[BACK]Return to gnuplot.doc CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / gnuplot / docs

Diff for /OpenXM_contrib/gnuplot/docs/Attic/gnuplot.doc between version 1.1.1.1 and 1.1.1.2

version 1.1.1.1, 2000/01/09 17:01:06 version 1.1.1.2, 2000/01/22 14:16:13
Line 129  C
Line 129  C
   
  The new `gnuplot` user should begin by reading about `plotting` (if on-line,   The new `gnuplot` user should begin by reading about `plotting` (if on-line,
  type `help plotting`).   type `help plotting`).
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/simple/simple.html"> Simple Plots Demo </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/simple.html"> Simple Plots Demo </a>
 2 Seeking-assistance  2 Seeking-assistance
 ?seeking-assistance  ?seeking-assistance
  There is a mailing list for `gnuplot` users.  Note, however, that the   There is a mailing list for `gnuplot` users.  Note, however, that the
Line 158  C
Line 158  C
 ^ </a>  ^ </a>
   
  Before seeking help, please check the   Before seeking help, please check the
 ^ <a href="http://www.uni-karlsruhe.de/~ig25/gnuplot-faq.html">  ^ <a href="http://www.ucc.ie/gnuplot/gnuplot-faq.html">
  FAQ (Frequently Asked Questions) list.   FAQ (Frequently Asked Questions) list.
 ^ </a>  ^ </a>
  If you do not have a copy of the FAQ, you may request a copy by email from   If you do not have a copy of the FAQ, you may request a copy by email from
  the Majordomo address above, ftp a copy from   the Majordomo address above, ftp a copy from
        ftp://ftp.dartmouth.edu/pub/gnuplot         ftp://ftp.ucc.ie/pub/gnuplot/faq,
          ftp://ftp.gnuplot.vt.edu/pub/gnuplot/faq,
  or see the WWW `gnuplot` page.   or see the WWW `gnuplot` page.
   
  When posting a question, please include full details of the version of   When posting a question, please include full details of the version of
Line 184  C
Line 185  C
   
  3. `set timefmt` allows for the use of dates as input and output for time   3. `set timefmt` allows for the use of dates as input and output for time
  series plots.  See `Time/Date data` and   series plots.  See `Time/Date data` and
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/timefmt/timefmt.html">  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/timedat.html">
  timedat.dem.   timedat.dem.
 ^ </a>  ^ </a>
   
Line 529  C
Line 530  C
 #\mbox{imag}(x)^{2}}}$ \\  #\mbox{imag}(x)^{2}}}$ \\
 %abs(x)@any@absolute value of $x$, $|x|$; same type  %abs(x)@any@absolute value of $x$, $|x|$; same type
 %abs(x)@complex@length of $x$, $sqrt{roman real (x) sup 2 + roman imag (x) sup 2}$  %abs(x)@complex@length of $x$, $sqrt{roman real (x) sup 2 + roman imag (x) sup 2}$
  The `abs` function returns the absolute value of its argument.  The returned   The `abs(x)` function returns the absolute value of its argument.  The
  value is of the same type as the argument.   returned value is of the same type as the argument.
   
  For complex arguments, abs(x) is defined as the length of x in the complex   For complex arguments, abs(x) is defined as the length of x in the complex
  plane [i.e.,  sqrt(real(x)**2 + imag(x)**2) ].   plane [i.e.,  sqrt(real(x)**2 + imag(x)**2) ].
Line 540  C
Line 541  C
 ?acos  ?acos
 #acos(x) & any  & $\cos^{-1} x$ (inverse cosine) \\  #acos(x) & any  & $\cos^{-1} x$ (inverse cosine) \\
 %acos(x)@any@$cos sup -1 x$ (inverse cosine)  %acos(x)@any@$cos sup -1 x$ (inverse cosine)
  The `acos` function returns the arc cosine (inverse cosine) of its argument.   The `acos(x)` function returns the arc cosine (inverse cosine) of its
  `acos` returns its argument in radians or degrees, as selected by `set   argument.  `acos` returns its argument in radians or degrees, as selected by
  angles`.   `set angles`.
 4 acosh  4 acosh
 ?expressions functions acosh  ?expressions functions acosh
 ?functions acosh  ?functions acosh
 ?acosh  ?acosh
 #acosh(x) & any  & $\cosh^{-1} x$ (inverse hyperbolic cosine) in radians \\  #acosh(x) & any  & $\cosh^{-1} x$ (inverse hyperbolic cosine) in radians \\
 %acosh(x)@any@$cosh sup -1 x$ (inverse hyperbolic cosine) in radians  %acosh(x)@any@$cosh sup -1 x$ (inverse hyperbolic cosine) in radians
  The `acosh` function returns the inverse hyperbolic cosine of its argument in   The `acosh(x)` function returns the inverse hyperbolic cosine of its argument
  radians.   in radians.
 4 arg  4 arg
 ?expressions functions arg  ?expressions functions arg
 ?functions arg  ?functions arg
 ?arg  ?arg
 #arg(x) & complex & the phase of $x$ \\  #arg(x) & complex & the phase of $x$ \\
 %arg(x)@complex@the phase of $x$  %arg(x)@complex@the phase of $x$
  The `arg` function returns the phase of a complex number in radians or   The `arg(x)` function returns the phase of a complex number in radians or
  degrees, as selected by `set angles`.   degrees, as selected by `set angles`.
 4 asin  4 asin
 ?expressions functions asin  ?expressions functions asin
Line 565  C
Line 566  C
 ?asin  ?asin
 #asin(x) & any  & $\sin^{-1} x$ (inverse sin) \\  #asin(x) & any  & $\sin^{-1} x$ (inverse sin) \\
 %asin(x)@any@$sin sup -1 x$ (inverse sin)  %asin(x)@any@$sin sup -1 x$ (inverse sin)
  The `asin` function returns the arc sin (inverse sin) of its argument.   The `asin(x)` function returns the arc sin (inverse sin) of its argument.
  `asin` returns its argument in radians or degrees, as selected by `set   `asin` returns its argument in radians or degrees, as selected by `set
  angles`.   angles`.
 4 asinh  4 asinh
Line 574  C
Line 575  C
 ?asinh  ?asinh
 #asinh(x) & any  & $\sinh^{-1} x$ (inverse hyperbolic sin) in radians \\  #asinh(x) & any  & $\sinh^{-1} x$ (inverse hyperbolic sin) in radians \\
 %asinh(x)@any@$sinh sup -1 x$ (inverse hyperbolic sin) in radians  %asinh(x)@any@$sinh sup -1 x$ (inverse hyperbolic sin) in radians
  The `asinh` function returns the inverse hyperbolic sin of its argument in   The `asinh(x)` function returns the inverse hyperbolic sin of its argument in
  radians.   radians.
 4 atan  4 atan
 ?expressions functions atan  ?expressions functions atan
Line 582  C
Line 583  C
 ?atan  ?atan
 #atan(x) & any  & $\tan^{-1} x$ (inverse tangent) \\  #atan(x) & any  & $\tan^{-1} x$ (inverse tangent) \\
 %atan(x)@any@$tan sup -1 x$ (inverse tangent)  %atan(x)@any@$tan sup -1 x$ (inverse tangent)
  The `atan` function returns the arc tangent (inverse tangent) of its   The `atan(x)` function returns the arc tangent (inverse tangent) of its
  argument.  `atan` returns its argument in radians or degrees, as selected by   argument.  `atan` returns its argument in radians or degrees, as selected by
  `set angles`.   `set angles`.
 4 atan2  4 atan2
Line 591  C
Line 592  C
 ?atan2  ?atan2
 #atan2(y,x) & int or real & $\tan^{-1} (y/x)$ (inverse tangent) \\  #atan2(y,x) & int or real & $\tan^{-1} (y/x)$ (inverse tangent) \\
 %atan2(y,x)@int or real@$tan sup -1 (y/x)$ (inverse tangent)  %atan2(y,x)@int or real@$tan sup -1 (y/x)$ (inverse tangent)
  The `atan2` function returns the arc tangent (inverse tangent) of the ratio   The `atan2(y,x)` function returns the arc tangent (inverse tangent) of the
  of the real parts of its arguments.  `atan2` returns its argument in radians   ratio of the real parts of its arguments.  `atan2` returns its argument in
  or degrees, as selected by `set angles`, in the correct quadrant.   radians or degrees, as selected by `set angles`, in the correct quadrant.
 4 atanh  4 atanh
 ?expressions functions atanh  ?expressions functions atanh
 ?functions atanh  ?functions atanh
 ?atan  ?atanh
 #atanh(x) & any  & $\tanh^{-1} x$ (inverse hyperbolic tangent) in radians \\  #atanh(x) & any  & $\tanh^{-1} x$ (inverse hyperbolic tangent) in radians \\
 %atanh(x)@any@$tanh sup -1 x$ (inverse hyperbolic tangent) in radians  %atanh(x)@any@$tanh sup -1 x$ (inverse hyperbolic tangent) in radians
  The `atanh` function returns the inverse hyperbolic tangent of its argument   The `atanh(x)` function returns the inverse hyperbolic tangent of its
  in radians.   argument in radians.
 4 besj0  4 besj0
 ?expressions functions besj0  ?expressions functions besj0
 ?functions besj0  ?functions besj0
 ?besj0  ?besj0
 #besj0(x) & int or real &  $j_{0}$ Bessel function of $x$, in radians \\  #besj0(x) & int or real &  $j_{0}$ Bessel function of $x$, in radians \\
 %besj0(x)@int or real@$j sub 0$ Bessel function of $x$, in radians  %besj0(x)@int or real@$j sub 0$ Bessel function of $x$, in radians
  The `besj0` function returns the j0th Bessel function of its argument.   The `besj0(x)` function returns the j0th Bessel function of its argument.
  `besj0` expects its argument to be in radians.   `besj0` expects its argument to be in radians.
 4 besj1  4 besj1
 ?expressions functions besj1  ?expressions functions besj1
Line 616  C
Line 617  C
 ?besj1  ?besj1
 #besj1(x) & int or real & $j_{1}$ Bessel function of $x$, in radians \\  #besj1(x) & int or real & $j_{1}$ Bessel function of $x$, in radians \\
 %besj1(x)@int or real@$j sub 1$ Bessel function of $x$, in radians  %besj1(x)@int or real@$j sub 1$ Bessel function of $x$, in radians
  The `besj1` function returns the j1st Bessel function of its argument.   The `besj1(x)` function returns the j1st Bessel function of its argument.
  `besj1` expects its argument to be in radians.   `besj1` expects its argument to be in radians.
 4 besy0  4 besy0
 ?expressions functions besy0  ?expressions functions besy0
Line 632  C
Line 633  C
 ?besy1  ?besy1
 #besy1(x) & int or real & $y_{1}$ Bessel function of $x$, in radians \\  #besy1(x) & int or real & $y_{1}$ Bessel function of $x$, in radians \\
 %besy1(x)@int or real@$y sub 1$ Bessel function of $x$, in radians  %besy1(x)@int or real@$y sub 1$ Bessel function of $x$, in radians
  The `besy1` function returns the y1st Bessel function of its argument.   The `besy1(x)` function returns the y1st Bessel function of its argument.
  `besy1` expects its argument to be in radians.   `besy1` expects its argument to be in radians.
 4 ceil  4 ceil
 ?expressions functions ceil  ?expressions functions ceil
Line 641  C
Line 642  C
 #ceil(x) & any & $\lceil x \rceil$, smallest integer not less than $x$  #ceil(x) & any & $\lceil x \rceil$, smallest integer not less than $x$
 #(real part) \\  #(real part) \\
 %ceil(x)@any@$left ceiling x right ceiling$, smallest integer not less than $x$ (real part)  %ceil(x)@any@$left ceiling x right ceiling$, smallest integer not less than $x$ (real part)
  The `ceil` function returns the smallest integer that is not less than its   The `ceil(x)` function returns the smallest integer that is not less than its
  argument.  For complex numbers, `ceil` returns the smallest integer not less   argument.  For complex numbers, `ceil` returns the smallest integer not less
  than the real part of its argument.   than the real part of its argument.
 4 cos  4 cos
Line 650  C
Line 651  C
 ?cos  ?cos
 #cos(x) & any & $\cos x$, cosine of $x$ \\  #cos(x) & any & $\cos x$, cosine of $x$ \\
 %cos(x)@radians@$cos~x$, cosine of $x$  %cos(x)@radians@$cos~x$, cosine of $x$
  The `cos` function returns the cosine of its argument.  `cos` accepts its   The `cos(x)` function returns the cosine of its argument.  `cos` accepts its
  argument in radians or degrees, as selected by `set angles`.   argument in radians or degrees, as selected by `set angles`.
 4 cosh  4 cosh
 ?expressions functions cosh  ?expressions functions cosh
Line 658  C
Line 659  C
 ?cosh  ?cosh
 #cosh(x) & any & $\cosh x$, hyperbolic cosine of $x$ in radians \\  #cosh(x) & any & $\cosh x$, hyperbolic cosine of $x$ in radians \\
 %cosh(x)@any@$cosh~x$, hyperbolic cosine of $x$ in radians  %cosh(x)@any@$cosh~x$, hyperbolic cosine of $x$ in radians
  The `cosh` function returns the hyperbolic cosine of its argument.  `cosh`   The `cosh(x)` function returns the hyperbolic cosine of its argument.  `cosh`
  expects its argument to be in radians.   expects its argument to be in radians.
 4 erf  4 erf
 ?expressions functions erf  ?expressions functions erf
Line 666  C
Line 667  C
 ?erf  ?erf
 #erf(x) & any & $\mbox{erf}(\mbox{real}(x))$,  error function of real($x$) \\  #erf(x) & any & $\mbox{erf}(\mbox{real}(x))$,  error function of real($x$) \\
 %erf(x)@any@$erf ( roman real (x))$, error function of real ($x$)  %erf(x)@any@$erf ( roman real (x))$, error function of real ($x$)
  The `erf` function returns the error function of the real part of its   The `erf(x)` function returns the error function of the real part of its
  argument.  If the argument is a complex value, the imaginary component is   argument.  If the argument is a complex value, the imaginary component is
  ignored.   ignored.
 4 erfc  4 erfc
Line 675  C
Line 676  C
 ?erfc  ?erfc
 #erfc(x) & any & $\mbox{erfc}(\mbox{real}(x))$,  1.0 - error function of real($x$) \\  #erfc(x) & any & $\mbox{erfc}(\mbox{real}(x))$,  1.0 - error function of real($x$) \\
 %erfc(x)@any@$erfc ( roman real (x))$, 1.0 - error function of real ($x$)  %erfc(x)@any@$erfc ( roman real (x))$, 1.0 - error function of real ($x$)
  The `erfc` function returns 1.0 - the error function of the real part of its   The `erfc(x)` function returns 1.0 - the error function of the real part of
  argument.  If the argument is a complex value, the imaginary component is   its argument.  If the argument is a complex value, the imaginary component is
  ignored.   ignored.
 4 exp  4 exp
 ?expressions functions exp  ?expressions functions exp
Line 684  C
Line 685  C
 ?exp  ?exp
 #exp(x) & any & $e^{x}$,  exponential function of $x$ \\  #exp(x) & any & $e^{x}$,  exponential function of $x$ \\
 %exp(x)@any@$e sup x$, exponential function of $x$  %exp(x)@any@$e sup x$, exponential function of $x$
  The `exp` function returns the exponential function of its argument (`e`   The `exp(x)` function returns the exponential function of its argument (`e`
  raised to the power of its argument).  On some implementations (notably   raised to the power of its argument).  On some implementations (notably
  suns), exp(-x) returns undefined for very large x.  A user-defined function   suns), exp(-x) returns undefined for very large x.  A user-defined function
  like safe(x) = x<-100 ? 0 : exp(x) might prove useful in these cases.   like safe(x) = x<-100 ? 0 : exp(x) might prove useful in these cases.
Line 695  C
Line 696  C
 #floor(x) & any & $\lfloor x \rfloor$,  largest integer not greater  #floor(x) & any & $\lfloor x \rfloor$,  largest integer not greater
 #than $x$ (real part) \\  #than $x$ (real part) \\
 %floor(x)@any@$left floor x right floor$, largest integer not greater than $x$ (real part)  %floor(x)@any@$left floor x right floor$, largest integer not greater than $x$ (real part)
  The `floor` function returns the largest integer not greater than its   The `floor(x)` function returns the largest integer not greater than its
  argument.  For complex numbers, `floor` returns the largest integer not   argument.  For complex numbers, `floor` returns the largest integer not
  greater than the real part of its argument.   greater than the real part of its argument.
 4 gamma  4 gamma
Line 704  C
Line 705  C
 ?gamma  ?gamma
 #gamma(x) & any & $\mbox{gamma}(\mbox{real}(x))$,  gamma function of real($x$) \\  #gamma(x) & any & $\mbox{gamma}(\mbox{real}(x))$,  gamma function of real($x$) \\
 %gamma(x)@any@$GAMMA ( roman real (x))$, gamma function of real ($x$)  %gamma(x)@any@$GAMMA ( roman real (x))$, gamma function of real ($x$)
  The `gamma` function returns the gamma function of the real part of its   The `gamma(x)` function returns the gamma function of the real part of its
  argument.  For integer n, gamma(n+1) = n!.  If the argument is a complex   argument.  For integer n, gamma(n+1) = n!.  If the argument is a complex
  value, the imaginary component is ignored.   value, the imaginary component is ignored.
 4 ibeta  4 ibeta
Line 713  C
Line 714  C
 ?ibeta  ?ibeta
 #ibeta(p,q,x) & any & $\mbox{ibeta}(\mbox{real}(p,q,x))$,  ibeta function of real($p$,$q$,$x$) \\  #ibeta(p,q,x) & any & $\mbox{ibeta}(\mbox{real}(p,q,x))$,  ibeta function of real($p$,$q$,$x$) \\
 %ibeta(p,q,x)@any@$ibeta ( roman real (p,q,x))$, ibeta function of real ($p$,$q$,$x$)  %ibeta(p,q,x)@any@$ibeta ( roman real (p,q,x))$, ibeta function of real ($p$,$q$,$x$)
  The `ibeta` function returns the incomplete beta function of the real parts   The `ibeta(p,q,x)` function returns the incomplete beta function of the real
  of its arguments. p, q > 0 and x in [0:1].  If the arguments are complex,   parts of its arguments. p, q > 0 and x in [0:1].  If the arguments are
  the imaginary components are ignored.   complex, the imaginary components are ignored.
 4 inverf  4 inverf
 ?expressions functions inverf  ?expressions functions inverf
 ?functions inverf  ?functions inverf
 ?inverf  ?inverf
 #inverf(x) & any &  inverse error function of real($x$)  \\  #inverf(x) & any &  inverse error function of real($x$)  \\
 %inverf(x)@any@inverse error function real($x$)  %inverf(x)@any@inverse error function real($x$)
  The `inverf` function returns the inverse error function of the real part   The `inverf(x)` function returns the inverse error function of the real part
  of its argument.   of its argument.
 4 igamma  4 igamma
 ?expressions functions igamma  ?expressions functions igamma
Line 730  C
Line 731  C
 ?igamma  ?igamma
 #igamma(a,x) & any & $\mbox{igamma}(\mbox{real}(a,x))$,  igamma function of real($a$,$x$) \\  #igamma(a,x) & any & $\mbox{igamma}(\mbox{real}(a,x))$,  igamma function of real($a$,$x$) \\
 %igamma(a,x)@any@$igamma ( roman real (a,x))$, igamma function of real ($a$,$x$)  %igamma(a,x)@any@$igamma ( roman real (a,x))$, igamma function of real ($a$,$x$)
  The `igamma` function returns the incomplete gamma function of the real   The `igamma(a,x)` function returns the incomplete gamma function of the real
  parts of its arguments.  a > 0 and x >= 0.  If the arguments are complex,   parts of its arguments.  a > 0 and x >= 0.  If the arguments are complex,
  the imaginary components are ignored.   the imaginary components are ignored.
 4 imag  4 imag
Line 739  C
Line 740  C
 ?imag  ?imag
 #imag(x) & complex &  imaginary part of $x$ as a real number \\  #imag(x) & complex &  imaginary part of $x$ as a real number \\
 %imag(x)@complex@imaginary part of $x$ as a real number  %imag(x)@complex@imaginary part of $x$ as a real number
  The `imag` function returns the imaginary part of its argument as a real   The `imag(x)` function returns the imaginary part of its argument as a real
  number.   number.
 4 invnorm  4 invnorm
 ?expressions functions invnorm  ?expressions functions invnorm
Line 747  C
Line 748  C
 ?invnorm  ?invnorm
 #invnorm(x) & any &  inverse normal distribution function of real($x$)  \\  #invnorm(x) & any &  inverse normal distribution function of real($x$)  \\
 %invnorm(x)@any@inverse normal distribution function real($x$)  %invnorm(x)@any@inverse normal distribution function real($x$)
  The `invnorm` function returns the inverse normal distribution function of   The `invnorm(x)` function returns the inverse normal distribution function of
  the real part of its argument.   the real part of its argument.
 4 int  4 int
 ?expressions functions int  ?expressions functions int
Line 755  C
Line 756  C
 ?int  ?int
 #int(x) & real &  integer part of $x$, truncated toward zero \\  #int(x) & real &  integer part of $x$, truncated toward zero \\
 %int(x)@real@integer part of $x$, truncated toward zero  %int(x)@real@integer part of $x$, truncated toward zero
  The `int` function returns the integer part of its argument, truncated   The `int(x)` function returns the integer part of its argument, truncated
  toward zero.   toward zero.
 4 lgamma  4 lgamma
 ?expressions functions lgamma  ?expressions functions lgamma
Line 763  C
Line 764  C
 ?lgamma  ?lgamma
 #lgamma(x) & any & $\mbox{lgamma}(\mbox{real}(x))$,  lgamma function of real($x$) \\  #lgamma(x) & any & $\mbox{lgamma}(\mbox{real}(x))$,  lgamma function of real($x$) \\
 %lgamma(x)@any@$lgamma ( roman real (x))$, lgamma function of real ($x$)  %lgamma(x)@any@$lgamma ( roman real (x))$, lgamma function of real ($x$)
  The `lgamma` function returns the natural logarithm of the gamma function   The `lgamma(x)` function returns the natural logarithm of the gamma function
  of the real part of its argument.  If the argument is a complex value, the   of the real part of its argument.  If the argument is a complex value, the
  imaginary component is ignored.   imaginary component is ignored.
 4 log  4 log
Line 772  C
Line 773  C
 ?log  ?log
 #log(x) & any & $\log_{e} x$,  natural logarithm (base $e$) of $x$ \\  #log(x) & any & $\log_{e} x$,  natural logarithm (base $e$) of $x$ \\
 %log(x)@any@$ln~x$, natural logarithm (base $e$) of $x$  %log(x)@any@$ln~x$, natural logarithm (base $e$) of $x$
  The `log` function returns the natural logarithm (base `e`) of its argument.   The `log(x)` function returns the natural logarithm (base `e`) of its
    argument.
 4 log10  4 log10
 ?expressions functions log10  ?expressions functions log10
 ?functions log10  ?functions log10
 ?log10  ?log10
 #log10(x) & any & $\log_{10} x$,  logarithm (base $10$) of $x$ \\  #log10(x) & any & $\log_{10} x$,  logarithm (base $10$) of $x$ \\
 %log10(x)@any@${log sub 10}~x$, logarithm (base $10$) of $x$  %log10(x)@any@${log sub 10}~x$, logarithm (base $10$) of $x$
  The `log10` function returns the logarithm (base 10) of its argument.   The `log10(x)` function returns the logarithm (base 10) of its argument.
 4 norm  4 norm
 ?expressions functions norm  ?expressions functions norm
 ?functions norm  ?functions norm
 ?norm  ?norm
 #norm(x) & any & normal distribution (Gaussian) function of real($x$) \\  #norm(x) & any & normal distribution (Gaussian) function of real($x$) \\
 %norm(x)@any@$norm(x)$, normal distribution function of real($x$)  %norm(x)@any@$norm(x)$, normal distribution function of real($x$)
  The `norm` function returns the normal distribution function (or Gaussian)   The `norm(x)` function returns the normal distribution function (or Gaussian)
  of the real part of its argument.   of the real part of its argument.
 4 rand  4 rand
 ?expressions functions rand  ?expressions functions rand
Line 794  C
Line 796  C
 ?rand  ?rand
 #rand(x) & any & $\mbox{rand}(\mbox{real}(x))$,  pseudo random number generator \\  #rand(x) & any & $\mbox{rand}(\mbox{real}(x))$,  pseudo random number generator \\
 %rand(x)@any@$rand ( roman real (x))$, pseudo random number generator  %rand(x)@any@$rand ( roman real (x))$, pseudo random number generator
  The `rand` function returns a pseudo random number in the interval [0:1]   The `rand(x)` function returns a pseudo random number in the interval [0:1]
  using the real part of its argument as a seed.  If seed < 0, the sequence   using the real part of its argument as a seed.  If seed < 0, the sequence
  is (re)initialized.  If the argument is a complex value, the imaginary   is (re)initialized.  If the argument is a complex value, the imaginary
  component is ignored.   component is ignored.
Line 804  C
Line 806  C
 ?real  ?real
 #real(x) & any &  real part of $x$ \\  #real(x) & any &  real part of $x$ \\
 %real(x)@any@real part of $x$  %real(x)@any@real part of $x$
  The `real` function returns the real part of its argument.   The `real(x)` function returns the real part of its argument.
 4 sgn  4 sgn
 ?expressions functions sgn  ?expressions functions sgn
 ?functions sgn  ?functions sgn
 ?sgn  ?sgn
 #sgn(x) & any & 1 if $x>0$, -1 if $x<0$, 0 if $x=0$. imag($x$) ignored \\  #sgn(x) & any & 1 if $x>0$, -1 if $x<0$, 0 if $x=0$. imag($x$) ignored \\
 %sgn(x)@any@1 if $x > 0$, -1 if $x < 0$, 0 if $x = 0$. $roman imag (x)$ ignored  %sgn(x)@any@1 if $x > 0$, -1 if $x < 0$, 0 if $x = 0$. $roman imag (x)$ ignored
  The `sgn` function returns 1 if its argument is positive, -1 if its argument   The `sgn(x)` function returns 1 if its argument is positive, -1 if its
  is negative, and 0 if its argument is 0.  If the argument is a complex value,   argument is negative, and 0 if its argument is 0.  If the argument is a
  the imaginary component is ignored.   complex value, the imaginary component is ignored.
 4 sin  4 sin
 ?expressions functions sin  ?expressions functions sin
 ?functions sin  ?functions sin
 ?sin  ?sin
 #sin(x) & any & $\sin x$, sine of $x$ \\  #sin(x) & any & $\sin x$, sine of $x$ \\
 %sin(x)@any@$sin~x$, sine of $x$  %sin(x)@any@$sin~x$, sine of $x$
  The `sin` function returns the sine of its argument.  `sin` expects its   The `sin(x)` function returns the sine of its argument.  `sin` expects its
  argument to be in radians or degrees, as selected by `set angles`.   argument to be in radians or degrees, as selected by `set angles`.
 4 sinh  4 sinh
 ?expressions functions sinh  ?expressions functions sinh
Line 828  C
Line 830  C
 ?sinh  ?sinh
 #sinh(x) & any & $\sinh x$, hyperbolic sine $x$ in radians \\  #sinh(x) & any & $\sinh x$, hyperbolic sine $x$ in radians \\
 %sinh(x)@any@$sinh~x$, hyperbolic sine $x$ in radians  %sinh(x)@any@$sinh~x$, hyperbolic sine $x$ in radians
  The `sinh` function returns the hyperbolic sine of its argument.  `sinh`   The `sinh(x)` function returns the hyperbolic sine of its argument.  `sinh`
  expects its argument to be in radians.   expects its argument to be in radians.
 4 sqrt  4 sqrt
 ?expressions functions sqrt  ?expressions functions sqrt
Line 836  C
Line 838  C
 ?sqrt  ?sqrt
 #sqrt(x) & any & $\sqrt{x}$,  square root of $x$ \\  #sqrt(x) & any & $\sqrt{x}$,  square root of $x$ \\
 %sqrt(x)@any@$sqrt x $, square root of $x$  %sqrt(x)@any@$sqrt x $, square root of $x$
  The `sqrt` function returns the square root of its argument.   The `sqrt(x)` function returns the square root of its argument.
 4 tan  4 tan
 ?expressions functions tan  ?expressions functions tan
 ?functions tan  ?functions tan
 ?tan  ?tan
 #tan(x) & any & $\tan x$,  tangent of $x$ \\  #tan(x) & any & $\tan x$,  tangent of $x$ \\
 %tan(x)@any@$tan~x$, tangent of $x$  %tan(x)@any@$tan~x$, tangent of $x$
  The `tan` function returns the tangent of its argument.  `tan` expects   The `tan(x)` function returns the tangent of its argument.  `tan` expects
  its argument to be in radians or degrees, as selected by `set angles`.   its argument to be in radians or degrees, as selected by `set angles`.
 4 tanh  4 tanh
 ?expressions functions tanh  ?expressions functions tanh
Line 851  C
Line 853  C
 ?tanh  ?tanh
 #tanh(x) & any & $\tanh x$, hyperbolic tangent of $x$ in radians\\  #tanh(x) & any & $\tanh x$, hyperbolic tangent of $x$ in radians\\
 %tanh(x)@any@$tanh~x$, hyperbolic tangent of $x$ in radians  %tanh(x)@any@$tanh~x$, hyperbolic tangent of $x$ in radians
  The `tanh` function returns the hyperbolic tangent of its argument.  `tanh`   The `tanh(x)` function returns the hyperbolic tangent of its argument.  `tanh`
  expects its argument to be in radians.   expects its argument to be in radians.
 @end table  @end table
   
Line 940  C
Line 942  C
  `valid(x)` may be used only in expressions as part of `using` manipulations   `valid(x)` may be used only in expressions as part of `using` manipulations
  to fits or datafile plots.  See `plot datafile using`.   to fits or datafile plots.  See `plot datafile using`.
 @end table  @end table
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/airfoil/airfoil.html">Use of functions and complex variables for airfoils </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/airfoil.html">Use of functions and complex variables for airfoils </a>
 3 Operators  3 Operators
 ?expressions operators  ?expressions operators
 ?operators  ?operators
Line 2202  C ... and restart the table:
Line 2204  C ... and restart the table:
        every :::::9     # selects the first 10 blocks         every :::::9     # selects the first 10 blocks
        every 2:2        # selects every other point in every other block         every 2:2        # selects every other point in every other block
        every ::5::15    # selects points 5 through 15 in each block         every ::5::15    # selects points 5 through 15 in each block
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/simple/simple.html">Simple Plot Demos </a>,  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/simple.html">Simple Plot Demos </a>,
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/surfacea/surfacea.html">Non-parametric splot demos </a>, and  ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/surfacea/surfacea.html">Non-parametric splot demos </a>, and
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/surfaceb/surfaceb.html">Parametric splot demos.</a>  ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/surfaceb/surfaceb.html">Parametric splot demos.</a>
 4 example datafile  4 example datafile
Line 2250  C ... and restart the table:
Line 2252  C ... and restart the table:
   
  Example:   Example:
        plot 'file' index 4:5         plot 'file' index 4:5
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/multimsh/multimsh.html"> splot with indices demo. </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/multimsh.html"> splot with indices demo. </a>
 4 smooth  4 smooth
 ?commands plot datafile smooth  ?commands plot datafile smooth
 ?plot datafile smooth  ?plot datafile smooth
Line 2357  C ... and restart the table:
Line 2359  C ... and restart the table:
  The `unique` option makes the data monotonic in x; points with the same   The `unique` option makes the data monotonic in x; points with the same
  x-value are replaced by a single point having the average y-value.  The   x-value are replaced by a single point having the average y-value.  The
  resulting points are then connected by straight line segments.   resulting points are then connected by straight line segments.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/mgr/mgr.html"> See demos. </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/mgr.html"> See demos. </a>
 4 special-filenames  4 special-filenames
 ?commands plot datafile special-filenames  ?commands plot datafile special-filenames
 ?plot datafile special-filenames  ?plot datafile special-filenames
Line 2570  C ... and restart the table:
Line 2572  C ... and restart the table:
   
  However, if you want to leave text in your data files, it is safer to put the   However, if you want to leave text in your data files, it is safer to put the
  comment character (#) in the first column of the text lines.   comment character (#) in the first column of the text lines.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/using/using.html"> Feeble using demos. </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/using.html"> Feeble using demos. </a>
 3 errorbars  3 errorbars
 ?commands plot errorbars  ?commands plot errorbars
 ?commands splot errorbars  ?commands splot errorbars
Line 2642  C ... and restart the table:
Line 2644  C ... and restart the table:
  parametric function has been completed:   parametric function has been completed:
   
        plot sin(t),t**2 title 'Parametric example' with linespoints         plot sin(t),t**2 title 'Parametric example' with linespoints
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/param/param.html"> Parametric Mode Demos. </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/param.html"> Parametric Mode Demos. </a>
 3 ranges  3 ranges
 ?commands plot ranges  ?commands plot ranges
 ?commands splot ranges  ?commands splot ranges
Line 2939  C ... and restart the table:
Line 2941  C ... and restart the table:
  set explicitly to guarantee that the five separate graphs (drawn on top of   set explicitly to guarantee that the five separate graphs (drawn on top of
  each other in multiplot mode) will have exactly the same axes.  The linetype   each other in multiplot mode) will have exactly the same axes.  The linetype
  must be specified; otherwise all the plots would be drawn with the same type.   must be specified; otherwise all the plots would be drawn with the same type.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/animate/animate.html"> Reread Animation Demo</a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/animate.html"> Reread Animation Demo</a>
 2 reset  2 reset
 ?commands reset  ?commands reset
 ?reset  ?reset
Line 3029  C ... and restart the table:
Line 3031  C ... and restart the table:
        y=sinh(x)         y=sinh(x)
        print y         #prints {1.16933, 0.154051}         print y         #prints {1.16933, 0.154051}
        print asinh(y)  #prints {57.29578, 5.729578}         print asinh(y)  #prints {57.29578, 5.729578}
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/poldat/poldat.html"> Polar plot using `set angles`. </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/poldat.html"> Polar plot using `set angles`. </a>
 3 arrow  3 arrow
 ?commands set arrow  ?commands set arrow
 ?commands set noarrow  ?commands set noarrow
Line 3216  C ... and restart the table:
Line 3218  C ... and restart the table:
   
  Explicitly setting one or two ranges but not others may lead to unexpected   Explicitly setting one or two ranges but not others may lead to unexpected
  results.   results.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/poldat/poldat.html"> See polar demos </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/poldat.html"> See polar demos </a>
 3 bar  3 bar
 ?commands set bar  ?commands set bar
 ?commands show bar  ?commands show bar
Line 3292  C ... and restart the table:
Line 3294  C ... and restart the table:
   
  Using the optional <line_style>, <line_type> and <line_width>   Using the optional <line_style>, <line_type> and <line_width>
  specifiers, the way the border lines are drawn can be influenced   specifiers, the way the border lines are drawn can be influenced
  (limited by what the current terminal driver supports).   (limited by what the current terminal driver supports).  By default,
    the border is drawn with twice the usual linewidth.  The <line_width>
    specifier scales this default value; for example, `set border 15 lw 2`
    will produce a border with four times the usual linewidth.
   
  Various axes or combinations of axes may be added together in the command.   Various axes or combinations of axes may be added together in the command.
   
Line 3513  C ... and restart the table:
Line 3518  C ... and restart the table:
   
  See also `set contour` for control of where the contours are drawn, and `set   See also `set contour` for control of where the contours are drawn, and `set
  clabel` for control of the format of the contour labels and linetypes.   clabel` for control of the format of the contour labels and linetypes.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/contours/contours.html">Contours Demo</a> and  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/contours.html">Contours Demo</a> and
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/discrete/discrete.html">contours with User Defined Levels.</a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/discrete.html">contours with User Defined Levels.</a>
 3 contour  3 contour
 ?commands set contour  ?commands set contour
 ?commands set nocontour  ?commands set nocontour
Line 3564  C ... and restart the table:
Line 3569  C ... and restart the table:
   
  If contours are desired from non-grid data, `set dgrid3d` can be used to   If contours are desired from non-grid data, `set dgrid3d` can be used to
  create an appropriate grid.  See `set dgrid3d` for more information.   create an appropriate grid.  See `set dgrid3d` for more information.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/contours/contours.html">Contours Demo</a> and  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/contours.html">Contours Demo</a> and
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/discrete/discrete.html">contours with User Defined Levels.</a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/discrete.html">contours with User Defined Levels.</a>
 3 data style  3 data style
 ?commands set data style  ?commands set data style
 ?commands show data style  ?commands show data style
Line 3641  C ... and restart the table:
Line 3646  C ... and restart the table:
  The first specifies that a grid of size 10 by 10 is to be constructed using   The first specifies that a grid of size 10 by 10 is to be constructed using
  a norm value of 1 in the weight computation.  The second only modifies the   a norm value of 1 in the weight computation.  The second only modifies the
  norm, changing it to 4.   norm, changing it to 4.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/scatter/scatter.html"> Dgrid3d Demo.</a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/scatter.html"> Dgrid3d Demo.</a>
   
 3 dummy  3 dummy
 ?commands set dummy  ?commands set dummy
Line 3727  C ... and restart the table:
Line 3732  C ... and restart the table:
  after each number.  If you want "%" itself, double it: "%g %%".   after each number.  If you want "%" itself, double it: "%g %%".
   
  See also `set xtics` for more information about tic labels.   See also `set xtics` for more information about tic labels.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/electron/electron.html"> See demo. </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/electron.html"> See demo. </a>
 4 format specifiers  4 format specifiers
 ?commands set format specifiers  ?commands set format specifiers
 ?set format specifiers  ?set format specifiers
Line 3948  C ... and restart the table:
Line 3953  C ... and restart the table:
   
  For information about the definition and usage of functions in `gnuplot`,   For information about the definition and usage of functions in `gnuplot`,
  please see `expressions`.   please see `expressions`.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/spline/spline.html"> Splines as User Defined Functions.</a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/spline.html"> Splines as User Defined Functions.</a>
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/airfoil/airfoil.html">Use of functions and complex variables for airfoils </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/airfoil.html">Use of functions and complex variables for airfoils </a>
 3 grid  3 grid
 ?commands set grid  ?commands set grid
 ?commands set nogrid  ?commands set nogrid
Line 3992  C ... and restart the table:
Line 3997  C ... and restart the table:
  If no linetype is specified for the minor gridlines, the same linetype as the   If no linetype is specified for the minor gridlines, the same linetype as the
  major gridlines is used.  The default polar angle is 30 degrees.   major gridlines is used.  The default polar angle is 30 degrees.
   
    By default, grid lines are drawn with half the usual linewidth. The major and
    minor linewidth specifiers scale this default value; for example, `set grid
    lw .5` will draw grid lines with one quarter the usual linewidth.
   
  Z grid lines are drawn on the back of the plot.  This looks better if a   Z grid lines are drawn on the back of the plot.  This looks better if a
  partial box is drawn around the plot---see `set border`.   partial box is drawn around the plot---see `set border`.
 3 hidden3d  3 hidden3d
Line 4100  C ... and restart the table:
Line 4109  C ... and restart the table:
  normally, making the resulting display hard to understand.  Therefore, the   normally, making the resulting display hard to understand.  Therefore, the
  default option of `bentover` will turn it visible in this case.  If you don't   default option of `bentover` will turn it visible in this case.  If you don't
  want that, you may choose `nobentover` instead.   want that, you may choose `nobentover` instead.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/hidden/hidden.html"> Hidden Line Removal Demo</a> and  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/hidden.html"> Hidden Line Removal Demo</a> and
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/singulr/singulr.html"> Complex Hidden Line Demo. </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/singulr.html"> Complex Hidden Line Demo. </a>
 3 isosamples  3 isosamples
 ?commands set isosamples  ?commands set isosamples
 ?commands show isosamples  ?commands show isosamples
Line 4482  C ... and restart the table:
Line 4491  C ... and restart the table:
  necessary if the data in the file are not in the required order.   necessary if the data in the file are not in the required order.
   
  `mapping` has no effect on `plot`.   `mapping` has no effect on `plot`.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/world/world.html">Mapping Demos.</a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/world.html">Mapping Demos.</a>
 3 margin  3 margin
 ?commands set margin  ?commands set margin
 ?commands show margin  ?commands show margin
 ?set margin  ?set margin
 ?show margin  ?show margin
 ?margin  ?margin
  Normally the margins of a plot are automatically calculated based on tics   The computed margins can be overridden by the `set margin` commands.  `show
  and axis labels (and the size of the graph correspondingly adjusted.)  These   margin` shows the current settings.
  computed values can be overridden by the `set margin` commands.  `show margin`  
  shows the current settings.  
   
  Syntax:   Syntax:
        set bmargin {<margin>}         set bmargin {<margin>}
Line 4504  C ... and restart the table:
Line 4511  C ... and restart the table:
  The units of <margin> are character heights or widths, as appropriate.  A   The units of <margin> are character heights or widths, as appropriate.  A
  positive value defines the absolute size of the margin.  A negative value   positive value defines the absolute size of the margin.  A negative value
  (or none) causes `gnuplot` to revert to the computed value.   (or none) causes `gnuplot` to revert to the computed value.
   
    Normally the margins of a plot are automatically calculated based on tics,
    tic labels, axis labels, the plot title, the timestamp and the size of the
    key if it is outside the borders.  If, however, tics are attached to the
    axes (`set xtics axis`, for example), neither the tics themselves nor their
    labels will be included in either the margin calculation or the calculation
    of the positions of other text to be written in the margin.  This can lead
    to tic labels overwriting other text if the axis is very close to the border.
 3 missing  3 missing
 ?commands set missing  ?commands set missing
 ?set missing  ?set missing
Line 4583  C ... and restart the table:
Line 4598  C ... and restart the table:
  in character units, so the appearance of the graph in the remaining space   in character units, so the appearance of the graph in the remaining space
  will depend on the screen size of the display device, e.g., perhaps quite   will depend on the screen size of the display device, e.g., perhaps quite
  different on a video display and a printer.   different on a video display and a printer.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/multiplot/multiplt.html"> See demo. </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/multiplt.html"> See demo. </a>
 3 mx2tics  3 mx2tics
 ?commands set mx2tics  ?commands set mx2tics
 ?commands set nomx2tics  ?commands set nomx2tics
Line 4876  C ... and restart the table:
Line 4891  C ... and restart the table:
   
  You may want to `set size square` to have `gnuplot` try to make the aspect   You may want to `set size square` to have `gnuplot` try to make the aspect
  ratio equal to unity, so that circles look circular.   ratio equal to unity, so that circles look circular.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/polar/polar.html">Polar demos </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/polar.html">Polar demos </a>
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/poldat/poldat.html">Polar Data Plot. </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/poldat.html">Polar Data Plot. </a>
 3 rmargin  3 rmargin
 ?commands set rmargin  ?commands set rmargin
 ?set rmargin  ?set rmargin
Line 4975  C ... and restart the table:
Line 4990  C ... and restart the table:
  To make the graph twice as high as wide use:   To make the graph twice as high as wide use:
        set size ratio 2         set size ratio 2
   
 ^<a href="http://www.nas.nasa.gov/~woo/gnuplot/airfoil/airfoil.html"> See demo. </a>  ^<a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/airfoil.html"> See demo. </a>
 3 style  3 style
 ?commands set function style  ?commands set function style
 ?commands show function style  ?commands show function style
Line 5126  C ... and restart the table:
Line 5141  C ... and restart the table:
  The `fsteps` style is only relevant to 2-d plotting.  It connects consecutive   The `fsteps` style is only relevant to 2-d plotting.  It connects consecutive
  points with two line segments: the first from (x1,y1) to (x1,y2) and the   points with two line segments: the first from (x1,y1) to (x1,y2) and the
  second from (x1,y2) to (x2,y2).   second from (x1,y2) to (x2,y2).
 ^<a href="http://www.nas.nasa.gov/~woo/gnuplot/steps/steps.html"> See demo. </a>  ^<a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/steps.html"> See demo. </a>
 4 histeps  4 histeps
 ?commands set style histeps  ?commands set style histeps
 ?set style histeps  ?set style histeps
Line 5141  C ... and restart the table:
Line 5156  C ... and restart the table:
   
  If `autoscale` is in effect, it selects the xrange from the data rather than   If `autoscale` is in effect, it selects the xrange from the data rather than
  the steps, so the end points will appear only half as wide as the others.   the steps, so the end points will appear only half as wide as the others.
 ^<a href="http://www.nas.nasa.gov/~woo/gnuplot/steps/steps.html"> See demo. </a>  ^<a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/steps.html"> See demo. </a>
   
  `histeps` is only a plotting style; `gnuplot` does not have the ability to   `histeps` is only a plotting style; `gnuplot` does not have the ability to
  create bins and determine their population from some data set.   create bins and determine their population from some data set.
Line 5189  C ... and restart the table:
Line 5204  C ... and restart the table:
  The `steps` style is only relevant to 2-d plotting.  It connects consecutive   The `steps` style is only relevant to 2-d plotting.  It connects consecutive
  points with two line segments: the first from (x1,y1) to (x2,y1) and the   points with two line segments: the first from (x1,y1) to (x2,y1) and the
  second from (x2,y1) to (x2,y2).   second from (x2,y1) to (x2,y2).
 ^<a href="http://www.nas.nasa.gov/~woo/gnuplot/steps/steps.html"> See demo. </a>  ^<a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/steps.html"> See demo. </a>
 4 vector  4 vector
 ?commands set style vector  ?commands set style vector
 ?set style vector  ?set style vector
Line 5474  C ... and restart the table:
Line 5489  C ... and restart the table:
  tells `gnuplot` to read date and time separated by tab.  (But look closely at   tells `gnuplot` to read date and time separated by tab.  (But look closely at
  your data---what began as a tab may have been converted to spaces somewhere   your data---what began as a tab may have been converted to spaces somewhere
  along the line; the format string must match what is actually in the file.)   along the line; the format string must match what is actually in the file.)
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/timedat/timedat.html"> Time Data Demo </a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/timedat.html"> Time Data Demo </a>
 3 title  3 title
 ?commands set title  ?commands set title
 ?commands show title  ?commands show title
Line 5903  C ... and restart the table:
Line 5918  C ... and restart the table:
  The same syntax applies to `ytics`, `ztics`, `x2tics` and `y2tics`.   The same syntax applies to `ytics`, `ztics`, `x2tics` and `y2tics`.
   
  `axis` or `border` tells `gnuplot` to put the tics (both the tics themselves   `axis` or `border` tells `gnuplot` to put the tics (both the tics themselves
  and the accompanying labels) along the axis or the border, respectively.   and the accompanying labels) along the axis or the border, respectively.  If
  `mirror` tells it to put unlabelled tics at the same positions on the   the axis is very close to the border, the `axis` option can result in tic
  opposite border.  `nomirror` does what you think it does.  `rotate` asks   labels overwriting other text written in the margin.
  `gnuplot` to rotate the text through 90 degrees, if the underlying terminal  
  driver supports text rotation.  `norotate` cancels this.  The defaults are  
  `border mirror norotate` for tics on the x and y axes, and `border nomirror  
  norotate` for tics on the x2 and y2 axes.  For the z axis, the the `{axis |  
  border}` option is not available and the default is `nomirror`.  If you do  
  want to mirror the z-axis tics, you might want to create a bit more room for  
  them with `set border`.  
   
  `set xtics` with no options restores the default border if xtics are not   `mirror` tells `gnuplot` to put unlabelled tics at the same positions on the
  being displayed;  otherwise it has no effect.  Any previously specified   opposite border.  `nomirror` does what you think it does.
  tic frequency or position {and labels} are retained.  
   
    `rotate` asks `gnuplot` to rotate the text through 90 degrees, which will be
    done if the terminal driver in use supports text rotation.  `norotate`
    cancels this.
   
    The defaults are `border mirror norotate` for tics on the x and y axes, and
    `border nomirror norotate` for tics on the x2 and y2 axes.  For the z axis,
    the the `{axis | border}` option is not available and the default is
    `nomirror`.  If you do want to mirror the z-axis tics, you might want to
    create a bit more room for them with `set border`.
   
    `set xtics` with no options restores the default border or axis if xtics are
    being displayed;  otherwise it has no effect.  Any previously specified tic
    frequency or position {and labels} are retained.
   
  Positions of the tics are calculated automatically by default or if the   Positions of the tics are calculated automatically by default or if the
  `autofreq` option is given; otherwise they may be specified in either of   `autofreq` option is given; otherwise they may be specified in either of
  two forms:   two forms:
Line 6384  C ... and restart the table:
Line 6405  C ... and restart the table:
  The `index` keyword is not supported, since the file format allows only one   The `index` keyword is not supported, since the file format allows only one
  surface per file.  The `every` and `using` filters are supported.  `using`   surface per file.  The `every` and `using` filters are supported.  `using`
  operates as if the data were read in the above triplet form.   operates as if the data were read in the above triplet form.
 ^ <a href="http://www.nas.nasa.gov/~woo/gnuplot/binary/binary.html">Binary File Splot Demo.</a>  ^ <a href="http://www.gnuplot.vt.edu/gnuplot/gpdocs/binary.html">Binary File Splot Demo.</a>
 4 example datafile  4 example datafile
 ?commands splot datafile example  ?commands splot datafile example
 ?splot datafile example  ?splot datafile example

Legend:
Removed from v.1.1.1.1  
changed lines
  Added in v.1.1.1.2

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>