[BACK]Return to stat.inc CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gnuplot / demo

Annotation of OpenXM_contrib/gnuplot/demo/stat.inc, Revision 1.1.1.1

1.1       maekawa     1: #
                      2: # $Id: stat.inc,v 1.3 1998/04/14 00:16:54 drd Exp $
                      3: #
                      4: # Library of Statistical Functions version 3.0
                      5: #
                      6: # Permission granted to distribute freely for non-commercial purposes only
                      7: #
                      8: # Copyright (c) 1991, 1992 Jos van der Woude, jvdwoude@hut.nl
                      9:
                     10: # If you don't have the gamma() and/or lgamma() functions in your library,
                     11: # you can use the following recursive definitions. They are correct for all
                     12: # values i / 2 with i = 1, 2, 3, ... This is sufficient for most statistical
                     13: # needs.
                     14: #logsqrtpi = log(sqrt(pi))
                     15: #lgamma(x) = (x<=0.5)?logsqrtpi:((x==1)?0:log(x-1)+lgamma(x-1))
                     16: #gamma(x) = exp(lgamma(x))
                     17:
                     18: # If you have the lgamma() function compiled into gnuplot, you can use
                     19: # alternate definitions for some PDFs. For larger arguments this will result
                     20: # in more efficient evalution. Just uncomment the definitions containing the
                     21: # string `lgamma', while at the same time commenting out the originals.
                     22: # NOTE: In these cases the recursive definition for lgamma() is NOT sufficient!
                     23:
                     24: # Some PDFs have alternate definitions of a recursive nature. I suppose these
                     25: # are not really very efficient, but I find them aesthetically pleasing to the
                     26: # brain.
                     27:
                     28: # Define useful constants
                     29: fourinvsqrtpi=4.0/sqrt(pi)
                     30: invpi=1.0/pi
                     31: invsqrt2pi=1.0/sqrt(2.0*pi)
                     32: log2=log(2.0)
                     33: sqrt2=sqrt(2.0)
                     34: sqrt2invpi=sqrt(2.0/pi)
                     35: twopi=2.0*pi
                     36:
                     37: # define variables plus default values used as parameters in PDFs
                     38: # some are integers, others MUST be reals
                     39: a=1.0
                     40: alpha=0.5
                     41: b=2.0
                     42: df1=1
                     43: df2=1
                     44: g=1.0
                     45: lambda=1.0
                     46: m=0.0
                     47: mm=1
                     48: mu=0.0
                     49: nn=2
                     50: n=2
                     51: p=0.5
                     52: q=0.5
                     53: r=1
                     54: rho=1.0
                     55: sigma=1.0
                     56: u=1.0
                     57:
                     58: #
                     59: #define 1.0/Beta function
                     60: #
                     61: Binv(p,q)=exp(lgamma(p+q)-lgamma(p)-lgamma(q))
                     62:
                     63: #
                     64: #define Probability Density Functions (PDFs)
                     65: #
                     66:
                     67: # NOTE:
                     68: # The discrete PDFs are calulated for all real values, using the int()
                     69: # function to truncate to integers. This is a monumental waste of processing
                     70: # power, but I see no other easy solution. If anyone has any smart ideas
                     71: # about this, I would like to know. Setting the sample size to a larger value
                     72: # makes the discrete PDFs look better, but takes even more time.
                     73:
                     74: # Arcsin PDF
                     75: arcsin(x)=invpi/sqrt(r*r-x*x)
                     76:
                     77: # Beta PDF
                     78: beta(x)=Binv(p,q)*x**(p-1.0)*(1.0-x)**(q-1.0)
                     79:
                     80: # Binomial PDF
                     81: #binom(x)=n!/(n-int(x))!/int(x)!*p**int(x)*(1.0-p)**(n-int(x))
                     82:
                     83: bin_s(x)=n!/(n-int(x))!/int(x)!*p**int(x)*(1.0-p)**(n-int(x))
                     84: bin_l(x)=exp(lgamma(n+1)-lgamma(n-int(x)+1)-lgamma(int(x)+1)\
                     85: +int(x)*log(p)+(n-int(x))*log(1.0-p))
                     86: binom(x)=(n<20)?bin_s(x):bin_l(x)
                     87:
                     88: # Cauchy PDF
                     89: cauchy(x)=b/(pi*(b*b+(x-a)**2))
                     90:
                     91: # Chi-square PDF
                     92: #chi(x)=x**(0.5*df1-1.0)*exp(-0.5*x)/gamma(0.5*df1)/2**(0.5*df1)
                     93: chi(x)=exp((0.5*df1-1.0)*log(x)-0.5*x-lgamma(0.5*df1)-df1*0.5*log2)
                     94:
                     95: # Erlang PDF
                     96: erlang(x)=lambda**n/(n-1)!*x**(n-1)*exp(-lambda*x)
                     97:
                     98: # Extreme (Gumbel extreme value) PDF
                     99: extreme(x)=alpha*(exp(-alpha*(x-u)-exp(-alpha*(x-u))))
                    100:
                    101: # F PDF
                    102: f(x)=Binv(0.5*df1,0.5*df2)*(df1/df2)**(0.5*df1)*x**(0.5*df1-1.0)/\
                    103: (1.0+df1/df2*x)**(0.5*(df1+df2))
                    104:
                    105: # Gamma PDF
                    106: #g(x)=lambda**rho*x**(rho-1.0)*exp(-lambda*x)/gamma(rho)
                    107: g(x)=exp(rho*log(lambda)+(rho-1.0)*log(x)-lgamma(rho)-lambda*x)
                    108:
                    109: # Geometric PDF
                    110: #geometric(x)=p*(1.0-p)**int(x)
                    111: geometric(x)=exp(log(p)+int(x)*log(1.0-p))
                    112:
                    113: # Half normal PDF
                    114: halfnormal(x)=sqrt2invpi/sigma*exp(-0.5*(x/sigma)**2)
                    115:
                    116: # Hypergeometric PDF
                    117: hypgeo(x)=(int(x)>mm||int(x)<mm+n-nn)?0:\
                    118: mm!/(mm-int(x))!/int(x)!*(nn-mm)!/(n-int(x))!/(nn-mm-n+int(x))!*(nn-n)!*n!/nn!
                    119:
                    120: # Laplace PDF
                    121: laplace(x)=0.5/b*exp(-abs(x-a)/b)
                    122:
                    123: # Logistic PDF
                    124: logistic(x)=lambda*exp(-lambda*(x-a))/(1.0+exp(-lambda*(x-a)))**2
                    125:
                    126: # Lognormal PDF
                    127: lognormal(x)=invsqrt2pi/sigma/x*exp(-0.5*((log(x)-mu)/sigma)**2)
                    128:
                    129: # Maxwell PDF
                    130: maxwell(x)=fourinvsqrtpi*a**3*x*x*exp(-a*a*x*x)
                    131:
                    132: # Negative binomial PDF
                    133: #negbin(x)=(r+int(x)-1)!/int(x)!/(r-1)!*p**r*(1.0-p)**int(x)
                    134: negbin(x)=exp(lgamma(r+int(x))-lgamma(r)-lgamma(int(x)+1)+\
                    135: r*log(p)+int(x)*log(1.0-p))
                    136:
                    137: # Negative exponential PDF
                    138: nexp(x)=lambda*exp(-lambda*x)
                    139:
                    140: # Normal PDF
                    141: normal(x)=invsqrt2pi/sigma*exp(-0.5*((x-mu)/sigma)**2)
                    142:
                    143: # Pareto PDF
                    144: pareto(x)=x<a?0:b/x*(a/x)**b
                    145:
                    146: # Poisson PDF
                    147: poisson(x)=mu**int(x)/int(x)!*exp(-mu)
                    148: #poisson(x)=exp(int(x)*log(mu)-lgamma(int(x)+1)-mu)
                    149: #poisson(x)=(x<1)?exp(-mu):mu/int(x)*poisson(x-1)
                    150: #lpoisson(x)=(x<1)?-mu:log(mu)-log(int(x))+lpoisson(x-1)
                    151:
                    152: # Rayleigh PDF
                    153: rayleigh(x)=lambda*2.0*x*exp(-lambda*x*x)
                    154:
                    155: # Sine PDF
                    156: sine(x)=2.0/a*sin(n*pi*x/a)**2
                    157:
                    158: # t (Student's t) PDF
                    159: t(x)=Binv(0.5*df1,0.5)/sqrt(df1)*(1.0+(x*x)/df1)**(-0.5*(df1+1.0))
                    160:
                    161: # Triangular PDF
                    162: triangular(x)=1.0/g-abs(x-m)/(g*g)
                    163:
                    164: # Uniform PDF
                    165: uniform(x)=1.0/(b-a)
                    166:
                    167: # Weibull PDF
                    168: weibull(x)=lambda*n*x**(n-1)*exp(-lambda*x**n)
                    169:
                    170: #
                    171: #define Cumulative Distribution Functions (CDFs)
                    172: #
                    173:
                    174: # Arcsin CDF
                    175: carcsin(x)=0.5+invpi*asin(x/r)
                    176:
                    177: # incomplete Beta CDF
                    178: cbeta(x)=ibeta(p,q,x)
                    179:
                    180: # Binomial CDF
                    181: #cbinom(x)=(x<1)?binom(0):binom(x)+cbinom(x-1)
                    182: cbinom(x)=ibeta(n-x,x+1.0,1.0-p)
                    183:
                    184: # Cauchy CDF
                    185: ccauchy(x)=0.5+invpi*atan((x-a)/b)
                    186:
                    187: # Chi-square CDF
                    188: cchi(x)=igamma(0.5*df1,0.5*x)
                    189:
                    190: # Erlang CDF
                    191: # approximation, using first three terms of expansion
                    192: cerlang(x)=1.0-exp(-lambda*x)*(1.0+lambda*x+0.5*(lambda*x)**2)
                    193:
                    194: # Extreme (Gumbel extreme value) CDF
                    195: cextreme(x)=exp(-exp(-alpha*(x-u)))
                    196:
                    197: # F CDF
                    198: cf(x)=1.0-ibeta(0.5*df2,0.5*df1,df2/(df2+df1*x))
                    199:
                    200: # incomplete Gamma CDF
                    201: cgamma(x)=igamma(rho,x)
                    202:
                    203: # Geometric CDF
                    204: cgeometric(x)=(x<1)?geometric(0):geometric(x)+cgeometric(x-1)
                    205:
                    206: # Half normal CDF
                    207: chalfnormal(x)=erf(x/sigma/sqrt2)
                    208:
                    209: # Hypergeometric CDF
                    210: chypgeo(x)=(x<1)?hypgeo(0):hypgeo(x)+chypgeo(x-1)
                    211:
                    212: # Laplace CDF
                    213: claplace(x)=(x<a)?0.5*exp((x-a)/b):1.0-0.5*exp(-(x-a)/b)
                    214:
                    215: # Logistic CDF
                    216: clogistic(x)=1.0/(1.0+exp(-lambda*(x-a)))
                    217:
                    218: # Lognormal CDF
                    219: clognormal(x)=cnormal(log(x))
                    220:
                    221: # Maxwell CDF
                    222: cmaxwell(x)=igamma(1.5,a*a*x*x)
                    223:
                    224: # Negative binomial CDF
                    225: cnegbin(x)=(x<1)?negbin(0):negbin(x)+cnegbin(x-1)
                    226:
                    227: # Negative exponential CDF
                    228: cnexp(x)=1.0-exp(-lambda*x)
                    229:
                    230: # Normal CDF
                    231: cnormal(x)=0.5+0.5*erf((x-mu)/sigma/sqrt2)
                    232: #cnormal(x)=0.5+((x>mu)?0.5:-0.5)*igamma(0.5,0.5*((x-mu)/sigma)**2)
                    233:
                    234: # Pareto CDF
                    235: cpareto(x)=x<a?0:1.0-(a/x)**b
                    236:
                    237: # Poisson CDF
                    238: #cpoisson(x)=(x<1)?poisson(0):poisson(x)+cpoisson(x-1)
                    239: cpoisson(x)=1.0-igamma(x+1.0,mu)
                    240:
                    241: # Rayleigh CDF
                    242: crayleigh(x)=1.0-exp(-lambda*x*x)
                    243:
                    244: # Sine CDF
                    245: csine(x)=x/a-sin(n*twopi*x/a)/(n*twopi)
                    246:
                    247: # t (Student's t) CDF
                    248: ct(x)=(x<0.0)?0.5*ibeta(0.5*df1,0.5,df1/(df1+x*x)):\
                    249: 1.0-0.5*ibeta(0.5*df1,0.5,df1/(df1+x*x))
                    250:
                    251: # Triangular PDF
                    252: ctriangular(x)=0.5+(x-m)/g-(x-m)*abs(x-m)/(2.0*g*g)
                    253:
                    254: # Uniform CDF
                    255: cuniform(x)=(x-a)/(b-a)
                    256:
                    257: # Weibull CDF
                    258: cweibull(x)=1.0-exp(-lambda*x**n)

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>