
! 672: double
! 673: speed_mpn_sb_divrem_m3 (struct speed_params *s)
! 674: {
! 675: SPEED_ROUTINE_MPN_SB_DIVREM_M3 (mpn_sb_divrem_mn);
! 676: }
! 677: double
! 678: speed_mpn_sb_divrem_m3_div (struct speed_params *s)
1.1 maekawa 679: {
1.1.1.2 ! ohara 680: SPEED_ROUTINE_MPN_SB_DIVREM_M3 (mpn_sb_divrem_mn_div);
1.1 maekawa 681: }
682: double
1.1.1.2 ! ohara 683: speed_mpn_sb_divrem_m3_inv (struct speed_params *s)
1.1 maekawa 684: {
1.1.1.2 ! ohara 685: SPEED_ROUTINE_MPN_SB_DIVREM_M3 (mpn_sb_divrem_mn_inv);
1.1 maekawa 686: }
1.1.1.2 ! ohara 687:
1.1 maekawa 688: double
1.1.1.2 ! ohara 689: speed_mpz_mod (struct speed_params *s)
1.1 maekawa 690: {
1.1.1.2 ! ohara 691: SPEED_ROUTINE_MPZ_MOD (mpz_mod);
! 692: }
! 693: double
! 694: speed_redc (struct speed_params *s)
! 695: {
! 696: SPEED_ROUTINE_REDC (redc);
1.1 maekawa 697: }
698:
699:
700: double
701: speed_mpn_popcount (struct speed_params *s)
702: {
703: SPEED_ROUTINE_MPN_POPCOUNT (mpn_popcount);
704: }
705: double
706: speed_mpn_hamdist (struct speed_params *s)
707: {
708: SPEED_ROUTINE_MPN_HAMDIST (mpn_hamdist);
709: }
710:
711:
712: double
713: speed_mpn_add_n (struct speed_params *s)
714: {
715: SPEED_ROUTINE_MPN_BINARY_N (mpn_add_n);
716: }
717: double
718: speed_mpn_sub_n (struct speed_params *s)
719: {
720: SPEED_ROUTINE_MPN_BINARY_N (mpn_sub_n);
721: }
722:
723:
724: /* mpn_and_n etc can be macros and so have to be handled with
725: SPEED_ROUTINE_MPN_BINARY_N_CALL forms */
726: double
727: speed_mpn_and_n (struct speed_params *s)
728: {
729: SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_and_n (wp, s->xp, s->yp, s->size));
730: }
731: double
732: speed_mpn_andn_n (struct speed_params *s)
733: {
734: SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_andn_n (wp, s->xp, s->yp, s->size));
735: }
736: double
737: speed_mpn_nand_n (struct speed_params *s)
738: {
739: SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_nand_n (wp, s->xp, s->yp, s->size));
740: }
741: double
742: speed_mpn_ior_n (struct speed_params *s)
743: {
744: SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_ior_n (wp, s->xp, s->yp, s->size));
745: }
746: double
747: speed_mpn_iorn_n (struct speed_params *s)
748: {
749: SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_iorn_n (wp, s->xp, s->yp, s->size));
750: }
751: double
752: speed_mpn_nior_n (struct speed_params *s)
753: {
754: SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_nior_n (wp, s->xp, s->yp, s->size));
755: }
756: double
757: speed_mpn_xor_n (struct speed_params *s)
758: {
759: SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_xor_n (wp, s->xp, s->yp, s->size));
760: }
761: double
762: speed_mpn_xnor_n (struct speed_params *s)
763: {
764: SPEED_ROUTINE_MPN_BINARY_N_CALL (mpn_xnor_n (wp, s->xp, s->yp, s->size));
765: }
766:
767:
768: double
769: speed_mpn_mul_n (struct speed_params *s)
770: {
771: SPEED_ROUTINE_MPN_MUL_N (mpn_mul_n);
772: }
773: double
774: speed_mpn_sqr_n (struct speed_params *s)
775: {
776: SPEED_ROUTINE_MPN_SQR (mpn_sqr_n);
777: }
778: double
779: speed_mpn_mul_n_sqr (struct speed_params *s)
780: {
781: SPEED_ROUTINE_MPN_SQR_CALL (mpn_mul_n (wp, s->xp, s->xp, s->size));
782: }
783:
784: double
785: speed_mpn_mul_basecase (struct speed_params *s)
786: {
787: SPEED_ROUTINE_MPN_MUL_BASECASE(mpn_mul_basecase);
788: }
789: double
790: speed_mpn_sqr_basecase (struct speed_params *s)
791: {
792: /* FIXME: size restrictions on some versions of sqr_basecase */
793: SPEED_ROUTINE_MPN_SQR (mpn_sqr_basecase);
794: }
795:
1.1.1.2 ! ohara 796: #if HAVE_NATIVE_mpn_sqr_diagonal
! 797: double
! 798: speed_mpn_sqr_diagonal (struct speed_params *s)
! 799: {
! 800: SPEED_ROUTINE_MPN_SQR (mpn_sqr_diagonal);
! 801: }
! 802: #endif
! 803:
1.1 maekawa 804: double
805: speed_mpn_kara_mul_n (struct speed_params *s)
806: {
807: SPEED_ROUTINE_MPN_KARA_MUL_N (mpn_kara_mul_n);
808: }
809: double
810: speed_mpn_kara_sqr_n (struct speed_params *s)
811: {
812: SPEED_ROUTINE_MPN_KARA_SQR_N (mpn_kara_sqr_n);
813: }
814:
815: double
816: speed_mpn_toom3_mul_n (struct speed_params *s)
817: {
818: SPEED_ROUTINE_MPN_TOOM3_MUL_N (mpn_toom3_mul_n);
819: }
820: double
821: speed_mpn_toom3_sqr_n (struct speed_params *s)
822: {
823: SPEED_ROUTINE_MPN_TOOM3_SQR_N (mpn_toom3_sqr_n);
824: }
825:
826: double
1.1.1.2 ! ohara 827: speed_mpn_toom3_mul_n_mpn (struct speed_params *s)
! 828: {
! 829: SPEED_ROUTINE_MPN_TOOM3_MUL_N (mpn_toom3_mul_n_mpn);
! 830: }
! 831: double
! 832: speed_mpn_toom3_mul_n_open (struct speed_params *s)
! 833: {
! 834: SPEED_ROUTINE_MPN_TOOM3_MUL_N (mpn_toom3_mul_n_open);
! 835: }
! 836: double
! 837: speed_mpn_toom3_sqr_n_mpn (struct speed_params *s)
! 838: {
! 839: SPEED_ROUTINE_MPN_TOOM3_SQR_N (mpn_toom3_sqr_n_mpn);
! 840: }
! 841: double
! 842: speed_mpn_toom3_sqr_n_open (struct speed_params *s)
! 843: {
! 844: SPEED_ROUTINE_MPN_TOOM3_SQR_N (mpn_toom3_sqr_n_open);
! 845: }
! 846:
! 847: double
1.1 maekawa 848: speed_mpn_mul_fft_full (struct speed_params *s)
849: {
850: SPEED_ROUTINE_MPN_MUL_N_CALL
851: (mpn_mul_fft_full (wp, s->xp, s->size, s->yp, s->size));
852: }
853: double
854: speed_mpn_mul_fft_full_sqr (struct speed_params *s)
855: {
856: SPEED_ROUTINE_MPN_SQR_CALL
857: (mpn_mul_fft_full (wp, s->xp, s->size, s->xp, s->size));
858: }
859:
860:
861: /* These are mod 2^N+1 multiplies and squares. If s->r is supplied it's
862: used as k, otherwise the best k for the size is used. If s->size isn't a
863: multiple of 2^k it's rounded up to make the effective operation size. */
864:
865: #define SPEED_ROUTINE_MPN_MUL_FFT_CALL(call, sqr) \
866: { \
867: mp_ptr wp; \
868: mp_size_t pl; \
869: int k; \
870: unsigned i; \
871: double t; \
872: TMP_DECL (marker); \
873: \
874: SPEED_RESTRICT_COND (s->size >= 1); \
875: \
876: if (s->r != 0) \
877: k = s->r; \
878: else \
879: k = mpn_fft_best_k (s->size, sqr); \
880: \
881: TMP_MARK (marker); \
882: pl = mpn_fft_next_size (s->size, k); \
883: wp = SPEED_TMP_ALLOC_LIMBS (pl+1, s->align_wp); \
884: \
885: speed_operand_src (s, s->xp, s->size); \
886: if (!sqr) \
887: speed_operand_src (s, s->yp, s->size); \
888: speed_operand_dst (s, wp, pl+1); \
889: speed_cache_fill (s); \
890: \
891: speed_starttime (); \
892: i = s->reps; \
893: do \
894: call; \
895: while (--i != 0); \
896: t = speed_endtime (); \
897: \
898: TMP_FREE (marker); \
899: return t; \
900: }
901:
902: double
903: speed_mpn_mul_fft (struct speed_params *s)
904: {
905: SPEED_ROUTINE_MPN_MUL_FFT_CALL
906: (mpn_mul_fft (wp, pl, s->xp, s->size, s->yp, s->size, k), 0);
907: }
908:
909: double
910: speed_mpn_mul_fft_sqr (struct speed_params *s)
911: {
912: SPEED_ROUTINE_MPN_MUL_FFT_CALL
913: (mpn_mul_fft (wp, pl, s->xp, s->size, s->xp, s->size, k), 1);
914: }
915:
916:
917: double
918: speed_mpn_gcd (struct speed_params *s)
919: {
920: SPEED_ROUTINE_MPN_GCD (mpn_gcd);
921: }
922: double
1.1.1.2 ! ohara 923: speed_mpn_gcd_binary (struct speed_params *s)
! 924: {
! 925: SPEED_ROUTINE_MPN_GCD (mpn_gcd_binary);
! 926: }
! 927:
! 928: #if HAVE_NATIVE_mpn_gcd_finda
! 929: double
! 930: speed_mpn_gcd_finda (struct speed_params *s)
! 931: {
! 932: SPEED_ROUTINE_MPN_GCD_FINDA (mpn_gcd_finda);
! 933: }
! 934: #endif
! 935:
! 936:
! 937: double
1.1 maekawa 938: speed_mpn_gcdext (struct speed_params *s)
939: {
940: SPEED_ROUTINE_MPN_GCDEXT (mpn_gcdext);
941: }
942: double
1.1.1.2 ! ohara 943: speed_mpn_gcdext_single (struct speed_params *s)
! 944: {
! 945: SPEED_ROUTINE_MPN_GCDEXT (mpn_gcdext_single);
! 946: }
! 947: double
! 948: speed_mpn_gcdext_double (struct speed_params *s)
! 949: {
! 950: SPEED_ROUTINE_MPN_GCDEXT (mpn_gcdext_double);
! 951: }
! 952: double
! 953: speed_mpn_gcdext_one_single (struct speed_params *s)
! 954: {
! 955: SPEED_ROUTINE_MPN_GCDEXT_ONE (mpn_gcdext_one_single);
! 956: }
! 957: double
! 958: speed_mpn_gcdext_one_double (struct speed_params *s)
! 959: {
! 960: SPEED_ROUTINE_MPN_GCDEXT_ONE (mpn_gcdext_one_double);
! 961: }
! 962: double
1.1 maekawa 963: speed_mpn_gcd_1 (struct speed_params *s)
964: {
965: SPEED_ROUTINE_MPN_GCD_1 (mpn_gcd_1);
966: }
1.1.1.2 ! ohara 967: double
! 968: speed_mpn_gcd_1N (struct speed_params *s)
! 969: {
! 970: SPEED_ROUTINE_MPN_GCD_1N (mpn_gcd_1);
! 971: }
1.1 maekawa 972:
973:
974: double
1.1.1.2 ! ohara 975: speed_mpz_jacobi (struct speed_params *s)
! 976: {
! 977: SPEED_ROUTINE_MPZ_JACOBI (mpz_jacobi);
! 978: }
! 979: double
1.1 maekawa 980: speed_mpn_jacobi_base (struct speed_params *s)
981: {
982: SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base);
983: }
1.1.1.2 ! ohara 984: double
! 985: speed_mpn_jacobi_base_1 (struct speed_params *s)
! 986: {
! 987: SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base_1);
! 988: }
! 989: double
! 990: speed_mpn_jacobi_base_2 (struct speed_params *s)
! 991: {
! 992: SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base_2);
! 993: }
! 994: double
! 995: speed_mpn_jacobi_base_3 (struct speed_params *s)
! 996: {
! 997: SPEED_ROUTINE_MPN_JACBASE (mpn_jacobi_base_3);
! 998: }
! 999:
! 1000:
! 1001: double
! 1002: speed_mpn_sqrtrem (struct speed_params *s)
! 1003: {
! 1004: SPEED_ROUTINE_MPN_SQRTREM (mpn_sqrtrem);
! 1005: }
1.1 maekawa 1006:
1007:
1008: double
1009: speed_mpz_fac_ui (struct speed_params *s)
1010: {
1.1.1.2 ! ohara 1011: SPEED_ROUTINE_MPZ_FAC_UI (mpz_fac_ui);
! 1012: }
! 1013:
! 1014:
! 1015: double
! 1016: speed_mpn_fib2_ui (struct speed_params *s)
! 1017: {
! 1018: SPEED_ROUTINE_MPN_FIB2_UI (mpn_fib2_ui);
1.1 maekawa 1019: }
1020: double
1021: speed_mpz_fib_ui (struct speed_params *s)
1022: {
1.1.1.2 ! ohara 1023: SPEED_ROUTINE_MPZ_FIB_UI (mpz_fib_ui);
! 1024: }
! 1025: double
! 1026: speed_mpz_fib2_ui (struct speed_params *s)
! 1027: {
! 1028: SPEED_ROUTINE_MPZ_FIB2_UI (mpz_fib2_ui);
! 1029: }
! 1030: double
! 1031: speed_mpz_lucnum_ui (struct speed_params *s)
! 1032: {
! 1033: SPEED_ROUTINE_MPZ_LUCNUM_UI (mpz_lucnum_ui);
! 1034: }
! 1035: double
! 1036: speed_mpz_lucnum2_ui (struct speed_params *s)
! 1037: {
! 1038: SPEED_ROUTINE_MPZ_LUCNUM2_UI (mpz_lucnum2_ui);
1.1 maekawa 1039: }
1040:
1041:
1042: double
1043: speed_mpz_powm (struct speed_params *s)
1044: {
1045: SPEED_ROUTINE_MPZ_POWM (mpz_powm);
1046: }
1.1.1.2 ! ohara 1047: double
! 1048: speed_mpz_powm_mod (struct speed_params *s)
! 1049: {
! 1050: SPEED_ROUTINE_MPZ_POWM (mpz_powm_mod);
! 1051: }
! 1052: double
! 1053: speed_mpz_powm_redc (struct speed_params *s)
! 1054: {
! 1055: SPEED_ROUTINE_MPZ_POWM (mpz_powm_redc);
! 1056: }
! 1057: double
! 1058: speed_mpz_powm_ui (struct speed_params *s)
! 1059: {
! 1060: SPEED_ROUTINE_MPZ_POWM_UI (mpz_powm_ui);
! 1061: }
1.1 maekawa 1062:
1063:
1064: double
1065: speed_modlimb_invert (struct speed_params *s)
1066: {
1067: SPEED_ROUTINE_MODLIMB_INVERT (modlimb_invert);
1068: }
1069:
1070:
1071: double
1072: speed_noop (struct speed_params *s)
1073: {
1074: unsigned i;
1075:
1076: speed_starttime ();
1077: i = s->reps;
1078: do
1079: noop ();
1080: while (--i != 0);
1081: return speed_endtime ();
1082: }
1083:
1084: double
1085: speed_noop_wxs (struct speed_params *s)
1086: {
1087: mp_ptr wp;
1088: unsigned i;
1089: double t;
1090: TMP_DECL (marker);
1091:
1092: TMP_MARK (marker);
1093: wp = TMP_ALLOC_LIMBS (1);
1094:
1095: speed_starttime ();
1096: i = s->reps;
1097: do
1098: noop_wxs (wp, s->xp, s->size);
1099: while (--i != 0);
1100: t = speed_endtime ();
1101:
1102: TMP_FREE (marker);
1103: return t;
1104: }
1105:
1106: double
1107: speed_noop_wxys (struct speed_params *s)
1108: {
1109: mp_ptr wp;
1110: unsigned i;
1111: double t;
1112: TMP_DECL (marker);
1113:
1114: TMP_MARK (marker);
1115: wp = TMP_ALLOC_LIMBS (1);
1116:
1117: speed_starttime ();
1118: i = s->reps;
1119: do
1120: noop_wxys (wp, s->xp, s->yp, s->size);
1121: while (--i != 0);
1122: t = speed_endtime ();
1123:
1124: TMP_FREE (marker);
1125: return t;
1126: }
1127:
1128:
1129: #define SPEED_ROUTINE_ALLOC_FREE(variables, calls) \
1130: { \
1131: unsigned i; \
1132: variables; \
1133: \
1134: speed_starttime (); \
1135: i = s->reps; \
1136: do \
1137: { \
1138: calls; \
1139: } \
1140: while (--i != 0); \
1141: return speed_endtime (); \
1142: }
1143:
1144:
1145: /* Compare these to see how much malloc/free costs and then how much
1.1.1.2 ! ohara 1146: __gmp_default_allocate/free and mpz_init/clear add. mpz_init/clear or
1.1 maekawa 1147: mpq_init/clear will be doing a 1 limb allocate, so use that as the size
1148: when including them in comparisons. */
1149:
1150: double
1151: speed_malloc_free (struct speed_params *s)
1152: {
1153: size_t bytes = s->size * BYTES_PER_MP_LIMB;
1154: SPEED_ROUTINE_ALLOC_FREE (void *p,
1155: p = malloc (bytes);
1156: free (p));
1157: }
1158:
1159: double
1160: speed_malloc_realloc_free (struct speed_params *s)
1161: {
1162: size_t bytes = s->size * BYTES_PER_MP_LIMB;
1163: SPEED_ROUTINE_ALLOC_FREE (void *p,
1164: p = malloc (BYTES_PER_MP_LIMB);
1165: p = realloc (p, bytes);
1166: free (p));
1167: }
1168:
1169: double
1.1.1.2 ! ohara 1170: speed_gmp_allocate_free (struct speed_params *s)
1.1 maekawa 1171: {
1172: size_t bytes = s->size * BYTES_PER_MP_LIMB;
1173: SPEED_ROUTINE_ALLOC_FREE (void *p,
1.1.1.2 ! ohara 1174: p = (*__gmp_allocate_func) (bytes);
! 1175: (*__gmp_free_func) (p, bytes));
1.1 maekawa 1176: }
1177:
1178: double
1.1.1.2 ! ohara 1179: speed_gmp_allocate_reallocate_free (struct speed_params *s)
1.1 maekawa 1180: {
1181: size_t bytes = s->size * BYTES_PER_MP_LIMB;
1182: SPEED_ROUTINE_ALLOC_FREE
1183: (void *p,
1.1.1.2 ! ohara 1184: p = (*__gmp_allocate_func) (BYTES_PER_MP_LIMB);
! 1185: p = (*__gmp_reallocate_func) (p, bytes, BYTES_PER_MP_LIMB);
! 1186: (*__gmp_free_func) (p, bytes));
1.1 maekawa 1187: }
1188:
1189: double
1190: speed_mpz_init_clear (struct speed_params *s)
1191: {
1192: SPEED_ROUTINE_ALLOC_FREE (mpz_t z,
1193: mpz_init (z);
1194: mpz_clear (z));
1195: }
1196:
1197: double
1198: speed_mpz_init_realloc_clear (struct speed_params *s)
1199: {
1200: SPEED_ROUTINE_ALLOC_FREE (mpz_t z,
1201: mpz_init (z);
1202: _mpz_realloc (z, s->size);
1203: mpz_clear (z));
1204: }
1205:
1206: double
1207: speed_mpq_init_clear (struct speed_params *s)
1208: {
1209: SPEED_ROUTINE_ALLOC_FREE (mpq_t q,
1210: mpq_init (q);
1211: mpq_clear (q));
1212: }
1213:
1214: double
1215: speed_mpf_init_clear (struct speed_params *s)
1216: {
1217: SPEED_ROUTINE_ALLOC_FREE (mpf_t f,
1218: mpf_init (f);
1219: mpf_clear (f));
1220: }
1221:
1222:
1223: /* Compare this to mpn_add_n to see how much overhead mpz_add adds. Note
1224: that repeatedly calling mpz_add with the same data gives branch predition
1225: in it an advantage. */
1226:
1227: double
1228: speed_mpz_add (struct speed_params *s)
1229: {
1230: mpz_t w, x, y;
1231: unsigned i;
1232: double t;
1233:
1234: mpz_init (w);
1235: mpz_init (x);
1236: mpz_init (y);
1237:
1238: mpz_set_n (x, s->xp, s->size);
1239: mpz_set_n (y, s->yp, s->size);
1240: mpz_add (w, x, y);
1241:
1242: speed_starttime ();
1243: i = s->reps;
1244: do
1245: {
1246: mpz_add (w, x, y);
1247: }
1248: while (--i != 0);
1249: t = speed_endtime ();
1250:
1251: mpz_clear (w);
1252: mpz_clear (x);
1253: mpz_clear (y);
1254: return t;
1255: }
1256:
1257:
1258: /* If r==0, calculate (size,size/2),
1259: otherwise calculate (size,r). */
1260:
1261: double
1262: speed_mpz_bin_uiui (struct speed_params *s)
1263: {
1264: mpz_t w;
1265: unsigned long k;
1266: unsigned i;
1267: double t;
1268:
1269: mpz_init (w);
1270: if (s->r != 0)
1271: k = s->r;
1272: else
1273: k = s->size/2;
1274:
1275: speed_starttime ();
1276: i = s->reps;
1277: do
1278: {
1279: mpz_bin_uiui (w, s->size, k);
1280: }
1281: while (--i != 0);
1282: t = speed_endtime ();
1283:
1284: mpz_clear (w);
1285: return t;
1286: }
1287:
1288:
1289: /* The multiplies are successively dependent so the latency is measured, not
1290: the issue rate. There's only 10 per loop so the code doesn't get too big
1291: since umul_ppmm is several instructions on some cpus.
1292:
1293: Putting the arguments as "h,l,l,h" gets slightly better code from gcc
1294: 2.95.2 on x86, it puts only one mov between each mul, not two. That mov
1295: though will probably show up as a bogus extra cycle though.
1296:
1297: The measuring function macros are into three parts to avoid overflowing
1298: preprocessor expansion space if umul_ppmm is big.
1299:
1300: Limitations:
1301:
1302: Don't blindly use this to set UMUL_TIME in gmp-mparam.h, check the code
1303: generated first, especially on CPUs with low latency multipliers.
1304:
1305: The default umul_ppmm doing h*l will be getting increasing numbers of
1306: high zero bits in the calculation. CPUs with data-dependent multipliers
1307: will want to use umul_ppmm.1 to get some randomization into the
1308: calculation. The extra xors and fetches will be a slowdown of course. */
1309:
1310: #define SPEED_MACRO_UMUL_PPMM_A \
1311: { \
1312: mp_limb_t h, l; \
1313: unsigned i; \
1314: double t; \
1315: \
1316: s->time_divisor = 10; \
1317: \
1318: h = s->xp[0]; \
1319: l = s->yp[0]; \
1320: \
1.1.1.2 ! ohara 1321: if (s->r == 1) \
! 1322: { \
! 1323: speed_starttime (); \
! 1324: i = s->reps; \
! 1325: do \
! 1326: {
1.1 maekawa 1327:
1328: #define SPEED_MACRO_UMUL_PPMM_B \
1.1.1.2 ! ohara 1329: } \
! 1330: while (--i != 0); \
! 1331: t = speed_endtime (); \
! 1332: } \
! 1333: else \
! 1334: { \
! 1335: speed_starttime (); \
! 1336: i = s->reps; \
! 1337: do \
! 1338: {
1.1 maekawa 1339:
1340: #define SPEED_MACRO_UMUL_PPMM_C \
1.1.1.2 ! ohara 1341: } \
! 1342: while (--i != 0); \
! 1343: t = speed_endtime (); \
! 1344: } \
1.1 maekawa 1345: \
1346: /* stop the compiler optimizing away the whole calculation! */ \
1347: noop_1 (h); \
1348: noop_1 (l); \
1349: \
1350: return t; \
1351: }
1352:
1353:
1354: double
1355: speed_umul_ppmm (struct speed_params *s)
1356: {
1357: SPEED_MACRO_UMUL_PPMM_A;
1358: {
1359: umul_ppmm (h, l, l, h); h ^= s->xp_block[0]; l ^= s->yp_block[0];
1360: umul_ppmm (h, l, l, h); h ^= s->xp_block[1]; l ^= s->yp_block[1];
1361: umul_ppmm (h, l, l, h); h ^= s->xp_block[2]; l ^= s->yp_block[2];
1362: umul_ppmm (h, l, l, h); h ^= s->xp_block[3]; l ^= s->yp_block[3];
1363: umul_ppmm (h, l, l, h); h ^= s->xp_block[4]; l ^= s->yp_block[4];
1364: umul_ppmm (h, l, l, h); h ^= s->xp_block[5]; l ^= s->yp_block[5];
1365: umul_ppmm (h, l, l, h); h ^= s->xp_block[6]; l ^= s->yp_block[6];
1366: umul_ppmm (h, l, l, h); h ^= s->xp_block[7]; l ^= s->yp_block[7];
1367: umul_ppmm (h, l, l, h); h ^= s->xp_block[8]; l ^= s->yp_block[8];
1368: umul_ppmm (h, l, l, h); h ^= s->xp_block[9]; l ^= s->yp_block[9];
1369: }
1370: SPEED_MACRO_UMUL_PPMM_B;
1371: {
1372: umul_ppmm (h, l, l, h);
1373: umul_ppmm (h, l, l, h);
1374: umul_ppmm (h, l, l, h);
1375: umul_ppmm (h, l, l, h);
1376: umul_ppmm (h, l, l, h);
1377: umul_ppmm (h, l, l, h);
1378: umul_ppmm (h, l, l, h);
1379: umul_ppmm (h, l, l, h);
1380: umul_ppmm (h, l, l, h);
1381: umul_ppmm (h, l, l, h);
1382: }
1383: SPEED_MACRO_UMUL_PPMM_C;
1384: }
1385:
1386:
1387: #if HAVE_NATIVE_mpn_umul_ppmm
1388:
1389: #if defined (__hppa) && W_TYPE_SIZE == 64
1390: #define CALL_MPN_UMUL_PPMM (h = __MPN (umul_ppmm) (h, l, &l))
1391: #else
1392: #define CALL_MPN_UMUL_PPMM (h = __MPN (umul_ppmm) (&l, h, l))
1393: #endif
1394:
1395: double
1396: speed_mpn_umul_ppmm (struct speed_params *s)
1397: {
1398: SPEED_MACRO_UMUL_PPMM_A;
1399: {
1400: CALL_MPN_UMUL_PPMM; h ^= s->xp_block[0]; l ^= s->yp_block[0];
1401: CALL_MPN_UMUL_PPMM; h ^= s->xp_block[1]; l ^= s->yp_block[1];
1402: CALL_MPN_UMUL_PPMM; h ^= s->xp_block[2]; l ^= s->yp_block[2];
1403: CALL_MPN_UMUL_PPMM; h ^= s->xp_block[3]; l ^= s->yp_block[3];
1404: CALL_MPN_UMUL_PPMM; h ^= s->xp_block[4]; l ^= s->yp_block[4];
1405: CALL_MPN_UMUL_PPMM; h ^= s->xp_block[5]; l ^= s->yp_block[5];
1406: CALL_MPN_UMUL_PPMM; h ^= s->xp_block[6]; l ^= s->yp_block[6];
1407: CALL_MPN_UMUL_PPMM; h ^= s->xp_block[7]; l ^= s->yp_block[7];
1408: CALL_MPN_UMUL_PPMM; h ^= s->xp_block[8]; l ^= s->yp_block[8];
1409: CALL_MPN_UMUL_PPMM; h ^= s->xp_block[9]; l ^= s->yp_block[9];
1410: }
1411: SPEED_MACRO_UMUL_PPMM_B;
1412: {
1413: CALL_MPN_UMUL_PPMM;
1414: CALL_MPN_UMUL_PPMM;
1415: CALL_MPN_UMUL_PPMM;
1416: CALL_MPN_UMUL_PPMM;
1417: CALL_MPN_UMUL_PPMM;
1418: CALL_MPN_UMUL_PPMM;
1419: CALL_MPN_UMUL_PPMM;
1420: CALL_MPN_UMUL_PPMM;
1421: CALL_MPN_UMUL_PPMM;
1422: CALL_MPN_UMUL_PPMM;
1423: }
1424: SPEED_MACRO_UMUL_PPMM_C;
1425: }
1426: #endif
1427:
1428:
1429: /* The divisions are successively dependent so latency is measured, not
1430: issue rate. There's only 10 per loop so the code doesn't get too big,
1431: especially for udiv_qrnnd_preinv and preinv2norm, which are several
1432: instructions each.
1433:
1434: Note that it's only the division which is measured here, there's no data
1435: fetching and no shifting if the divisor gets normalized.
1436:
1437: In speed_udiv_qrnnd with gcc 2.95.2 on x86 the parameters "q,r,r,q,d"
1438: generate x86 div instructions with nothing in between.
1439:
1440: The measuring function macros are in two parts to avoid overflowing
1441: preprocessor expansion space if udiv_qrnnd etc are big.
1442:
1443: Limitations:
1444:
1445: Don't blindly use this to set UDIV_TIME in gmp-mparam.h, check the code
1446: generated first.
1447:
1448: CPUs with data-dependent divisions may want more attention paid to the
1449: randomness of the data used. Probably the measurement wanted is over
1450: uniformly distributed numbers, but what's here might not be giving that. */
1451:
1452: #define SPEED_ROUTINE_UDIV_QRNND_A(normalize) \
1453: { \
1454: double t; \
1455: unsigned i; \
1456: mp_limb_t q, r, d; \
1457: mp_limb_t dinv; \
1458: \
1459: s->time_divisor = 10; \
1460: \
1461: /* divisor from "r" parameter, or a default */ \
1462: d = s->r; \
1463: if (d == 0) \
1.1.1.2 ! ohara 1464: d = __mp_bases[10].big_base; \
1.1 maekawa 1465: \
1466: if (normalize) \
1467: { \
1468: unsigned norm; \
1469: count_leading_zeros (norm, d); \
1470: d <<= norm; \
1471: invert_limb (dinv, d); \
1472: } \
1473: \
1474: q = s->xp[0]; \
1475: r = s->yp[0] % d; \
1476: \
1477: speed_starttime (); \
1478: i = s->reps; \
1479: do \
1480: {
1481:
1482: #define SPEED_ROUTINE_UDIV_QRNND_B \
1483: } \
1484: while (--i != 0); \
1485: t = speed_endtime (); \
1486: \
1487: /* stop the compiler optimizing away the whole calculation! */ \
1488: noop_1 (q); \
1489: noop_1 (r); \
1490: \
1491: return t; \
1492: }
1493:
1494: double
1495: speed_udiv_qrnnd (struct speed_params *s)
1496: {
1497: SPEED_ROUTINE_UDIV_QRNND_A (UDIV_NEEDS_NORMALIZATION);
1498: {
1499: udiv_qrnnd (q, r, r, q, d);
1500: udiv_qrnnd (q, r, r, q, d);
1501: udiv_qrnnd (q, r, r, q, d);
1502: udiv_qrnnd (q, r, r, q, d);
1503: udiv_qrnnd (q, r, r, q, d);
1504: udiv_qrnnd (q, r, r, q, d);
1505: udiv_qrnnd (q, r, r, q, d);
1506: udiv_qrnnd (q, r, r, q, d);
1507: udiv_qrnnd (q, r, r, q, d);
1508: udiv_qrnnd (q, r, r, q, d);
1509: }
1510: SPEED_ROUTINE_UDIV_QRNND_B;
1511: }
1512:
1513: double
1514: speed_udiv_qrnnd_preinv (struct speed_params *s)
1515: {
1516: SPEED_ROUTINE_UDIV_QRNND_A (1);
1517: {
1518: udiv_qrnnd_preinv (q, r, r, q, d, dinv);
1519: udiv_qrnnd_preinv (q, r, r, q, d, dinv);
1520: udiv_qrnnd_preinv (q, r, r, q, d, dinv);
1521: udiv_qrnnd_preinv (q, r, r, q, d, dinv);
1522: udiv_qrnnd_preinv (q, r, r, q, d, dinv);
1523: udiv_qrnnd_preinv (q, r, r, q, d, dinv);
1524: udiv_qrnnd_preinv (q, r, r, q, d, dinv);
1525: udiv_qrnnd_preinv (q, r, r, q, d, dinv);
1526: udiv_qrnnd_preinv (q, r, r, q, d, dinv);
1527: udiv_qrnnd_preinv (q, r, r, q, d, dinv);
1528: }
1529: SPEED_ROUTINE_UDIV_QRNND_B;
1530: }
1531:
1532: double
1533: speed_udiv_qrnnd_preinv2norm (struct speed_params *s)
1534: {
1535: SPEED_ROUTINE_UDIV_QRNND_A (1);
1536: {
1537: udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
1538: udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
1539: udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
1540: udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
1541: udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
1542: udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
1543: udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
1544: udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
1545: udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
1546: udiv_qrnnd_preinv2norm (q, r, r, q, d, dinv);
1547: }
1548: SPEED_ROUTINE_UDIV_QRNND_B;
1549: }
1550:
1.1.1.2 ! ohara 1551: double
! 1552: speed_udiv_qrnnd_c (struct speed_params *s)
! 1553: {
! 1554: SPEED_ROUTINE_UDIV_QRNND_A (1);
! 1555: {
! 1556: __udiv_qrnnd_c (q, r, r, q, d);
! 1557: __udiv_qrnnd_c (q, r, r, q, d);
! 1558: __udiv_qrnnd_c (q, r, r, q, d);
! 1559: __udiv_qrnnd_c (q, r, r, q, d);
! 1560: __udiv_qrnnd_c (q, r, r, q, d);
! 1561: __udiv_qrnnd_c (q, r, r, q, d);
! 1562: __udiv_qrnnd_c (q, r, r, q, d);
! 1563: __udiv_qrnnd_c (q, r, r, q, d);
! 1564: __udiv_qrnnd_c (q, r, r, q, d);
! 1565: __udiv_qrnnd_c (q, r, r, q, d);
! 1566: }
! 1567: SPEED_ROUTINE_UDIV_QRNND_B;
! 1568: }
! 1569:
1.1 maekawa 1570: #if HAVE_NATIVE_mpn_udiv_qrnnd
1571:
1572: #if defined (__hppa) && W_TYPE_SIZE == 64
1573: #define CALL_MPN_UDIV_QRNND (q = __MPN (udiv_qrnnd) (r, q, d, &r))
1574: #else
1575: #define CALL_MPN_UDIV_QRNND (q = __MPN (udiv_qrnnd) (&r, r, q, d))
1576: #endif
1577:
1578: double
1579: speed_mpn_udiv_qrnnd (struct speed_params *s)
1580: {
1581: SPEED_ROUTINE_UDIV_QRNND_A (1);
1582: {
1583: CALL_MPN_UDIV_QRNND;
1584: CALL_MPN_UDIV_QRNND;
1585: CALL_MPN_UDIV_QRNND;
1586: CALL_MPN_UDIV_QRNND;
1587: CALL_MPN_UDIV_QRNND;
1588: CALL_MPN_UDIV_QRNND;
1589: CALL_MPN_UDIV_QRNND;
1590: CALL_MPN_UDIV_QRNND;
1591: CALL_MPN_UDIV_QRNND;
1592: CALL_MPN_UDIV_QRNND;
1593: }
1594: SPEED_ROUTINE_UDIV_QRNND_B;
1595: }
1596: #endif
1.1.1.2 ! ohara 1597:
! 1598:
! 1599: double
! 1600: speed_invert_limb (struct speed_params *s)
! 1601: {
! 1602: SPEED_ROUTINE_INVERT_LIMB_CALL (invert_limb (dinv, d));
! 1603: }
! 1604:
! 1605:
! 1606: /* xp[0] might not be particularly random, but should give an indication how
! 1607: "/" runs. Same for speed_operator_mod below. */
! 1608: double
! 1609: speed_operator_div (struct speed_params *s)
! 1610: {
! 1611: double t;
! 1612: unsigned i;
! 1613: mp_limb_t x, q, d;
! 1614:
! 1615: s->time_divisor = 10;
! 1616:
! 1617: /* divisor from "r" parameter, or a default */
! 1618: d = s->r;
! 1619: if (d == 0)
! 1620: d = __mp_bases[10].big_base;
! 1621:
! 1622: x = s->xp[0];
! 1623: q = 0;
! 1624:
! 1625: speed_starttime ();
! 1626: i = s->reps;
! 1627: do
! 1628: {
! 1629: q ^= x; q /= d;
! 1630: q ^= x; q /= d;
! 1631: q ^= x; q /= d;
! 1632: q ^= x; q /= d;
! 1633: q ^= x; q /= d;
! 1634: q ^= x; q /= d;
! 1635: q ^= x; q /= d;
! 1636: q ^= x; q /= d;
! 1637: q ^= x; q /= d;
! 1638: q ^= x; q /= d;
! 1639: }
! 1640: while (--i != 0);
! 1641: t = speed_endtime ();
! 1642:
! 1643: /* stop the compiler optimizing away the whole calculation! */
! 1644: noop_1 (q);
! 1645:
! 1646: return t;
! 1647: }
! 1648:
! 1649: double
! 1650: speed_operator_mod (struct speed_params *s)
! 1651: {
! 1652: double t;
! 1653: unsigned i;
! 1654: mp_limb_t x, r, d;
! 1655:
! 1656: s->time_divisor = 10;
! 1657:
! 1658: /* divisor from "r" parameter, or a default */
! 1659: d = s->r;
! 1660: if (d == 0)
! 1661: d = __mp_bases[10].big_base;
! 1662:
! 1663: x = s->xp[0];
! 1664: r = 0;
! 1665:
! 1666: speed_starttime ();
! 1667: i = s->reps;
! 1668: do
! 1669: {
! 1670: r ^= x; r %= d;
! 1671: r ^= x; r %= d;
! 1672: r ^= x; r %= d;
! 1673: r ^= x; r %= d;
! 1674: r ^= x; r %= d;
! 1675: r ^= x; r %= d;
! 1676: r ^= x; r %= d;
! 1677: r ^= x; r %= d;
! 1678: r ^= x; r %= d;
! 1679: r ^= x; r %= d;
! 1680: }
! 1681: while (--i != 0);
! 1682: t = speed_endtime ();
! 1683:
! 1684: /* stop the compiler optimizing away the whole calculation! */
! 1685: noop_1 (r);
! 1686:
! 1687: return t;
! 1688: }
! 1689:
! 1690:
! 1691: /* r==0 measures on data with the values uniformly distributed. This will
! 1692: be typical for count_trailing_zeros in a GCD etc.
! 1693:
! 1694: r==1 measures on data with the resultant count uniformly distributed
! 1695: between 0 and BITS_PER_MP_LIMB-1. This is probably sensible for
! 1696: count_leading_zeros on the high limbs of divisors. */
! 1697:
! 1698: int
! 1699: speed_routine_count_zeros_setup (struct speed_params *s,
! 1700: mp_ptr xp, int leading, int zero)
! 1701: {
! 1702: int i, c;
! 1703: mp_limb_t n;
! 1704:
! 1705: if (s->r == 0)
! 1706: {
! 1707: /* Make uniformly distributed data. If zero isn't allowed then change
! 1708: it to 1 for leading, or 0x800..00 for trailing. */
! 1709: MPN_COPY (xp, s->xp_block, SPEED_BLOCK_SIZE);
! 1710: if (! zero)
! 1711: for (i = 0; i < SPEED_BLOCK_SIZE; i++)
! 1712: if (xp[i] == 0)
! 1713: xp[i] = leading ? 1 : GMP_LIMB_HIGHBIT;
! 1714: }
! 1715: else if (s->r == 1)
! 1716: {
! 1717: /* Make counts uniformly distributed. A randomly chosen bit is set, and
! 1718: for leading the rest above it are cleared, or for trailing then the
! 1719: rest below. */
! 1720: for (i = 0; i < SPEED_BLOCK_SIZE; i++)
! 1721: {
! 1722: mp_limb_t set = CNST_LIMB(1) << (s->yp_block[i] % BITS_PER_MP_LIMB);
! 1723: mp_limb_t keep_below = set-1;
! 1724: mp_limb_t keep_above = MP_LIMB_T_MAX ^ keep_below;
! 1725: mp_limb_t keep = (leading ? keep_below : keep_above);
! 1726: xp[i] = (s->xp_block[i] & keep) | set;
! 1727: }
! 1728: }
! 1729: else
! 1730: {
! 1731: return 0;
! 1732: }
! 1733:
! 1734: /* Account for the effect of n^=c. */
! 1735: c = 0;
! 1736: for (i = 0; i < SPEED_BLOCK_SIZE; i++)
! 1737: {
! 1738: n = xp[i];
! 1739: xp[i] ^= c;
! 1740:
! 1741: if (leading)
! 1742: count_leading_zeros (c, n);
! 1743: else
! 1744: count_trailing_zeros (c, n);
! 1745: }
! 1746:
! 1747: return 1;
! 1748: }
! 1749:
! 1750: double
! 1751: speed_count_leading_zeros (struct speed_params *s)
! 1752: {
! 1753: #ifdef COUNT_LEADING_ZEROS_0
! 1754: #define COUNT_LEADING_ZEROS_0_ALLOWED 1
! 1755: #else
! 1756: #define COUNT_LEADING_ZEROS_0_ALLOWED 0
! 1757: #endif
! 1758:
! 1759: SPEED_ROUTINE_COUNT_ZEROS_A (1, COUNT_LEADING_ZEROS_0_ALLOWED);
! 1760: count_leading_zeros (c, n);
! 1761: SPEED_ROUTINE_COUNT_ZEROS_B ();
! 1762: }
! 1763: double
! 1764: speed_count_trailing_zeros (struct speed_params *s)
! 1765: {
! 1766: SPEED_ROUTINE_COUNT_ZEROS_A (0, 0);
! 1767: count_trailing_zeros (c, n);
! 1768: SPEED_ROUTINE_COUNT_ZEROS_B ();
! 1769: }
! 1770:
! 1771:
! 1772: double
! 1773: speed_mpn_get_str (struct speed_params *s)
! 1774: {
! 1775: SPEED_ROUTINE_MPN_GET_STR (mpn_get_str);
! 1776: }
! 1777:
! 1778: double
! 1779: speed_mpn_set_str (struct speed_params *s)
! 1780: {
! 1781: SPEED_ROUTINE_MPN_SET_STR (mpn_set_str);
! 1782: }
! 1783: double
! 1784: speed_mpn_set_str_basecase (struct speed_params *s)
! 1785: {
! 1786: SPEED_ROUTINE_MPN_SET_STR (mpn_set_str_basecase);
! 1787: }
! 1788: double
! 1789: speed_mpn_set_str_subquad (struct speed_params *s)
! 1790: {
! 1791: SPEED_ROUTINE_MPN_SET_STR (mpn_set_str_subquad);
! 1792: }
! 1793:
! 1794:
! 1795: double
! 1796: speed_MPN_ZERO (struct speed_params *s)
! 1797: {
! 1798: SPEED_ROUTINE_MPN_ZERO_CALL (MPN_ZERO (wp, s->size));
! 1799: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>