Annotation of OpenXM_contrib/gnuplot/demo/bivariat.dem, Revision 1.1.1.2
1.1 maekawa 1: #
1.1.1.2 ! maekawa 2: # $Id: bivariat.dem,v 1.1.1.1 1998/04/15 19:16:41 lhecking Exp $
1.1 maekawa 3: #
4: # This demo is very slow and requires unusually large stack size.
5: # Do not attempt to run this demo under MSDOS.
6: #
7:
8: # the function integral_f(x) approximates the integral of f(x) from 0 to x.
9: # integral2_f(x,y) approximates the integral from x to y.
10: # define f(x) to be any single variable function
11: #
12: # the integral is calculated as the sum of f(x_n)*delta
13: # do this x/delta times (from x down to 0)
14: #
15: f(x) = exp(-x**2)
16: delta = 0.2
17: # delta can be set to 0.025 for non-MSDOS machines
18: #
19: # integral_f(x) takes one variable, the upper limit. 0 is the lower limit.
20: # calculate the integral of function f(t) from 0 to x
21: integral_f(x) = (x>0)?integral1a(x):-integral1b(x)
22: integral1a(x) = (x<=0)?0:(integral1a(x-delta)+delta*f(x))
23: integral1b(x) = (x>=0)?0:(integral1b(x+delta)+delta*f(x))
24: #
25: # integral2_f(x,y) takes two variables; x is the lower limit, and y the upper.
26: # claculate the integral of function f(t) from x to y
27: integral2_f(x,y) = (x<y)?integral2(x,y):-integral2(y,x)
28: integral2(x,y) = (x>y)?0:(integral2(x+delta,y)+delta*f(x))
29:
30: set autoscale
31: set title "approximate the integral of functions"
32: set samples 50
33:
34: plot [-5:5] f(x) title "f(x)=exp(-x**2)", 2/sqrt(pi)*integral_f(x) title "erf(x)=2/sqrt(pi)*integral_f(x)"
35:
36: pause -1 "Hit return to continue"
37:
38: f(x)=sin(x)
39:
40: plot [-5:5] f(x) title "f(x)=sin(x)", integral_f(x)
41:
42: pause -1 "Hit return to continue"
43:
44: set title "approximate the integral of functions (upper and lower limits)"
45:
46: f(x)=(x-2)**2-20
47:
48: plot [-10:10] f(x) title "f(x)=(x-2)**2-20", integral2_f(-5,x)
49:
50: pause -1 "Hit return to continue"
51:
52: f(x)=sin(x-1)-.75*sin(2*x-1)+(x**2)/8-5
53:
54: plot [-10:10] f(x) title "f(x)=sin(x-1)-0.75*sin(2*x-1)+(x**2)/8-5", integral2_f(x,1)
55:
56: pause -1 "Hit return to continue"
57:
58: #
59: # This definition computes the ackermann. Do not attempt to compute its
60: # values for non integral values. In addition, do not attempt to compute
61: # its beyond m = 3, unless you want to wait really long time.
62:
63: ack(m,n) = (m == 0) ? n + 1 : (n == 0) ? ack(m-1,1) : ack(m-1,ack(m,n-1))
64:
65: set xrange [0:3]
66: set yrange [0:3]
67:
68: set isosamples 4
69: set samples 4
70:
71: set title "Plot of the ackermann function"
72:
73: splot ack(x, y)
74:
75: pause -1 "Hit return to continue"
76:
77: set xrange [-5:5]
78: set yrange [-10:10]
79: set isosamples 10
80: set samples 100
81: set key 4,-3
82: set title "Min(x,y) and Max(x,y)"
83:
84: #
85: min(x,y) = (x < y) ? x : y
86: max(x,y) = (x > y) ? x : y
87:
88: plot sin(x), x**2, x**3, max(sin(x), min(x**2, x**3))+0.5
89:
90: pause -1 "Hit return to continue"
91:
92: #
93: # gcd(x,y) finds the greatest common divisor of x and y,
94: # using Euclid's algorithm
95: # as this is defined only for integers, first round to the nearest integer
96: gcd(x,y) = gcd1(rnd(max(x,y)),rnd(min(x,y)))
97: gcd1(x,y) = (y == 0) ? x : gcd1(y, x - x/y * y)
98: rnd(x) = int(x+0.5)
99:
100: set samples 59
101: set xrange [1:59]
102: set auto
103: set key
104:
105: set title "Greatest Common Divisor (for integers only)"
106:
107: plot gcd(x, 60)
108: pause -1 "Hit return to continue"
109:
110: set xrange [-10:10]
111: set yrange [-10:10]
112: set auto
113: set isosamples 10
114: set samples 100
115: set title ""
116:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>