=================================================================== RCS file: /home/cvs/OpenXM_contrib/gnuplot/docs/Attic/gnuplot.doc,v retrieving revision 1.1.1.1 retrieving revision 1.1.1.2 diff -u -p -r1.1.1.1 -r1.1.1.2 --- OpenXM_contrib/gnuplot/docs/Attic/gnuplot.doc 2000/01/09 17:01:06 1.1.1.1 +++ OpenXM_contrib/gnuplot/docs/Attic/gnuplot.doc 2000/01/22 14:16:13 1.1.1.2 @@ -1,4 +1,4 @@ -C RCS $Id: gnuplot.doc,v 1.1.1.1 2000/01/09 17:01:06 maekawa Exp $ +C RCS $Id: gnuplot.doc,v 1.1.1.2 2000/01/22 14:16:13 maekawa Exp $ C 3 December 1998 C Copyright (C) 1986 - 1993, 1998 Thomas Williams, Colin Kelley C @@ -129,7 +129,7 @@ C The new `gnuplot` user should begin by reading about `plotting` (if on-line, type `help plotting`). -^ Simple Plots Demo +^ Simple Plots Demo 2 Seeking-assistance ?seeking-assistance There is a mailing list for `gnuplot` users. Note, however, that the @@ -158,12 +158,13 @@ C ^ Before seeking help, please check the -^ +^ FAQ (Frequently Asked Questions) list. ^ If you do not have a copy of the FAQ, you may request a copy by email from the Majordomo address above, ftp a copy from - ftp://ftp.dartmouth.edu/pub/gnuplot + ftp://ftp.ucc.ie/pub/gnuplot/faq, + ftp://ftp.gnuplot.vt.edu/pub/gnuplot/faq, or see the WWW `gnuplot` page. When posting a question, please include full details of the version of @@ -184,7 +185,7 @@ C 3. `set timefmt` allows for the use of dates as input and output for time series plots. See `Time/Date data` and -^ +^ timedat.dem. ^ @@ -529,8 +530,8 @@ C #\mbox{imag}(x)^{2}}}$ \\ %abs(x)@any@absolute value of $x$, $|x|$; same type %abs(x)@complex@length of $x$, $sqrt{roman real (x) sup 2 + roman imag (x) sup 2}$ - The `abs` function returns the absolute value of its argument. The returned - value is of the same type as the argument. + The `abs(x)` function returns the absolute value of its argument. The + returned value is of the same type as the argument. For complex arguments, abs(x) is defined as the length of x in the complex plane [i.e., sqrt(real(x)**2 + imag(x)**2) ]. @@ -540,24 +541,24 @@ C ?acos #acos(x) & any & $\cos^{-1} x$ (inverse cosine) \\ %acos(x)@any@$cos sup -1 x$ (inverse cosine) - The `acos` function returns the arc cosine (inverse cosine) of its argument. - `acos` returns its argument in radians or degrees, as selected by `set - angles`. + The `acos(x)` function returns the arc cosine (inverse cosine) of its + argument. `acos` returns its argument in radians or degrees, as selected by + `set angles`. 4 acosh ?expressions functions acosh ?functions acosh ?acosh #acosh(x) & any & $\cosh^{-1} x$ (inverse hyperbolic cosine) in radians \\ %acosh(x)@any@$cosh sup -1 x$ (inverse hyperbolic cosine) in radians - The `acosh` function returns the inverse hyperbolic cosine of its argument in - radians. + The `acosh(x)` function returns the inverse hyperbolic cosine of its argument + in radians. 4 arg ?expressions functions arg ?functions arg ?arg #arg(x) & complex & the phase of $x$ \\ %arg(x)@complex@the phase of $x$ - The `arg` function returns the phase of a complex number in radians or + The `arg(x)` function returns the phase of a complex number in radians or degrees, as selected by `set angles`. 4 asin ?expressions functions asin @@ -565,7 +566,7 @@ C ?asin #asin(x) & any & $\sin^{-1} x$ (inverse sin) \\ %asin(x)@any@$sin sup -1 x$ (inverse sin) - The `asin` function returns the arc sin (inverse sin) of its argument. + The `asin(x)` function returns the arc sin (inverse sin) of its argument. `asin` returns its argument in radians or degrees, as selected by `set angles`. 4 asinh @@ -574,7 +575,7 @@ C ?asinh #asinh(x) & any & $\sinh^{-1} x$ (inverse hyperbolic sin) in radians \\ %asinh(x)@any@$sinh sup -1 x$ (inverse hyperbolic sin) in radians - The `asinh` function returns the inverse hyperbolic sin of its argument in + The `asinh(x)` function returns the inverse hyperbolic sin of its argument in radians. 4 atan ?expressions functions atan @@ -582,7 +583,7 @@ C ?atan #atan(x) & any & $\tan^{-1} x$ (inverse tangent) \\ %atan(x)@any@$tan sup -1 x$ (inverse tangent) - The `atan` function returns the arc tangent (inverse tangent) of its + The `atan(x)` function returns the arc tangent (inverse tangent) of its argument. `atan` returns its argument in radians or degrees, as selected by `set angles`. 4 atan2 @@ -591,24 +592,24 @@ C ?atan2 #atan2(y,x) & int or real & $\tan^{-1} (y/x)$ (inverse tangent) \\ %atan2(y,x)@int or real@$tan sup -1 (y/x)$ (inverse tangent) - The `atan2` function returns the arc tangent (inverse tangent) of the ratio - of the real parts of its arguments. `atan2` returns its argument in radians - or degrees, as selected by `set angles`, in the correct quadrant. + The `atan2(y,x)` function returns the arc tangent (inverse tangent) of the + ratio of the real parts of its arguments. `atan2` returns its argument in + radians or degrees, as selected by `set angles`, in the correct quadrant. 4 atanh ?expressions functions atanh ?functions atanh -?atan +?atanh #atanh(x) & any & $\tanh^{-1} x$ (inverse hyperbolic tangent) in radians \\ %atanh(x)@any@$tanh sup -1 x$ (inverse hyperbolic tangent) in radians - The `atanh` function returns the inverse hyperbolic tangent of its argument - in radians. + The `atanh(x)` function returns the inverse hyperbolic tangent of its + argument in radians. 4 besj0 ?expressions functions besj0 ?functions besj0 ?besj0 #besj0(x) & int or real & $j_{0}$ Bessel function of $x$, in radians \\ %besj0(x)@int or real@$j sub 0$ Bessel function of $x$, in radians - The `besj0` function returns the j0th Bessel function of its argument. + The `besj0(x)` function returns the j0th Bessel function of its argument. `besj0` expects its argument to be in radians. 4 besj1 ?expressions functions besj1 @@ -616,7 +617,7 @@ C ?besj1 #besj1(x) & int or real & $j_{1}$ Bessel function of $x$, in radians \\ %besj1(x)@int or real@$j sub 1$ Bessel function of $x$, in radians - The `besj1` function returns the j1st Bessel function of its argument. + The `besj1(x)` function returns the j1st Bessel function of its argument. `besj1` expects its argument to be in radians. 4 besy0 ?expressions functions besy0 @@ -632,7 +633,7 @@ C ?besy1 #besy1(x) & int or real & $y_{1}$ Bessel function of $x$, in radians \\ %besy1(x)@int or real@$y sub 1$ Bessel function of $x$, in radians - The `besy1` function returns the y1st Bessel function of its argument. + The `besy1(x)` function returns the y1st Bessel function of its argument. `besy1` expects its argument to be in radians. 4 ceil ?expressions functions ceil @@ -641,7 +642,7 @@ C #ceil(x) & any & $\lceil x \rceil$, smallest integer not less than $x$ #(real part) \\ %ceil(x)@any@$left ceiling x right ceiling$, smallest integer not less than $x$ (real part) - The `ceil` function returns the smallest integer that is not less than its + The `ceil(x)` function returns the smallest integer that is not less than its argument. For complex numbers, `ceil` returns the smallest integer not less than the real part of its argument. 4 cos @@ -650,7 +651,7 @@ C ?cos #cos(x) & any & $\cos x$, cosine of $x$ \\ %cos(x)@radians@$cos~x$, cosine of $x$ - The `cos` function returns the cosine of its argument. `cos` accepts its + The `cos(x)` function returns the cosine of its argument. `cos` accepts its argument in radians or degrees, as selected by `set angles`. 4 cosh ?expressions functions cosh @@ -658,7 +659,7 @@ C ?cosh #cosh(x) & any & $\cosh x$, hyperbolic cosine of $x$ in radians \\ %cosh(x)@any@$cosh~x$, hyperbolic cosine of $x$ in radians - The `cosh` function returns the hyperbolic cosine of its argument. `cosh` + The `cosh(x)` function returns the hyperbolic cosine of its argument. `cosh` expects its argument to be in radians. 4 erf ?expressions functions erf @@ -666,7 +667,7 @@ C ?erf #erf(x) & any & $\mbox{erf}(\mbox{real}(x))$, error function of real($x$) \\ %erf(x)@any@$erf ( roman real (x))$, error function of real ($x$) - The `erf` function returns the error function of the real part of its + The `erf(x)` function returns the error function of the real part of its argument. If the argument is a complex value, the imaginary component is ignored. 4 erfc @@ -675,8 +676,8 @@ C ?erfc #erfc(x) & any & $\mbox{erfc}(\mbox{real}(x))$, 1.0 - error function of real($x$) \\ %erfc(x)@any@$erfc ( roman real (x))$, 1.0 - error function of real ($x$) - The `erfc` function returns 1.0 - the error function of the real part of its - argument. If the argument is a complex value, the imaginary component is + The `erfc(x)` function returns 1.0 - the error function of the real part of + its argument. If the argument is a complex value, the imaginary component is ignored. 4 exp ?expressions functions exp @@ -684,7 +685,7 @@ C ?exp #exp(x) & any & $e^{x}$, exponential function of $x$ \\ %exp(x)@any@$e sup x$, exponential function of $x$ - The `exp` function returns the exponential function of its argument (`e` + The `exp(x)` function returns the exponential function of its argument (`e` raised to the power of its argument). On some implementations (notably suns), exp(-x) returns undefined for very large x. A user-defined function like safe(x) = x<-100 ? 0 : exp(x) might prove useful in these cases. @@ -695,7 +696,7 @@ C #floor(x) & any & $\lfloor x \rfloor$, largest integer not greater #than $x$ (real part) \\ %floor(x)@any@$left floor x right floor$, largest integer not greater than $x$ (real part) - The `floor` function returns the largest integer not greater than its + The `floor(x)` function returns the largest integer not greater than its argument. For complex numbers, `floor` returns the largest integer not greater than the real part of its argument. 4 gamma @@ -704,7 +705,7 @@ C ?gamma #gamma(x) & any & $\mbox{gamma}(\mbox{real}(x))$, gamma function of real($x$) \\ %gamma(x)@any@$GAMMA ( roman real (x))$, gamma function of real ($x$) - The `gamma` function returns the gamma function of the real part of its + The `gamma(x)` function returns the gamma function of the real part of its argument. For integer n, gamma(n+1) = n!. If the argument is a complex value, the imaginary component is ignored. 4 ibeta @@ -713,16 +714,16 @@ C ?ibeta #ibeta(p,q,x) & any & $\mbox{ibeta}(\mbox{real}(p,q,x))$, ibeta function of real($p$,$q$,$x$) \\ %ibeta(p,q,x)@any@$ibeta ( roman real (p,q,x))$, ibeta function of real ($p$,$q$,$x$) - The `ibeta` function returns the incomplete beta function of the real parts - of its arguments. p, q > 0 and x in [0:1]. If the arguments are complex, - the imaginary components are ignored. + The `ibeta(p,q,x)` function returns the incomplete beta function of the real + parts of its arguments. p, q > 0 and x in [0:1]. If the arguments are + complex, the imaginary components are ignored. 4 inverf ?expressions functions inverf ?functions inverf ?inverf #inverf(x) & any & inverse error function of real($x$) \\ %inverf(x)@any@inverse error function real($x$) - The `inverf` function returns the inverse error function of the real part + The `inverf(x)` function returns the inverse error function of the real part of its argument. 4 igamma ?expressions functions igamma @@ -730,7 +731,7 @@ C ?igamma #igamma(a,x) & any & $\mbox{igamma}(\mbox{real}(a,x))$, igamma function of real($a$,$x$) \\ %igamma(a,x)@any@$igamma ( roman real (a,x))$, igamma function of real ($a$,$x$) - The `igamma` function returns the incomplete gamma function of the real + The `igamma(a,x)` function returns the incomplete gamma function of the real parts of its arguments. a > 0 and x >= 0. If the arguments are complex, the imaginary components are ignored. 4 imag @@ -739,7 +740,7 @@ C ?imag #imag(x) & complex & imaginary part of $x$ as a real number \\ %imag(x)@complex@imaginary part of $x$ as a real number - The `imag` function returns the imaginary part of its argument as a real + The `imag(x)` function returns the imaginary part of its argument as a real number. 4 invnorm ?expressions functions invnorm @@ -747,7 +748,7 @@ C ?invnorm #invnorm(x) & any & inverse normal distribution function of real($x$) \\ %invnorm(x)@any@inverse normal distribution function real($x$) - The `invnorm` function returns the inverse normal distribution function of + The `invnorm(x)` function returns the inverse normal distribution function of the real part of its argument. 4 int ?expressions functions int @@ -755,7 +756,7 @@ C ?int #int(x) & real & integer part of $x$, truncated toward zero \\ %int(x)@real@integer part of $x$, truncated toward zero - The `int` function returns the integer part of its argument, truncated + The `int(x)` function returns the integer part of its argument, truncated toward zero. 4 lgamma ?expressions functions lgamma @@ -763,7 +764,7 @@ C ?lgamma #lgamma(x) & any & $\mbox{lgamma}(\mbox{real}(x))$, lgamma function of real($x$) \\ %lgamma(x)@any@$lgamma ( roman real (x))$, lgamma function of real ($x$) - The `lgamma` function returns the natural logarithm of the gamma function + The `lgamma(x)` function returns the natural logarithm of the gamma function of the real part of its argument. If the argument is a complex value, the imaginary component is ignored. 4 log @@ -772,21 +773,22 @@ C ?log #log(x) & any & $\log_{e} x$, natural logarithm (base $e$) of $x$ \\ %log(x)@any@$ln~x$, natural logarithm (base $e$) of $x$ - The `log` function returns the natural logarithm (base `e`) of its argument. + The `log(x)` function returns the natural logarithm (base `e`) of its + argument. 4 log10 ?expressions functions log10 ?functions log10 ?log10 #log10(x) & any & $\log_{10} x$, logarithm (base $10$) of $x$ \\ %log10(x)@any@${log sub 10}~x$, logarithm (base $10$) of $x$ - The `log10` function returns the logarithm (base 10) of its argument. + The `log10(x)` function returns the logarithm (base 10) of its argument. 4 norm ?expressions functions norm ?functions norm ?norm #norm(x) & any & normal distribution (Gaussian) function of real($x$) \\ %norm(x)@any@$norm(x)$, normal distribution function of real($x$) - The `norm` function returns the normal distribution function (or Gaussian) + The `norm(x)` function returns the normal distribution function (or Gaussian) of the real part of its argument. 4 rand ?expressions functions rand @@ -794,7 +796,7 @@ C ?rand #rand(x) & any & $\mbox{rand}(\mbox{real}(x))$, pseudo random number generator \\ %rand(x)@any@$rand ( roman real (x))$, pseudo random number generator - The `rand` function returns a pseudo random number in the interval [0:1] + The `rand(x)` function returns a pseudo random number in the interval [0:1] using the real part of its argument as a seed. If seed < 0, the sequence is (re)initialized. If the argument is a complex value, the imaginary component is ignored. @@ -804,23 +806,23 @@ C ?real #real(x) & any & real part of $x$ \\ %real(x)@any@real part of $x$ - The `real` function returns the real part of its argument. + The `real(x)` function returns the real part of its argument. 4 sgn ?expressions functions sgn ?functions sgn ?sgn #sgn(x) & any & 1 if $x>0$, -1 if $x<0$, 0 if $x=0$. imag($x$) ignored \\ %sgn(x)@any@1 if $x > 0$, -1 if $x < 0$, 0 if $x = 0$. $roman imag (x)$ ignored - The `sgn` function returns 1 if its argument is positive, -1 if its argument - is negative, and 0 if its argument is 0. If the argument is a complex value, - the imaginary component is ignored. + The `sgn(x)` function returns 1 if its argument is positive, -1 if its + argument is negative, and 0 if its argument is 0. If the argument is a + complex value, the imaginary component is ignored. 4 sin ?expressions functions sin ?functions sin ?sin #sin(x) & any & $\sin x$, sine of $x$ \\ %sin(x)@any@$sin~x$, sine of $x$ - The `sin` function returns the sine of its argument. `sin` expects its + The `sin(x)` function returns the sine of its argument. `sin` expects its argument to be in radians or degrees, as selected by `set angles`. 4 sinh ?expressions functions sinh @@ -828,7 +830,7 @@ C ?sinh #sinh(x) & any & $\sinh x$, hyperbolic sine $x$ in radians \\ %sinh(x)@any@$sinh~x$, hyperbolic sine $x$ in radians - The `sinh` function returns the hyperbolic sine of its argument. `sinh` + The `sinh(x)` function returns the hyperbolic sine of its argument. `sinh` expects its argument to be in radians. 4 sqrt ?expressions functions sqrt @@ -836,14 +838,14 @@ C ?sqrt #sqrt(x) & any & $\sqrt{x}$, square root of $x$ \\ %sqrt(x)@any@$sqrt x $, square root of $x$ - The `sqrt` function returns the square root of its argument. + The `sqrt(x)` function returns the square root of its argument. 4 tan ?expressions functions tan ?functions tan ?tan #tan(x) & any & $\tan x$, tangent of $x$ \\ %tan(x)@any@$tan~x$, tangent of $x$ - The `tan` function returns the tangent of its argument. `tan` expects + The `tan(x)` function returns the tangent of its argument. `tan` expects its argument to be in radians or degrees, as selected by `set angles`. 4 tanh ?expressions functions tanh @@ -851,7 +853,7 @@ C ?tanh #tanh(x) & any & $\tanh x$, hyperbolic tangent of $x$ in radians\\ %tanh(x)@any@$tanh~x$, hyperbolic tangent of $x$ in radians - The `tanh` function returns the hyperbolic tangent of its argument. `tanh` + The `tanh(x)` function returns the hyperbolic tangent of its argument. `tanh` expects its argument to be in radians. @end table @@ -940,7 +942,7 @@ C `valid(x)` may be used only in expressions as part of `using` manipulations to fits or datafile plots. See `plot datafile using`. @end table -^ Use of functions and complex variables for airfoils +^ Use of functions and complex variables for airfoils 3 Operators ?expressions operators ?operators @@ -2202,7 +2204,7 @@ C ... and restart the table: every :::::9 # selects the first 10 blocks every 2:2 # selects every other point in every other block every ::5::15 # selects points 5 through 15 in each block -^ Simple Plot Demos , +^ Simple Plot Demos , ^ Non-parametric splot demos , and ^ Parametric splot demos. 4 example datafile @@ -2250,7 +2252,7 @@ C ... and restart the table: Example: plot 'file' index 4:5 -^ splot with indices demo. +^ splot with indices demo. 4 smooth ?commands plot datafile smooth ?plot datafile smooth @@ -2357,7 +2359,7 @@ C ... and restart the table: The `unique` option makes the data monotonic in x; points with the same x-value are replaced by a single point having the average y-value. The resulting points are then connected by straight line segments. -^ See demos. +^ See demos. 4 special-filenames ?commands plot datafile special-filenames ?plot datafile special-filenames @@ -2570,7 +2572,7 @@ C ... and restart the table: However, if you want to leave text in your data files, it is safer to put the comment character (#) in the first column of the text lines. -^ Feeble using demos. +^ Feeble using demos. 3 errorbars ?commands plot errorbars ?commands splot errorbars @@ -2642,7 +2644,7 @@ C ... and restart the table: parametric function has been completed: plot sin(t),t**2 title 'Parametric example' with linespoints -^ Parametric Mode Demos. +^ Parametric Mode Demos. 3 ranges ?commands plot ranges ?commands splot ranges @@ -2939,7 +2941,7 @@ C ... and restart the table: set explicitly to guarantee that the five separate graphs (drawn on top of each other in multiplot mode) will have exactly the same axes. The linetype must be specified; otherwise all the plots would be drawn with the same type. -^ Reread Animation Demo +^ Reread Animation Demo 2 reset ?commands reset ?reset @@ -3029,7 +3031,7 @@ C ... and restart the table: y=sinh(x) print y #prints {1.16933, 0.154051} print asinh(y) #prints {57.29578, 5.729578} -^ Polar plot using `set angles`. +^ Polar plot using `set angles`. 3 arrow ?commands set arrow ?commands set noarrow @@ -3216,7 +3218,7 @@ C ... and restart the table: Explicitly setting one or two ranges but not others may lead to unexpected results. -^ See polar demos +^ See polar demos 3 bar ?commands set bar ?commands show bar @@ -3292,7 +3294,10 @@ C ... and restart the table: Using the optional , and specifiers, the way the border lines are drawn can be influenced - (limited by what the current terminal driver supports). + (limited by what the current terminal driver supports). By default, + the border is drawn with twice the usual linewidth. The + specifier scales this default value; for example, `set border 15 lw 2` + will produce a border with four times the usual linewidth. Various axes or combinations of axes may be added together in the command. @@ -3513,8 +3518,8 @@ C ... and restart the table: See also `set contour` for control of where the contours are drawn, and `set clabel` for control of the format of the contour labels and linetypes. -^ Contours Demo and -^ contours with User Defined Levels. +^ Contours Demo and +^ contours with User Defined Levels. 3 contour ?commands set contour ?commands set nocontour @@ -3564,8 +3569,8 @@ C ... and restart the table: If contours are desired from non-grid data, `set dgrid3d` can be used to create an appropriate grid. See `set dgrid3d` for more information. -^ Contours Demo and -^ contours with User Defined Levels. +^ Contours Demo and +^ contours with User Defined Levels. 3 data style ?commands set data style ?commands show data style @@ -3641,7 +3646,7 @@ C ... and restart the table: The first specifies that a grid of size 10 by 10 is to be constructed using a norm value of 1 in the weight computation. The second only modifies the norm, changing it to 4. -^ Dgrid3d Demo. +^ Dgrid3d Demo. 3 dummy ?commands set dummy @@ -3727,7 +3732,7 @@ C ... and restart the table: after each number. If you want "%" itself, double it: "%g %%". See also `set xtics` for more information about tic labels. -^ See demo. +^ See demo. 4 format specifiers ?commands set format specifiers ?set format specifiers @@ -3948,8 +3953,8 @@ C ... and restart the table: For information about the definition and usage of functions in `gnuplot`, please see `expressions`. -^ Splines as User Defined Functions. -^ Use of functions and complex variables for airfoils +^ Splines as User Defined Functions. +^ Use of functions and complex variables for airfoils 3 grid ?commands set grid ?commands set nogrid @@ -3992,6 +3997,10 @@ C ... and restart the table: If no linetype is specified for the minor gridlines, the same linetype as the major gridlines is used. The default polar angle is 30 degrees. + By default, grid lines are drawn with half the usual linewidth. The major and + minor linewidth specifiers scale this default value; for example, `set grid + lw .5` will draw grid lines with one quarter the usual linewidth. + Z grid lines are drawn on the back of the plot. This looks better if a partial box is drawn around the plot---see `set border`. 3 hidden3d @@ -4100,8 +4109,8 @@ C ... and restart the table: normally, making the resulting display hard to understand. Therefore, the default option of `bentover` will turn it visible in this case. If you don't want that, you may choose `nobentover` instead. -^ Hidden Line Removal Demo and -^ Complex Hidden Line Demo. +^ Hidden Line Removal Demo and +^ Complex Hidden Line Demo. 3 isosamples ?commands set isosamples ?commands show isosamples @@ -4482,17 +4491,15 @@ C ... and restart the table: necessary if the data in the file are not in the required order. `mapping` has no effect on `plot`. -^ Mapping Demos. +^ Mapping Demos. 3 margin ?commands set margin ?commands show margin ?set margin ?show margin ?margin - Normally the margins of a plot are automatically calculated based on tics - and axis labels (and the size of the graph correspondingly adjusted.) These - computed values can be overridden by the `set margin` commands. `show margin` - shows the current settings. + The computed margins can be overridden by the `set margin` commands. `show + margin` shows the current settings. Syntax: set bmargin {} @@ -4504,6 +4511,14 @@ C ... and restart the table: The units of are character heights or widths, as appropriate. A positive value defines the absolute size of the margin. A negative value (or none) causes `gnuplot` to revert to the computed value. + + Normally the margins of a plot are automatically calculated based on tics, + tic labels, axis labels, the plot title, the timestamp and the size of the + key if it is outside the borders. If, however, tics are attached to the + axes (`set xtics axis`, for example), neither the tics themselves nor their + labels will be included in either the margin calculation or the calculation + of the positions of other text to be written in the margin. This can lead + to tic labels overwriting other text if the axis is very close to the border. 3 missing ?commands set missing ?set missing @@ -4583,7 +4598,7 @@ C ... and restart the table: in character units, so the appearance of the graph in the remaining space will depend on the screen size of the display device, e.g., perhaps quite different on a video display and a printer. -^ See demo. +^ See demo. 3 mx2tics ?commands set mx2tics ?commands set nomx2tics @@ -4876,8 +4891,8 @@ C ... and restart the table: You may want to `set size square` to have `gnuplot` try to make the aspect ratio equal to unity, so that circles look circular. -^ Polar demos -^ Polar Data Plot. +^ Polar demos +^ Polar Data Plot. 3 rmargin ?commands set rmargin ?set rmargin @@ -4975,7 +4990,7 @@ C ... and restart the table: To make the graph twice as high as wide use: set size ratio 2 -^ See demo. +^ See demo. 3 style ?commands set function style ?commands show function style @@ -5126,7 +5141,7 @@ C ... and restart the table: The `fsteps` style is only relevant to 2-d plotting. It connects consecutive points with two line segments: the first from (x1,y1) to (x1,y2) and the second from (x1,y2) to (x2,y2). -^ See demo. +^ See demo. 4 histeps ?commands set style histeps ?set style histeps @@ -5141,7 +5156,7 @@ C ... and restart the table: If `autoscale` is in effect, it selects the xrange from the data rather than the steps, so the end points will appear only half as wide as the others. -^ See demo. +^ See demo. `histeps` is only a plotting style; `gnuplot` does not have the ability to create bins and determine their population from some data set. @@ -5189,7 +5204,7 @@ C ... and restart the table: The `steps` style is only relevant to 2-d plotting. It connects consecutive points with two line segments: the first from (x1,y1) to (x2,y1) and the second from (x2,y1) to (x2,y2). -^ See demo. +^ See demo. 4 vector ?commands set style vector ?set style vector @@ -5474,7 +5489,7 @@ C ... and restart the table: tells `gnuplot` to read date and time separated by tab. (But look closely at your data---what began as a tab may have been converted to spaces somewhere along the line; the format string must match what is actually in the file.) -^ Time Data Demo +^ Time Data Demo 3 title ?commands set title ?commands show title @@ -5903,21 +5918,27 @@ C ... and restart the table: The same syntax applies to `ytics`, `ztics`, `x2tics` and `y2tics`. `axis` or `border` tells `gnuplot` to put the tics (both the tics themselves - and the accompanying labels) along the axis or the border, respectively. - `mirror` tells it to put unlabelled tics at the same positions on the - opposite border. `nomirror` does what you think it does. `rotate` asks - `gnuplot` to rotate the text through 90 degrees, if the underlying terminal - driver supports text rotation. `norotate` cancels this. The defaults are - `border mirror norotate` for tics on the x and y axes, and `border nomirror - norotate` for tics on the x2 and y2 axes. For the z axis, the the `{axis | - border}` option is not available and the default is `nomirror`. If you do - want to mirror the z-axis tics, you might want to create a bit more room for - them with `set border`. + and the accompanying labels) along the axis or the border, respectively. If + the axis is very close to the border, the `axis` option can result in tic + labels overwriting other text written in the margin. - `set xtics` with no options restores the default border if xtics are not - being displayed; otherwise it has no effect. Any previously specified - tic frequency or position {and labels} are retained. + `mirror` tells `gnuplot` to put unlabelled tics at the same positions on the + opposite border. `nomirror` does what you think it does. + `rotate` asks `gnuplot` to rotate the text through 90 degrees, which will be + done if the terminal driver in use supports text rotation. `norotate` + cancels this. + + The defaults are `border mirror norotate` for tics on the x and y axes, and + `border nomirror norotate` for tics on the x2 and y2 axes. For the z axis, + the the `{axis | border}` option is not available and the default is + `nomirror`. If you do want to mirror the z-axis tics, you might want to + create a bit more room for them with `set border`. + + `set xtics` with no options restores the default border or axis if xtics are + being displayed; otherwise it has no effect. Any previously specified tic + frequency or position {and labels} are retained. + Positions of the tics are calculated automatically by default or if the `autofreq` option is given; otherwise they may be specified in either of two forms: @@ -6384,7 +6405,7 @@ C ... and restart the table: The `index` keyword is not supported, since the file format allows only one surface per file. The `every` and `using` filters are supported. `using` operates as if the data were read in the above triplet form. -^ Binary File Splot Demo. +^ Binary File Splot Demo. 4 example datafile ?commands splot datafile example ?splot datafile example