===================================================================
RCS file: /home/cvs/OpenXM_contrib/gnuplot/docs/Attic/gnuplot.doc,v
retrieving revision 1.1.1.1
retrieving revision 1.1.1.2
diff -u -p -r1.1.1.1 -r1.1.1.2
--- OpenXM_contrib/gnuplot/docs/Attic/gnuplot.doc 2000/01/09 17:01:06 1.1.1.1
+++ OpenXM_contrib/gnuplot/docs/Attic/gnuplot.doc 2000/01/22 14:16:13 1.1.1.2
@@ -1,4 +1,4 @@
-C RCS $Id: gnuplot.doc,v 1.1.1.1 2000/01/09 17:01:06 maekawa Exp $
+C RCS $Id: gnuplot.doc,v 1.1.1.2 2000/01/22 14:16:13 maekawa Exp $
C 3 December 1998
C Copyright (C) 1986 - 1993, 1998 Thomas Williams, Colin Kelley
C
@@ -129,7 +129,7 @@ C
The new `gnuplot` user should begin by reading about `plotting` (if on-line,
type `help plotting`).
-^ Simple Plots Demo
+^ Simple Plots Demo
2 Seeking-assistance
?seeking-assistance
There is a mailing list for `gnuplot` users. Note, however, that the
@@ -158,12 +158,13 @@ C
^
Before seeking help, please check the
-^
+^
FAQ (Frequently Asked Questions) list.
^
If you do not have a copy of the FAQ, you may request a copy by email from
the Majordomo address above, ftp a copy from
- ftp://ftp.dartmouth.edu/pub/gnuplot
+ ftp://ftp.ucc.ie/pub/gnuplot/faq,
+ ftp://ftp.gnuplot.vt.edu/pub/gnuplot/faq,
or see the WWW `gnuplot` page.
When posting a question, please include full details of the version of
@@ -184,7 +185,7 @@ C
3. `set timefmt` allows for the use of dates as input and output for time
series plots. See `Time/Date data` and
-^
+^
timedat.dem.
^
@@ -529,8 +530,8 @@ C
#\mbox{imag}(x)^{2}}}$ \\
%abs(x)@any@absolute value of $x$, $|x|$; same type
%abs(x)@complex@length of $x$, $sqrt{roman real (x) sup 2 + roman imag (x) sup 2}$
- The `abs` function returns the absolute value of its argument. The returned
- value is of the same type as the argument.
+ The `abs(x)` function returns the absolute value of its argument. The
+ returned value is of the same type as the argument.
For complex arguments, abs(x) is defined as the length of x in the complex
plane [i.e., sqrt(real(x)**2 + imag(x)**2) ].
@@ -540,24 +541,24 @@ C
?acos
#acos(x) & any & $\cos^{-1} x$ (inverse cosine) \\
%acos(x)@any@$cos sup -1 x$ (inverse cosine)
- The `acos` function returns the arc cosine (inverse cosine) of its argument.
- `acos` returns its argument in radians or degrees, as selected by `set
- angles`.
+ The `acos(x)` function returns the arc cosine (inverse cosine) of its
+ argument. `acos` returns its argument in radians or degrees, as selected by
+ `set angles`.
4 acosh
?expressions functions acosh
?functions acosh
?acosh
#acosh(x) & any & $\cosh^{-1} x$ (inverse hyperbolic cosine) in radians \\
%acosh(x)@any@$cosh sup -1 x$ (inverse hyperbolic cosine) in radians
- The `acosh` function returns the inverse hyperbolic cosine of its argument in
- radians.
+ The `acosh(x)` function returns the inverse hyperbolic cosine of its argument
+ in radians.
4 arg
?expressions functions arg
?functions arg
?arg
#arg(x) & complex & the phase of $x$ \\
%arg(x)@complex@the phase of $x$
- The `arg` function returns the phase of a complex number in radians or
+ The `arg(x)` function returns the phase of a complex number in radians or
degrees, as selected by `set angles`.
4 asin
?expressions functions asin
@@ -565,7 +566,7 @@ C
?asin
#asin(x) & any & $\sin^{-1} x$ (inverse sin) \\
%asin(x)@any@$sin sup -1 x$ (inverse sin)
- The `asin` function returns the arc sin (inverse sin) of its argument.
+ The `asin(x)` function returns the arc sin (inverse sin) of its argument.
`asin` returns its argument in radians or degrees, as selected by `set
angles`.
4 asinh
@@ -574,7 +575,7 @@ C
?asinh
#asinh(x) & any & $\sinh^{-1} x$ (inverse hyperbolic sin) in radians \\
%asinh(x)@any@$sinh sup -1 x$ (inverse hyperbolic sin) in radians
- The `asinh` function returns the inverse hyperbolic sin of its argument in
+ The `asinh(x)` function returns the inverse hyperbolic sin of its argument in
radians.
4 atan
?expressions functions atan
@@ -582,7 +583,7 @@ C
?atan
#atan(x) & any & $\tan^{-1} x$ (inverse tangent) \\
%atan(x)@any@$tan sup -1 x$ (inverse tangent)
- The `atan` function returns the arc tangent (inverse tangent) of its
+ The `atan(x)` function returns the arc tangent (inverse tangent) of its
argument. `atan` returns its argument in radians or degrees, as selected by
`set angles`.
4 atan2
@@ -591,24 +592,24 @@ C
?atan2
#atan2(y,x) & int or real & $\tan^{-1} (y/x)$ (inverse tangent) \\
%atan2(y,x)@int or real@$tan sup -1 (y/x)$ (inverse tangent)
- The `atan2` function returns the arc tangent (inverse tangent) of the ratio
- of the real parts of its arguments. `atan2` returns its argument in radians
- or degrees, as selected by `set angles`, in the correct quadrant.
+ The `atan2(y,x)` function returns the arc tangent (inverse tangent) of the
+ ratio of the real parts of its arguments. `atan2` returns its argument in
+ radians or degrees, as selected by `set angles`, in the correct quadrant.
4 atanh
?expressions functions atanh
?functions atanh
-?atan
+?atanh
#atanh(x) & any & $\tanh^{-1} x$ (inverse hyperbolic tangent) in radians \\
%atanh(x)@any@$tanh sup -1 x$ (inverse hyperbolic tangent) in radians
- The `atanh` function returns the inverse hyperbolic tangent of its argument
- in radians.
+ The `atanh(x)` function returns the inverse hyperbolic tangent of its
+ argument in radians.
4 besj0
?expressions functions besj0
?functions besj0
?besj0
#besj0(x) & int or real & $j_{0}$ Bessel function of $x$, in radians \\
%besj0(x)@int or real@$j sub 0$ Bessel function of $x$, in radians
- The `besj0` function returns the j0th Bessel function of its argument.
+ The `besj0(x)` function returns the j0th Bessel function of its argument.
`besj0` expects its argument to be in radians.
4 besj1
?expressions functions besj1
@@ -616,7 +617,7 @@ C
?besj1
#besj1(x) & int or real & $j_{1}$ Bessel function of $x$, in radians \\
%besj1(x)@int or real@$j sub 1$ Bessel function of $x$, in radians
- The `besj1` function returns the j1st Bessel function of its argument.
+ The `besj1(x)` function returns the j1st Bessel function of its argument.
`besj1` expects its argument to be in radians.
4 besy0
?expressions functions besy0
@@ -632,7 +633,7 @@ C
?besy1
#besy1(x) & int or real & $y_{1}$ Bessel function of $x$, in radians \\
%besy1(x)@int or real@$y sub 1$ Bessel function of $x$, in radians
- The `besy1` function returns the y1st Bessel function of its argument.
+ The `besy1(x)` function returns the y1st Bessel function of its argument.
`besy1` expects its argument to be in radians.
4 ceil
?expressions functions ceil
@@ -641,7 +642,7 @@ C
#ceil(x) & any & $\lceil x \rceil$, smallest integer not less than $x$
#(real part) \\
%ceil(x)@any@$left ceiling x right ceiling$, smallest integer not less than $x$ (real part)
- The `ceil` function returns the smallest integer that is not less than its
+ The `ceil(x)` function returns the smallest integer that is not less than its
argument. For complex numbers, `ceil` returns the smallest integer not less
than the real part of its argument.
4 cos
@@ -650,7 +651,7 @@ C
?cos
#cos(x) & any & $\cos x$, cosine of $x$ \\
%cos(x)@radians@$cos~x$, cosine of $x$
- The `cos` function returns the cosine of its argument. `cos` accepts its
+ The `cos(x)` function returns the cosine of its argument. `cos` accepts its
argument in radians or degrees, as selected by `set angles`.
4 cosh
?expressions functions cosh
@@ -658,7 +659,7 @@ C
?cosh
#cosh(x) & any & $\cosh x$, hyperbolic cosine of $x$ in radians \\
%cosh(x)@any@$cosh~x$, hyperbolic cosine of $x$ in radians
- The `cosh` function returns the hyperbolic cosine of its argument. `cosh`
+ The `cosh(x)` function returns the hyperbolic cosine of its argument. `cosh`
expects its argument to be in radians.
4 erf
?expressions functions erf
@@ -666,7 +667,7 @@ C
?erf
#erf(x) & any & $\mbox{erf}(\mbox{real}(x))$, error function of real($x$) \\
%erf(x)@any@$erf ( roman real (x))$, error function of real ($x$)
- The `erf` function returns the error function of the real part of its
+ The `erf(x)` function returns the error function of the real part of its
argument. If the argument is a complex value, the imaginary component is
ignored.
4 erfc
@@ -675,8 +676,8 @@ C
?erfc
#erfc(x) & any & $\mbox{erfc}(\mbox{real}(x))$, 1.0 - error function of real($x$) \\
%erfc(x)@any@$erfc ( roman real (x))$, 1.0 - error function of real ($x$)
- The `erfc` function returns 1.0 - the error function of the real part of its
- argument. If the argument is a complex value, the imaginary component is
+ The `erfc(x)` function returns 1.0 - the error function of the real part of
+ its argument. If the argument is a complex value, the imaginary component is
ignored.
4 exp
?expressions functions exp
@@ -684,7 +685,7 @@ C
?exp
#exp(x) & any & $e^{x}$, exponential function of $x$ \\
%exp(x)@any@$e sup x$, exponential function of $x$
- The `exp` function returns the exponential function of its argument (`e`
+ The `exp(x)` function returns the exponential function of its argument (`e`
raised to the power of its argument). On some implementations (notably
suns), exp(-x) returns undefined for very large x. A user-defined function
like safe(x) = x<-100 ? 0 : exp(x) might prove useful in these cases.
@@ -695,7 +696,7 @@ C
#floor(x) & any & $\lfloor x \rfloor$, largest integer not greater
#than $x$ (real part) \\
%floor(x)@any@$left floor x right floor$, largest integer not greater than $x$ (real part)
- The `floor` function returns the largest integer not greater than its
+ The `floor(x)` function returns the largest integer not greater than its
argument. For complex numbers, `floor` returns the largest integer not
greater than the real part of its argument.
4 gamma
@@ -704,7 +705,7 @@ C
?gamma
#gamma(x) & any & $\mbox{gamma}(\mbox{real}(x))$, gamma function of real($x$) \\
%gamma(x)@any@$GAMMA ( roman real (x))$, gamma function of real ($x$)
- The `gamma` function returns the gamma function of the real part of its
+ The `gamma(x)` function returns the gamma function of the real part of its
argument. For integer n, gamma(n+1) = n!. If the argument is a complex
value, the imaginary component is ignored.
4 ibeta
@@ -713,16 +714,16 @@ C
?ibeta
#ibeta(p,q,x) & any & $\mbox{ibeta}(\mbox{real}(p,q,x))$, ibeta function of real($p$,$q$,$x$) \\
%ibeta(p,q,x)@any@$ibeta ( roman real (p,q,x))$, ibeta function of real ($p$,$q$,$x$)
- The `ibeta` function returns the incomplete beta function of the real parts
- of its arguments. p, q > 0 and x in [0:1]. If the arguments are complex,
- the imaginary components are ignored.
+ The `ibeta(p,q,x)` function returns the incomplete beta function of the real
+ parts of its arguments. p, q > 0 and x in [0:1]. If the arguments are
+ complex, the imaginary components are ignored.
4 inverf
?expressions functions inverf
?functions inverf
?inverf
#inverf(x) & any & inverse error function of real($x$) \\
%inverf(x)@any@inverse error function real($x$)
- The `inverf` function returns the inverse error function of the real part
+ The `inverf(x)` function returns the inverse error function of the real part
of its argument.
4 igamma
?expressions functions igamma
@@ -730,7 +731,7 @@ C
?igamma
#igamma(a,x) & any & $\mbox{igamma}(\mbox{real}(a,x))$, igamma function of real($a$,$x$) \\
%igamma(a,x)@any@$igamma ( roman real (a,x))$, igamma function of real ($a$,$x$)
- The `igamma` function returns the incomplete gamma function of the real
+ The `igamma(a,x)` function returns the incomplete gamma function of the real
parts of its arguments. a > 0 and x >= 0. If the arguments are complex,
the imaginary components are ignored.
4 imag
@@ -739,7 +740,7 @@ C
?imag
#imag(x) & complex & imaginary part of $x$ as a real number \\
%imag(x)@complex@imaginary part of $x$ as a real number
- The `imag` function returns the imaginary part of its argument as a real
+ The `imag(x)` function returns the imaginary part of its argument as a real
number.
4 invnorm
?expressions functions invnorm
@@ -747,7 +748,7 @@ C
?invnorm
#invnorm(x) & any & inverse normal distribution function of real($x$) \\
%invnorm(x)@any@inverse normal distribution function real($x$)
- The `invnorm` function returns the inverse normal distribution function of
+ The `invnorm(x)` function returns the inverse normal distribution function of
the real part of its argument.
4 int
?expressions functions int
@@ -755,7 +756,7 @@ C
?int
#int(x) & real & integer part of $x$, truncated toward zero \\
%int(x)@real@integer part of $x$, truncated toward zero
- The `int` function returns the integer part of its argument, truncated
+ The `int(x)` function returns the integer part of its argument, truncated
toward zero.
4 lgamma
?expressions functions lgamma
@@ -763,7 +764,7 @@ C
?lgamma
#lgamma(x) & any & $\mbox{lgamma}(\mbox{real}(x))$, lgamma function of real($x$) \\
%lgamma(x)@any@$lgamma ( roman real (x))$, lgamma function of real ($x$)
- The `lgamma` function returns the natural logarithm of the gamma function
+ The `lgamma(x)` function returns the natural logarithm of the gamma function
of the real part of its argument. If the argument is a complex value, the
imaginary component is ignored.
4 log
@@ -772,21 +773,22 @@ C
?log
#log(x) & any & $\log_{e} x$, natural logarithm (base $e$) of $x$ \\
%log(x)@any@$ln~x$, natural logarithm (base $e$) of $x$
- The `log` function returns the natural logarithm (base `e`) of its argument.
+ The `log(x)` function returns the natural logarithm (base `e`) of its
+ argument.
4 log10
?expressions functions log10
?functions log10
?log10
#log10(x) & any & $\log_{10} x$, logarithm (base $10$) of $x$ \\
%log10(x)@any@${log sub 10}~x$, logarithm (base $10$) of $x$
- The `log10` function returns the logarithm (base 10) of its argument.
+ The `log10(x)` function returns the logarithm (base 10) of its argument.
4 norm
?expressions functions norm
?functions norm
?norm
#norm(x) & any & normal distribution (Gaussian) function of real($x$) \\
%norm(x)@any@$norm(x)$, normal distribution function of real($x$)
- The `norm` function returns the normal distribution function (or Gaussian)
+ The `norm(x)` function returns the normal distribution function (or Gaussian)
of the real part of its argument.
4 rand
?expressions functions rand
@@ -794,7 +796,7 @@ C
?rand
#rand(x) & any & $\mbox{rand}(\mbox{real}(x))$, pseudo random number generator \\
%rand(x)@any@$rand ( roman real (x))$, pseudo random number generator
- The `rand` function returns a pseudo random number in the interval [0:1]
+ The `rand(x)` function returns a pseudo random number in the interval [0:1]
using the real part of its argument as a seed. If seed < 0, the sequence
is (re)initialized. If the argument is a complex value, the imaginary
component is ignored.
@@ -804,23 +806,23 @@ C
?real
#real(x) & any & real part of $x$ \\
%real(x)@any@real part of $x$
- The `real` function returns the real part of its argument.
+ The `real(x)` function returns the real part of its argument.
4 sgn
?expressions functions sgn
?functions sgn
?sgn
#sgn(x) & any & 1 if $x>0$, -1 if $x<0$, 0 if $x=0$. imag($x$) ignored \\
%sgn(x)@any@1 if $x > 0$, -1 if $x < 0$, 0 if $x = 0$. $roman imag (x)$ ignored
- The `sgn` function returns 1 if its argument is positive, -1 if its argument
- is negative, and 0 if its argument is 0. If the argument is a complex value,
- the imaginary component is ignored.
+ The `sgn(x)` function returns 1 if its argument is positive, -1 if its
+ argument is negative, and 0 if its argument is 0. If the argument is a
+ complex value, the imaginary component is ignored.
4 sin
?expressions functions sin
?functions sin
?sin
#sin(x) & any & $\sin x$, sine of $x$ \\
%sin(x)@any@$sin~x$, sine of $x$
- The `sin` function returns the sine of its argument. `sin` expects its
+ The `sin(x)` function returns the sine of its argument. `sin` expects its
argument to be in radians or degrees, as selected by `set angles`.
4 sinh
?expressions functions sinh
@@ -828,7 +830,7 @@ C
?sinh
#sinh(x) & any & $\sinh x$, hyperbolic sine $x$ in radians \\
%sinh(x)@any@$sinh~x$, hyperbolic sine $x$ in radians
- The `sinh` function returns the hyperbolic sine of its argument. `sinh`
+ The `sinh(x)` function returns the hyperbolic sine of its argument. `sinh`
expects its argument to be in radians.
4 sqrt
?expressions functions sqrt
@@ -836,14 +838,14 @@ C
?sqrt
#sqrt(x) & any & $\sqrt{x}$, square root of $x$ \\
%sqrt(x)@any@$sqrt x $, square root of $x$
- The `sqrt` function returns the square root of its argument.
+ The `sqrt(x)` function returns the square root of its argument.
4 tan
?expressions functions tan
?functions tan
?tan
#tan(x) & any & $\tan x$, tangent of $x$ \\
%tan(x)@any@$tan~x$, tangent of $x$
- The `tan` function returns the tangent of its argument. `tan` expects
+ The `tan(x)` function returns the tangent of its argument. `tan` expects
its argument to be in radians or degrees, as selected by `set angles`.
4 tanh
?expressions functions tanh
@@ -851,7 +853,7 @@ C
?tanh
#tanh(x) & any & $\tanh x$, hyperbolic tangent of $x$ in radians\\
%tanh(x)@any@$tanh~x$, hyperbolic tangent of $x$ in radians
- The `tanh` function returns the hyperbolic tangent of its argument. `tanh`
+ The `tanh(x)` function returns the hyperbolic tangent of its argument. `tanh`
expects its argument to be in radians.
@end table
@@ -940,7 +942,7 @@ C
`valid(x)` may be used only in expressions as part of `using` manipulations
to fits or datafile plots. See `plot datafile using`.
@end table
-^ Use of functions and complex variables for airfoils
+^ Use of functions and complex variables for airfoils
3 Operators
?expressions operators
?operators
@@ -2202,7 +2204,7 @@ C ... and restart the table:
every :::::9 # selects the first 10 blocks
every 2:2 # selects every other point in every other block
every ::5::15 # selects points 5 through 15 in each block
-^ Simple Plot Demos ,
+^ Simple Plot Demos ,
^ Non-parametric splot demos , and
^ Parametric splot demos.
4 example datafile
@@ -2250,7 +2252,7 @@ C ... and restart the table:
Example:
plot 'file' index 4:5
-^ splot with indices demo.
+^ splot with indices demo.
4 smooth
?commands plot datafile smooth
?plot datafile smooth
@@ -2357,7 +2359,7 @@ C ... and restart the table:
The `unique` option makes the data monotonic in x; points with the same
x-value are replaced by a single point having the average y-value. The
resulting points are then connected by straight line segments.
-^ See demos.
+^ See demos.
4 special-filenames
?commands plot datafile special-filenames
?plot datafile special-filenames
@@ -2570,7 +2572,7 @@ C ... and restart the table:
However, if you want to leave text in your data files, it is safer to put the
comment character (#) in the first column of the text lines.
-^ Feeble using demos.
+^ Feeble using demos.
3 errorbars
?commands plot errorbars
?commands splot errorbars
@@ -2642,7 +2644,7 @@ C ... and restart the table:
parametric function has been completed:
plot sin(t),t**2 title 'Parametric example' with linespoints
-^ Parametric Mode Demos.
+^ Parametric Mode Demos.
3 ranges
?commands plot ranges
?commands splot ranges
@@ -2939,7 +2941,7 @@ C ... and restart the table:
set explicitly to guarantee that the five separate graphs (drawn on top of
each other in multiplot mode) will have exactly the same axes. The linetype
must be specified; otherwise all the plots would be drawn with the same type.
-^ Reread Animation Demo
+^ Reread Animation Demo
2 reset
?commands reset
?reset
@@ -3029,7 +3031,7 @@ C ... and restart the table:
y=sinh(x)
print y #prints {1.16933, 0.154051}
print asinh(y) #prints {57.29578, 5.729578}
-^ Polar plot using `set angles`.
+^ Polar plot using `set angles`.
3 arrow
?commands set arrow
?commands set noarrow
@@ -3216,7 +3218,7 @@ C ... and restart the table:
Explicitly setting one or two ranges but not others may lead to unexpected
results.
-^ See polar demos
+^ See polar demos
3 bar
?commands set bar
?commands show bar
@@ -3292,7 +3294,10 @@ C ... and restart the table:
Using the optional , and
specifiers, the way the border lines are drawn can be influenced
- (limited by what the current terminal driver supports).
+ (limited by what the current terminal driver supports). By default,
+ the border is drawn with twice the usual linewidth. The
+ specifier scales this default value; for example, `set border 15 lw 2`
+ will produce a border with four times the usual linewidth.
Various axes or combinations of axes may be added together in the command.
@@ -3513,8 +3518,8 @@ C ... and restart the table:
See also `set contour` for control of where the contours are drawn, and `set
clabel` for control of the format of the contour labels and linetypes.
-^ Contours Demo and
-^ contours with User Defined Levels.
+^ Contours Demo and
+^ contours with User Defined Levels.
3 contour
?commands set contour
?commands set nocontour
@@ -3564,8 +3569,8 @@ C ... and restart the table:
If contours are desired from non-grid data, `set dgrid3d` can be used to
create an appropriate grid. See `set dgrid3d` for more information.
-^ Contours Demo and
-^ contours with User Defined Levels.
+^ Contours Demo and
+^ contours with User Defined Levels.
3 data style
?commands set data style
?commands show data style
@@ -3641,7 +3646,7 @@ C ... and restart the table:
The first specifies that a grid of size 10 by 10 is to be constructed using
a norm value of 1 in the weight computation. The second only modifies the
norm, changing it to 4.
-^ Dgrid3d Demo.
+^ Dgrid3d Demo.
3 dummy
?commands set dummy
@@ -3727,7 +3732,7 @@ C ... and restart the table:
after each number. If you want "%" itself, double it: "%g %%".
See also `set xtics` for more information about tic labels.
-^ See demo.
+^ See demo.
4 format specifiers
?commands set format specifiers
?set format specifiers
@@ -3948,8 +3953,8 @@ C ... and restart the table:
For information about the definition and usage of functions in `gnuplot`,
please see `expressions`.
-^ Splines as User Defined Functions.
-^ Use of functions and complex variables for airfoils
+^ Splines as User Defined Functions.
+^ Use of functions and complex variables for airfoils
3 grid
?commands set grid
?commands set nogrid
@@ -3992,6 +3997,10 @@ C ... and restart the table:
If no linetype is specified for the minor gridlines, the same linetype as the
major gridlines is used. The default polar angle is 30 degrees.
+ By default, grid lines are drawn with half the usual linewidth. The major and
+ minor linewidth specifiers scale this default value; for example, `set grid
+ lw .5` will draw grid lines with one quarter the usual linewidth.
+
Z grid lines are drawn on the back of the plot. This looks better if a
partial box is drawn around the plot---see `set border`.
3 hidden3d
@@ -4100,8 +4109,8 @@ C ... and restart the table:
normally, making the resulting display hard to understand. Therefore, the
default option of `bentover` will turn it visible in this case. If you don't
want that, you may choose `nobentover` instead.
-^ Hidden Line Removal Demo and
-^ Complex Hidden Line Demo.
+^ Hidden Line Removal Demo and
+^ Complex Hidden Line Demo.
3 isosamples
?commands set isosamples
?commands show isosamples
@@ -4482,17 +4491,15 @@ C ... and restart the table:
necessary if the data in the file are not in the required order.
`mapping` has no effect on `plot`.
-^ Mapping Demos.
+^ Mapping Demos.
3 margin
?commands set margin
?commands show margin
?set margin
?show margin
?margin
- Normally the margins of a plot are automatically calculated based on tics
- and axis labels (and the size of the graph correspondingly adjusted.) These
- computed values can be overridden by the `set margin` commands. `show margin`
- shows the current settings.
+ The computed margins can be overridden by the `set margin` commands. `show
+ margin` shows the current settings.
Syntax:
set bmargin {}
@@ -4504,6 +4511,14 @@ C ... and restart the table:
The units of are character heights or widths, as appropriate. A
positive value defines the absolute size of the margin. A negative value
(or none) causes `gnuplot` to revert to the computed value.
+
+ Normally the margins of a plot are automatically calculated based on tics,
+ tic labels, axis labels, the plot title, the timestamp and the size of the
+ key if it is outside the borders. If, however, tics are attached to the
+ axes (`set xtics axis`, for example), neither the tics themselves nor their
+ labels will be included in either the margin calculation or the calculation
+ of the positions of other text to be written in the margin. This can lead
+ to tic labels overwriting other text if the axis is very close to the border.
3 missing
?commands set missing
?set missing
@@ -4583,7 +4598,7 @@ C ... and restart the table:
in character units, so the appearance of the graph in the remaining space
will depend on the screen size of the display device, e.g., perhaps quite
different on a video display and a printer.
-^ See demo.
+^ See demo.
3 mx2tics
?commands set mx2tics
?commands set nomx2tics
@@ -4876,8 +4891,8 @@ C ... and restart the table:
You may want to `set size square` to have `gnuplot` try to make the aspect
ratio equal to unity, so that circles look circular.
-^ Polar demos
-^ Polar Data Plot.
+^ Polar demos
+^ Polar Data Plot.
3 rmargin
?commands set rmargin
?set rmargin
@@ -4975,7 +4990,7 @@ C ... and restart the table:
To make the graph twice as high as wide use:
set size ratio 2
-^ See demo.
+^ See demo.
3 style
?commands set function style
?commands show function style
@@ -5126,7 +5141,7 @@ C ... and restart the table:
The `fsteps` style is only relevant to 2-d plotting. It connects consecutive
points with two line segments: the first from (x1,y1) to (x1,y2) and the
second from (x1,y2) to (x2,y2).
-^ See demo.
+^ See demo.
4 histeps
?commands set style histeps
?set style histeps
@@ -5141,7 +5156,7 @@ C ... and restart the table:
If `autoscale` is in effect, it selects the xrange from the data rather than
the steps, so the end points will appear only half as wide as the others.
-^ See demo.
+^ See demo.
`histeps` is only a plotting style; `gnuplot` does not have the ability to
create bins and determine their population from some data set.
@@ -5189,7 +5204,7 @@ C ... and restart the table:
The `steps` style is only relevant to 2-d plotting. It connects consecutive
points with two line segments: the first from (x1,y1) to (x2,y1) and the
second from (x2,y1) to (x2,y2).
-^ See demo.
+^ See demo.
4 vector
?commands set style vector
?set style vector
@@ -5474,7 +5489,7 @@ C ... and restart the table:
tells `gnuplot` to read date and time separated by tab. (But look closely at
your data---what began as a tab may have been converted to spaces somewhere
along the line; the format string must match what is actually in the file.)
-^ Time Data Demo
+^ Time Data Demo
3 title
?commands set title
?commands show title
@@ -5903,21 +5918,27 @@ C ... and restart the table:
The same syntax applies to `ytics`, `ztics`, `x2tics` and `y2tics`.
`axis` or `border` tells `gnuplot` to put the tics (both the tics themselves
- and the accompanying labels) along the axis or the border, respectively.
- `mirror` tells it to put unlabelled tics at the same positions on the
- opposite border. `nomirror` does what you think it does. `rotate` asks
- `gnuplot` to rotate the text through 90 degrees, if the underlying terminal
- driver supports text rotation. `norotate` cancels this. The defaults are
- `border mirror norotate` for tics on the x and y axes, and `border nomirror
- norotate` for tics on the x2 and y2 axes. For the z axis, the the `{axis |
- border}` option is not available and the default is `nomirror`. If you do
- want to mirror the z-axis tics, you might want to create a bit more room for
- them with `set border`.
+ and the accompanying labels) along the axis or the border, respectively. If
+ the axis is very close to the border, the `axis` option can result in tic
+ labels overwriting other text written in the margin.
- `set xtics` with no options restores the default border if xtics are not
- being displayed; otherwise it has no effect. Any previously specified
- tic frequency or position {and labels} are retained.
+ `mirror` tells `gnuplot` to put unlabelled tics at the same positions on the
+ opposite border. `nomirror` does what you think it does.
+ `rotate` asks `gnuplot` to rotate the text through 90 degrees, which will be
+ done if the terminal driver in use supports text rotation. `norotate`
+ cancels this.
+
+ The defaults are `border mirror norotate` for tics on the x and y axes, and
+ `border nomirror norotate` for tics on the x2 and y2 axes. For the z axis,
+ the the `{axis | border}` option is not available and the default is
+ `nomirror`. If you do want to mirror the z-axis tics, you might want to
+ create a bit more room for them with `set border`.
+
+ `set xtics` with no options restores the default border or axis if xtics are
+ being displayed; otherwise it has no effect. Any previously specified tic
+ frequency or position {and labels} are retained.
+
Positions of the tics are calculated automatically by default or if the
`autofreq` option is given; otherwise they may be specified in either of
two forms:
@@ -6384,7 +6405,7 @@ C ... and restart the table:
The `index` keyword is not supported, since the file format allows only one
surface per file. The `every` and `using` filters are supported. `using`
operates as if the data were read in the above triplet form.
-^ Binary File Splot Demo.
+^ Binary File Splot Demo.
4 example datafile
?commands splot datafile example
?splot datafile example