Annotation of OpenXM_contrib/pari-2.2/doc/refcard.tex, Revision 1.1.1.1
1.1 noro 1: % $Id: refcard.tex,v 1.8 2001/08/28 17:00:00 karim Exp $
2: % This file is intended to be processed by plain TeX (TeX82).
3: % Reference Card for PARI-GP version 2.1
4:
5: % Copyright (c) 1997-2000 Karim Belabas.
6: % Permission is granted to copy, distribute and/or modify this document
7: % under the terms of the GNU Free Documentation License
8:
9: % Based on an earlier version by Joseph H. Silverman who kindly let me
10: % use his original file.
11: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12: % The original copyright notice read:
13: %
14: %% Copyright (c) 1993,1994 Joseph H. Silverman. May be freely distributed.
15: %% Created Tuesday, July 27, 1993
16: %% Thanks to Stephen Gildea for the multicolumn macro package
17: %% which I modified from his GNU emacs reference card
18: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19: \def\TITLE{Pari-GP reference card}
20: % ignore parimacro.tex's \magnification setting
21: \let\oldmagnification\magnification
22: \catcode`@=11
23: \def\magnification{\count@}%
24: \catcode`@=12
25: \input parimacro.tex
26: \let\magnification\oldmagnification
27: \ifPDF
28: \input pdfmacs.tex
29: \pdfpagewidth=11.69in
30: \pdfpageheight=8.26in
31: \fi
32:
33: %**start of header
34: \newcount\columnsperpage
35: % The final reference card has six columns, three on each side.
36: % This file can be used to produce it in any of three ways:
37: % 1 column per page
38: % produces six separate pages, each of which needs to be reduced to 80%.
39: % This gives the best resolution.
40: % 2 columns per page
41: % produces three already-reduced pages.
42: % You will still need to cut and paste.
43: % 3 columns per page
44: % produces two pages which must be printed sideways to make a
45: % ready-to-use 8.5 x 11 inch reference card.
46: % For this you need a dvi device driver that can print sideways.
47: % [For 2 or 3 columns, you'll need 6 and 8 point fonts.]
48: % Which mode to use is controlled by setting \columnsperpage above.
49: %
50: % Specify how many columns per page you want here:
51: \columnsperpage=3
52:
53: % You shouldn't need to modify anything below this line.
54: %
55: % Author:
56: % Karim Belabas
57: % Universite Paris Sud
58: % Departement de Mathematiques (bat. 425)
59: % F-91405 Orsay
60: % Internet: Karim.Belabas@math.u-psud.fr
61: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
62: % (original reference card by Joseph H. Silverman)
63: % (original reference card macros due to Stephen Gildea)
64: % Original Thanks and History:
65: %
66: %% Thanks:
67: %% I would like to thank Jim Delaney, Kevin Buzzard, Dan Lieman,
68: %% and Jaap Top for sending me corrections.
69: %%
70: %% History:
71: %% Version 1.0 - July 1993, first general distribution
72: %% Version 1.1 - April 1994, corrected six typos
73: %% Version 1.2 - January 1995, minor corrections and additions
74: %% Version 1.3 - January 1996, minor corrections and additions
75: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
76: % Version 2.0 - November 1997, general distribution for GP 2.0
77: % Version 2.1 - January 1998, set nf,bnf,etc in a sensible font, updated default
78: % Version 2.2 - March 1998, some new functions (modpr, bnrstark), updated
79: % concat, removed spurious tabs.
80: % Version 2.3 - May 1998, added write1, corrected my email address.
81: % Version 2.4 - July 1998, removed vecindexsort, added ellrootno, updated
82: % elllseries
83: % Version 2.5 - October 1998, updated elliptic functions. Added quadray and
84: % user member functions
85: % Version 2.6 - December 1998, added local() keyword
86: % Version 2.7 - February 1999, added some pointer '&' arguments. Removed
87: % rounderror
88: % Version 2.8 - April 1999, removed \k, added \l filename
89: % Version 2.9 - April 2000, added \o¸ updated control statements
90: % Version 2.10 - June 2000, updated polinterpolate
91: % Version 2.11 - November 2000, changed Copyright
92: %% Thanks to Bill Allombert, Henri Cohen, Gerhard Niklasch, and Joe
93: %% Silverman for many comments and corrections.
94:
95: \def\versionnumber{2.11}% Version of this reference card
96: \def\PARIversion{2.1.0}% Version of PARI described on this reference card
97: \def\year{2000}
98: \def\month{November}
99: \def\version{\month\ \year\ v\versionnumber}
100:
101: \def\shortcopyrightnotice{\vskip .5ex plus 2 fill
102: \centerline{\small \copyright\ \year\ Karim Belabas.
103: Permissions on back. v\versionnumber}}
104:
105: \def\<#1>{$\langle${#1}$\rangle$}
106: \def\copyrightnotice{\vskip 1ex plus 2 fill
107: \begingroup\small
108: \centerline{Based on an earlier version by Joseph H. Silverman}
109: \centerline{\version. Copyright \copyright\ \year\ K. Belabas}
110: \centerline{GP copyright by The PARI Group}
111:
112: Permission is granted to make and distribute copies of this card provided the
113: copyright and this permission notice are preserved on all copies.
114:
115: Send comments and corrections to \<Karim.BELABAS@math.u-psud.fr>
116: \endgroup}
117:
118: % make \bye not \outer so that the \def\bye in the \else clause below
119: % can be scanned without complaint.
120: \def\bye{\par\vfill\supereject\end}
121:
122: \newdimen\intercolumnskip
123: \newbox\columna
124: \newbox\columnb
125:
126: \def\ncolumns{\the\columnsperpage}
127:
128: \message{[\ncolumns\space
129: column\if 1\ncolumns\else s\fi\space per page]}
130:
131: \def\scaledmag#1{ scaled \magstep #1}
132:
133: % This multi-way format was designed by Stephen Gildea
134: % October 1986.
135: \if 1\ncolumns
136: \hsize 4in
137: \vsize 10in
138: \voffset -.7in
139: \font\titlefont=\fontname\tenbf \scaledmag3
140: \font\headingfont=\fontname\tenbf \scaledmag2
141: \font\smallfont=\fontname\sevenrm
142: \font\smallsy=\fontname\sevensy
143:
144: \footline{\hss\folio}
145: \def\makefootline{\baselineskip10pt\hsize6.5in\line{\the\footline}}
146: \else
147: \hsize 3.2in
148: % \vsize 7.95in
149: \vsize 7.90in
150: \hoffset -.75in
151: % \voffset -.745in
152: \voffset -.815in
153: \font\titlefont=cmbx10 \scaledmag2
154: \font\headingfont=cmbx10 \scaledmag1
155: \font\smallfont=cmr6
156: \font\smallsy=cmsy6
157: \font\eightrm=cmr8
158: \font\eightbf=cmbx8
159: \font\eightit=cmti8
160: \font\eighttt=cmtt8
161: \font\eightsy=cmsy8
162: \font\eightsl=cmsl8
163: \font\eighti=cmmi8
164: \font\eightex=cmex10 at 8pt
165: \textfont0=\eightrm
166: \textfont1=\eighti
167: \textfont2=\eightsy
168: \textfont3=\eightex
169: \def\rm{\fam0 \eightrm}
170: \def\bf{\eightbf}
171: \def\it{\eightit}
172: \def\tt{\eighttt}
173: \normalbaselineskip=.8\normalbaselineskip
174: \normallineskip=.8\normallineskip
175: \normallineskiplimit=.8\normallineskiplimit
176: \normalbaselines\rm %make definitions take effect
177:
178: \if 2\ncolumns
179: \let\maxcolumn=b
180: \footline{\hss\rm\folio\hss}
181: \def\makefootline{\vskip 2in \hsize=6.86in\line{\the\footline}}
182: \else \if 3\ncolumns
183: \let\maxcolumn=c
184: \nopagenumbers
185: \else
186: \errhelp{You must set \columnsperpage equal to 1, 2, or 3.}
187: \errmessage{Illegal number of columns per page}
188: \fi\fi
189:
190: \intercolumnskip=.46in
191: \def\abc{a}
192: \output={%
193: % This next line is useful when designing the layout.
194: %\immediate\write16{Column \folio\abc\space starts with \firstmark}
195: \if \maxcolumn\abc \multicolumnformat \global\def\abc{a}
196: \else\if a\abc
197: \global\setbox\columna\columnbox \global\def\abc{b}
198: %% in case we never use \columnb (two-column mode)
199: \global\setbox\columnb\hbox to -\intercolumnskip{}
200: \else
201: \global\setbox\columnb\columnbox \global\def\abc{c}\fi\fi}
202: \def\multicolumnformat{\shipout\vbox{\makeheadline
203: \hbox{\box\columna\hskip\intercolumnskip
204: \box\columnb\hskip\intercolumnskip\columnbox}
205: \makefootline}\advancepageno}
206: \def\columnbox{\leftline{\pagebody}}
207:
208: \def\bye{\par\vfill\supereject
209: \if a\abc \else\null\vfill\eject\fi
210: \if a\abc \else\null\vfill\eject\fi
211: \end}
212: \fi
213:
214: % we won't be using math mode much, so redefine some of the characters
215: % we might want to talk about
216: %\catcode`\^=12
217: %\catcode`\_=12
218: %\catcode`\~=12
219:
220: \chardef\\=`\\
221: \chardef\{=`\{
222: \chardef\}=`\}
223:
224: \hyphenation{}
225:
226: \parindent 0pt
227: \parskip 0pt
228:
229: \def\small{\smallfont\textfont2=\smallsy\baselineskip=.8\baselineskip}
230:
231: \outer\def\newcolumn{\vfill\eject}
232:
233: \outer\def\title#1{{\titlefont\centerline{#1}}}
234:
235: \outer\def\section#1{\par\filbreak
236: \vskip 1.4ex plus .4ex minus .5ex
237: {\headingfont #1}\mark{#1}%
238: \vskip .7ex plus .3ex minus .5ex
239: }
240:
241: \outer\def\subsec#1{\filbreak
242: \vskip 0.1ex plus 0.05ex
243: {\bf #1}
244: \vskip 0.04ex plus 0.05ex
245: }
246:
247: \newdimen\keyindent
248: \def\beginindentedkeys{\keyindent=1em}
249: \def\endindentedkeys{\keyindent=0em}
250: \def\begindoubleindentedkeys{\keyindent=2em}
251: \def\enddoubleindentedkeys{\keyindent=1em}
252: \endindentedkeys
253:
254: \def\kbd#1{{\tt#1}\null} %\null so not an abbrev even if period follows
255: \def\var#1{\hbox{\it #1}}
256: \def\fl{\{\var{f{}l\/}\}}
257:
258: \def\key#1#2{\leavevmode\hbox to \hsize{\vtop
259: {\hsize=.75\hsize\rightskip=1em
260: \hskip\keyindent\relax#1}\kbd{#2}\hfil}}
261:
262: \newbox\libox
263: \setbox\libox\hbox{\kbd{M-x }}
264: \newdimen\liwidth
265: \liwidth=\wd\libox
266:
267: \def\li#1#2{\leavevmode\hbox to \hsize{\hbox to .75\hsize
268: {\hskip\keyindent\relax#1\hfil}%
269: \hskip -\liwidth minus 1fil
270: \kbd{#2}\hfil}}
271:
272: \def\threecol#1#2#3{\hskip\keyindent\relax#1\hfil&\kbd{#2}\quad
273: &\kbd{#3}\quad\cr}
274:
275: \def\mod{\;\hbox{\rm mod}\;}
276: \def\expr{\hbox{\it expr}}
277: \def\seq{\hbox{\it seq}}
278: \def\args{\hbox{\it args}}
279: \def\file{\hbox{\it file}}
280: \def\QQ{\hbox{\bf Q}}
281: \def\ZZ{\hbox{\bf Z}}
282: \def\RR{\hbox{\bf R}}
283: \def\FF{\hbox{\bf F}}
284: \def\CC{\hbox{\bf C}}
285: \def\deg{\mathop{\rm deg}}
286: \def\bs{\char'134}
287: \def\pow{\^{}\hskip0pt}
288: \def\til{\raise-0.3em\hbox{\~{}}}
289: \def\typ#1{\kbd{t\_#1}}
290: %**end of header
291:
292: \title{PARI-GP Reference Card}
293: \centerline{(PARI-GP version \PARIversion)}
294: Note: optional arguments are surrounded by braces {\tt \{\}}.
295:
296: \section{Starting \& Stopping GP}
297: \key{to enter GP, just type its name:}{gp}
298: \key{to exit GP, type}{\\q {\rm or }quit}
299:
300: \section{Help}
301: \li{describe function}{?{\rm function}}
302: \li{extended description}{??{\rm keyword}}
303: \li{list of relevant help topics}{???{\rm pattern}}
304:
305: \section{Input/Output \& Defaults}
306: \li{output previous line, the lines before}
307: {\%{\rm, }\%`{\rm, }\%``{\rm, etc.}}
308: \key{output from line $n$}{\%$n$}
309: \key{separate multiple statements on line}{;}
310: \key{extend statement on additional lines}{\\}
311: \key{extend statements on several lines}{\{\seq1; \seq2;\}}
312: \key{comment}{/* \dots */}
313: \key{one-line comment, rest of line ignored}{\\\\ \dots}
314: \li{set default $d$ to \var{val}} {default$(\{d\},\{\var{val}\},\fl)$}
315: \li{mimic behaviour of GP 1.39} {default(compatible,3)}
316:
317: \section{Metacommands}
318: \key{toggle timer on/off}{\#}
319: \key{print time for last result}{\#\#}
320: \key{print \%$n$ in raw format}{\\a $n$}
321: \key{print \%$n$ in pretty format}{\\b $n$}
322: \key{print defaults}{\\d}
323: \key{set debug level to $n$}{\\g $n$}
324: \key{set memory debug level to $n$}{\\gm $n$}
325: \key{enable/disable logfile}{\\l \{filename\}}
326: \key{print \%$n$ in pretty matrix format}{\\m}
327: \key{set output mode (raw, default, prettyprint)}{\\o $n$}
328: \key{set $n$ significant digits}{\\p $n$}
329: \key{set $n$ terms in series}{\\ps $n$}
330: \key{quit GP}{\\q}
331: \key{print the list of PARI types}{\\t}
332: \key{print the list of user-defined functions}{\\u}
333: \li{read file into GP}{\\r {\rm filename}}
334: \li{write \%$n$ to file}{\\w $n$ {\rm filename}}
335:
336: \section{GP Within Emacs}
337: \li{to enter GP from within Emacs:}{M-x gp{\rm,} C-u M-x gp}
338: \li{word completion}{<TAB>}
339: \li{help menu window}{M-\\c}
340: \li{describe function}{M-?}
341: \li{display \TeX'd PARI manual}{M-x gpman}
342: \li{set prompt string}{M-\\p}
343: \li{break line at column 100, insert \kbd{\\}}{M-\\\\}
344: \li{PARI metacommand \kbd{\\}{\it letter}}{M-\\\hbox{\it letter}}
345:
346: \section{Reserved Variable Names}
347: \li{$\pi=3.14159\cdots$}{Pi}
348: \li{Euler's constant ${}=.57721\cdots$}{Euler}
349: \li{square root of $-1$}{I}
350: \li{big-oh notation}{O}
351:
352: % ****************************************
353: % This goes at the bottom of page 1
354: \shortcopyrightnotice
355: \newcolumn
356:
357: \section{PARI Types \& Input Formats}
358: \li{\typ{INT}. Integers}{$\pm n$}
359: \li{\typ{REAL}. Real Numbers}{$\pm n.ddd$}
360: \li{\typ{INTMOD}. Integers modulo $m$}{Mod$(n,m)$}
361: \li{\typ{FRAC}. Rational Numbers}{$n/m$}
362: \li{\typ{COMPLEX}. Complex Numbers}{$x+\kbd{I}*y$}
363: \li{\typ{PADIC}. $p$-adic Numbers}{$x+O(p$\pow$k)$}
364: \li{\typ{QUAD}. Quadratic Numbers}{$x + y\,*\;$quadgen$(D)$}
365: \li{\typ{POLMOD}. Polynomials modulo $g$}{Mod$(f,g)$}
366: \li{\typ{POL}. Polynomials}{$a*x$\pow$n+\cdots+b$}
367: \li{\typ{SER}. Power Series}{$f+O(x$\pow$k)$}
368: \li{\typ{QFI}/\typ{QFR}. Imag/Real bin.\ quad.\ forms}
369: {Qfb$(a,b,c,\{d\})$}
370: \li{\typ{RFRAC}. Rational Functions}{$f/g$}
371: \li{\typ{VEC}/\typ{COL}. Row/Column Vectors}
372: {$[x,y,z]${\rm,} $[x,y,z]$\til}
373: %\li{\typ{COL}. Column Vectors}{$[x,y,z]$\til}
374: \li{\typ{MAT}. Matrices}{$[x,y;z,t;u,v]$}
375: \li{\typ{LIST}. Lists}{List$([x,y,z])$}
376: \li{\typ{STR}. Strings}{"aaa"}
377:
378: \section{Standard Operators}
379: \li{basic operations}{+{\rm,} - {\rm,} *{\rm,} /{\rm,} \pow}
380: \li{\kbd{i=i+1}, \kbd{i=i-1}, \kbd{i=i*j}, \dots}
381: {i++{\rm,} i--{\rm,} i*=j{\rm,}\dots}
382: \li{euclidean quotient, remainder}{$x$\bs/$y${\rm,} $x$\bs$y${\rm,}
383: $x$\%$y${\rm,} divrem$(x,y)$}
384: \li{shift $x$ left or right $n$ bits}{ $x$<<$n$, $x$>>$n$
385: {\rm or} shift$(x,n)$}
386: \li{comparison operators}{<={\rm, }<{\rm, }>={\rm, }>{\rm, }=={\rm, }!=}
387: \li{boolean operators (or, and, not)}{||{\rm, } \&\&{\rm ,} !}
388: \li{sign of $x=-1,0,1$}{sign$(x)$}
389: \li{maximum/minimum of $x$ and $y$}{max{\rm,} min$(x,y)$}
390: \li{integer or real factorial of $x$}{$x$!~{\rm or} fact$(x)$}
391:
392: \section{Conversions}
393: %
394: \subsec{Change Objects}
395: \li{make $x$ a vector, matrix, set, list, string}
396: {Vec{\rm,}Mat{\rm,}Set{\rm,}List{\rm,}Str}
397: \li{create PARI object $(x\mod y)$}{Mod$(x,y)$}
398: \li{make $x$ a polynomial of $v$}{Pol$(x,\{v\})$}
399: \li{as above, starting with constant term}{Polrev$(x,\{v\})$}
400: \li{make $x$ a power series of $v$}{Ser$(x,\{v\})$}
401: \li{PARI type of object $x$}{type$(x, \{t\})$}
402: \li{object $x$ with precision $n$}{prec$(x,\{n\})$}
403: \li{evaluate $f$ replacing vars by their value}{eval$(f)$}
404: %
405: \subsec{Select Pieces of an Object}
406: \li{length of $x$}{length$(x)$}
407: \li{$n$-th component of $x$}{component$(x,n)$}
408: \li{$n$-th component of vector/list $x$}{$x$[n]}
409: \li{$(m,n)$-th component of matrix $x$}{$x$[m,n]}
410: \li{row $m$ or column $n$ of matrix $x$}{$x$[m,]{\rm,} $x$[,n]}
411: \li{numerator of $x$}{numerator$(x)$}
412: \li{lowest denominator of $x$}{denominator$(x)$}
413: %
414: \subsec{Conjugates and Lifts}
415: \li{conjugate of a number $x$}{conj$(x)$}
416: \li{conjugate vector of algebraic number $x$}{conjvec$(x)$}
417: \li{norm of $x$, product with conjugate}{norm$(x)$}
418: \li{square of $L^2$ norm of vector $x$}{norml2$(x)$}
419: \li{lift of $x$ from Mods}{lift{\rm,} centerlift$(x)$}
420:
421: \section{Random Numbers}
422: \li{random integer between $0$ and $N-1$}{random$(\{N\})$}
423: \li{get random seed}{getrand$()$}
424: \li{set random seed to $s$}{setrand$(s)$}
425:
426: \begingroup
427: \outer\def\subsec#1{\filbreak
428: \vskip 0.05ex plus 0.05ex
429: {\bf #1}
430: \vskip 0.05ex plus 0.05ex
431: }
432:
433: \section{Lists, Sets \& Sorting}
434: \li{sort $x$ by $k$th component}{vecsort$(x,\{k\},\{\fl=0\})$}
435: {\bf Sets} (= row vector of strings with strictly increasing entries)\hfill\break
436: %
437: \li{intersection of sets $x$ and $y$}{setintersect$(x,y)$}
438: \li{set of elements in $x$ not belonging to $y$}{setminus$(x,y)$}
439: \li{union of sets $x$ and $y$}{setunion$(x,y)$}
440: \li{look if $y$ belongs to the set $x$}{setsearch$(x,y,\fl)$}
441: %
442: \subsec{Lists}
443: \li{create empty list of maximal length $n$}{listcreate$(n)$}
444: \li{delete all components of list $l$}{listkill$(l)$}
445: \li{append $x$ to list $l$}{listput$(l,x,\{i\})$}
446: \li{insert $x$ in list $l$ at position $i$}{listinsert$(l,x,i)$}
447: \li{sort the list $l$}{listsort$(l,\fl)$}
448:
449: \section{Programming \& User Functions}
450: \subsec{Control Statements {\rm ($X$: formal parameter in expression \seq)}}
451: \li{eval.\ \seq\ for $a\le X\le b$}{for$(X=a,b,\seq)$}
452: \li{eval.\ \seq\ for $X$ dividing $n$}{fordiv$(n,X,\seq)$}
453: \li{eval.\ \seq\ for primes $a\le X\le b$}{forprime$(X=a,b,\seq)$}
454: \li{eval.\ \seq\ for $a\le X\le b$ stepping $s$}{forstep$(X=a,b,s,\seq)$}
455: \li{multivariable {\tt for}}{forvec$(X=v,\seq)$}
456: \li{if $a\ne0$, evaluate \seq1, else \seq2}{if$(a,\{\seq1\},\{\seq2\})$}
457: \li{evaluate \seq\ until $a\ne0$}{until$(a,\seq)$}
458: \li{while $a\ne0$, evaluate \seq}{while$(a,\seq)$}
459: \li{exit $n$ innermost enclosing loops}{break$(\{n\})$}
460: \li{start new iteration of $n$th enclosing loop}{next$(\{n\})$}
461: \li{return $x$ from current subroutine}{return$(x)$}
462: \li{error recovery (try \seq1)}{trap$(\{err\},\{\seq2\},\{\seq1\})$}
463: %
464: \subsec{Input/Output}
465: \li{prettyprint args with/without newline}{printp(){\rm,} printp1()}
466: \li{print args with/without newline}{print(){\rm,} print1()}
467: \li{read a string from keyboard}{input$()$}
468: \li{reorder priority of variables $[x,y,z]$}{reorder$(\{[x,y,z]\})$}
469: \li{output \args\ in \TeX\ format}{printtex$(\args)$}
470: \li{write \args\ to file}{write{\rm,} write1{\rm,} writetex$(\file,\args)$}
471: \li{read file into GP}{read(\{\file\})}
472: %
473: \subsec{Interface with User and System}
474: \li{allocates a new stack of $s$ bytes}{allocatemem$(\{s\})$}
475: \li{execute system command $a$}{system$(a)$}
476: \li{as above, feed result to GP}{extern$(a)$}
477: \li{install function from library}{install$(f,code,\{\var{gpf\/}\},\{\var{lib}\})$}
478: \li{alias \var{old}\ to \var{new}}{alias$(\var{new},\var{old})$}
479: \li{new name of function $f$ in GP 2.0}{whatnow$(f)$}
480: %
481: \subsec{User Defined Functions}
482: \leavevmode
483: {\tt name(formal vars) = local(local vars); \var{seq}}\hfill\break
484: {\tt struct.member = \var{seq}}\hfill\break
485: \li{kill value of variable or function $x$}{kill$(x)$}
486: \li{declare global variables}{global$(x,...)$}
487:
488: \section{Iterations, Sums \& Products}
489: \li{numerical integration}{intnum$(X=a,b,\expr,\fl)$}
490: \li{sum \expr\ over divisors of $n$}{sumdiv$(n,X,\expr)$}
491: \li{sum $X=a$ to $X=b$, initialized at $x$}{sum$(X=a,b,\expr,\{x\})$}
492: \li{sum of series \expr}{suminf$(X=a,\expr)$}
493: \li{sum of alternating/positive series}{sumalt{\rm,} sumpos}
494: \li{product $a\le X\le b$, initialized at $x$}{prod$(X=a,b,\expr,\{x\})$}
495: \li{product over primes $a\le X\le b$}{prodeuler$(X=a,b,\expr)$}
496: \li{infinite product $a\le X\le\infty$}{prodinf$(X=a,\expr)$}
497: \li{real root of \expr\ between $a$ and $b$}{solve$(X=a,b,\expr)$}
498: \endgroup
499:
500: % This goes at the top of page 4 (=1st column on back of reference card)
501:
502: \section{Vectors \& Matrices}
503: %
504: \li{dimensions of matrix $x$}{matsize$(x)$}
505: \li{concatenation of $x$ and $y$}{concat$(x,\{y\})$}
506: \li{extract components of $x$}{vecextract$(x,y,\{z\})$}
507: \li{transpose of vector or matrix $x$}{mattranspose$(x)$ {\rm or} $x$\til}
508: \li{adjoint of the matrix $x$}{matadj$(x)$}
509: \li{eigenvectors of matrix $x$}{mateigen$(x)$}
510: \li{characteristic polynomial of $x$}{charpoly$(x,\{v\},\fl)$}
511: \li{trace of matrix $x$}{trace$(x)$}
512: %
513: \subsec{Constructors \& Special Matrices}
514: \li{row vec.\ of \expr\ eval'ed at $1\le X\le n$}{vector$(n,\{X\},\{\expr\})$}
515: \li{col.\ vec.\ of \expr\ eval'ed at $1\le X\le n$}{vectorv$(n,\{X\},\{\expr\})$}
516: \li{matrix $1\le X\le m$, $1\le Y\le n$}{matrix$(m,n,\{X\},\{Y\},\{\expr\})$}
517: \li{diagonal matrix whose diag. is $x$}{matdiagonal$(x)$}
518: \li{$n\times n$ identity matrix}{matid$(n)$}
519: \li{Hessenberg form of square matrix $x$}{mathess$(x)$}
520: \li{$n\times n$ Hilbert matrix $H_{ij}=(i+j-1)^{-1}$}{mathilbert$(n)$}
521: \li{$n\times n$ Pascal triangle $P_{ij}={i\choose j}$}{matpascal$(n-1)$}
522: \li{companion matrix to polynomial $x$}{matcompanion$(x)$}
523: %
524: \subsec{Gaussian elimination}
525: \li{determinant of matrix $x$}{matdet$(x,\fl)$}
526: \li{kernel of matrix $x$}{matker$(x,\fl)$}
527: \li{intersection of column spaces of $x$ and $y$}{matintersect$(x,y)$}
528: \li{solve $M*X = B$ ($M$ invertible)}{matsolve$(M,B)$}
529: \li{as solve, modulo $D$ (col. vector)}{matsolvemod$(M,D,B)$}
530: \li{one sol of $M*X = B$}{matinverseimage$(M,B)$}
531: \li{basis for image of matrix $x$}{matimage$(x)$}
532: \li{supplement columns of $x$ to get basis}{matsupplement$(x)$}
533: \li{rows, cols to extract invertible matrix}{matindexrank$(x)$}
534: \li{rank of the matrix $x$}{matrank$(x)$}
535:
536: \section{Lattices \& Quadratic Forms}
537: \li{upper triangular Hermite Normal Form}{mathnf$(x)$}
538: \li{HNF of $x$ where $d$ is a multiple of det$(x)$}{mathnfmod$(x,d)$}
539: \li{vector of elementary divisors of $x$}{matsnf$(x)$}
540: \li{LLL-algorithm applied to columns of $x$}{qflll$(x,\fl)$}
541: \li{like \kbd{qflll}, $x$ is Gram matrix of lattice}
542: {qflllgram$(x,\fl)$}
543: \li{LLL-reduced basis for kernel of $x$}{matkerint$(x)$}
544: \li{$\ZZ$-lattice $\longleftrightarrow$ $\QQ$-vector space}{matrixqz$(x,p)$}
545: %
546: \subsec{Quadratic Forms}
547: \li{signature of quad form $^ty*x*y$}{qfsign$(x)$}
548: \li{decomp into squares of $^ty*x*y$}{qfgaussred$(x)$}
549: \li{find up to $m$ sols of $^ty*x*y\le b$}{qfminim$(x,b,m)$}
550: %\li{perfection rank of $x$}{qfperfection$(x)$}
551: \li{eigenvals/eigenvecs for real symmetric $x$}{qfjacobi$(x)$}
552:
553: \section{Formal \& p-adic Series}
554: \li{truncate power series or $p$-adic number}{truncate$(x)$}
555: \li{valuation of $x$ at $p$}{valuation$(x,p)$}
556: \subsec{Dirichlet and Power Series}
557: \li{Taylor expansion around $0$ of $f$ w.r.t. $x$}{taylor$(f,x)$}
558: \li{$\sum a_kb_kt^k$ from $\sum a_kt^k$ and $\sum b_kt^k$}{serconvol$(x,y)$}
559: \li{$f=\sum a_k*t^k$ from $\sum (a_k/k!)*t^k$}{serlaplace$(f)$}
560: \li{reverse power series $F$ so $F(f(x))=x$}{serreverse$(f)$}
561: \li{Dirichlet series multiplication / division}{dirmul{\rm,} dirdiv$(x,y)$}
562: \li{Dirichlet Euler product ($b$ terms)}{direuler$(p=a,b,\expr)$}
563: \subsec{$p$-adic Functions}
564: \li{square of $x$, good for $2$-adics}{sqr$(x)$}
565: \li{Teichmuller character of $x$}{teichmuller$(x)$}
566: \li{Newton polygon of $f$ for prime $p$}{newtonpoly$(f,p)$}
567:
568: \newcolumn
569: \title{PARI-GP Reference Card}
570: \centerline{(PARI-GP version \PARIversion)}
571:
572: \section{Polynomials \& Rational Functions}
573: %
574: \li{degree of $f$}{poldegree$(f)$}
575: \li{coefficient of degree $n$ of $f$}{polcoeff$(f,n)$}
576: \li{round coeffs of $f$ to nearest integer}{round$(f,\{\&e\})$}
577: \li{gcd of coefficients of $f$}{content$(f)$}
578: \li{replace $x$ by $y$ in $f$}{subst$(f,x,y)$}
579: \li{discriminant of polynomial $f$}{poldisc$(f)$}
580: %\li{elementary divisors of Z[a]/f'(a)Z[a]}{poldiscreduced$(f)$}
581: \li{resultant of $f$ and $g$}{polresultant$(f,g,\fl)$}
582: \li{as above, give $[u,v,d]$, $xu + yv = d$}{bezoutres$(x,y)$}
583: \li{derivative of $f$ w.r.t. $x$}{deriv$(f,x)$}
584: \li{formal integral of $f$ w.r.t. $x$}{intformal$(f,x)$}
585: \li{reciprocal poly $x^{\deg f}f(1/x)$}{polrecip$(f)$}
586: \li{interpolating poly evaluated at $a$}{polinterpolate$(X,\{Y\},\{a\},\{\&e\})$}
587: \li{initialize $t$ for Thue equation solver}{thueinit(f)}
588: \li{solve Thue equation $f(x,y)=a$}{thue$(t,a,\{sol\})$}
589: %
590: \subsec{Roots and Factorization}
591: \li{number of real roots of $f$, $a < x\le b$}{polsturm$(f,\{a\},\{b\})$}
592: \li{complex roots of $f$}{polroots$(f)$}
593: \li{symmetric powers of roots of $f$ up to $n$}{polsym$(f,n)$}
594: \li{roots of $f \mod p$}{polrootsmod$(f,p,\fl)$}
595: \li{factor $f$}{factor$(f,\{lim\})$}
596: \li{factorization of $f\mod p$}{factormod$(f,p,\fl)$}
597: \li{factorization of $f$ over $\FF_{p^a}$}{factorff$(f,p,a)$}
598: \li{$p$-adic fact. of $f$ to prec. $r$}{factorpadic$(f,p,r,\fl)$}
599: \li{$p$-adic roots of $f$ to prec. $r$}{polrootspadic$(f,p,r)$}
600: \li{$p$-adic root of $f$ cong. to $a\mod p$}{padicappr$(f,a)$}
601: \li{Newton polygon of $f$ for prime $p$}{newtonpoly$(f,p)$}
602: %
603: \subsec{Special Polynomials}
604: \li{$n$th cyclotomic polynomial in var. $v$}{polcyclo$(n,\{v\})$}
605: \li{$d$-th degree subfield of $\QQ(\zeta_n)$} {polsubcyclo$(n,d,\{v\})$}
606: \li{$n$-th Legendre polynomial}{pollegendre$(n)$}
607: \li{$n$-th Tchebicheff polynomial}{poltchebi$(n)$}
608: \li{Zagier's polynomial of index $n$,$m$}{polzagier$(n,m)$}
609:
610: \section{Transcendental Functions}
611: \li{real, imaginary part of $x$}{real$(x)$, imag$(x)$}
612: \li{absolute value, argument of $x$}{abs$(x)$, arg$(x)$}
613: \li{square/nth root of $x$}{sqrt$(x)$, sqrtn$(x,n,\&z)$}
614: \li{trig functions}{sin, cos, tan, cotan}
615: \li{inverse trig functions}{asin, acos, atan}
616: \li{hyperbolic functions}{sinh, cosh, tanh}
617: \li{inverse hyperbolic functions}{asinh, acosh, atanh}
618: \li{exponential of $x$}{exp$(x)$}
619: \li{natural log of $x$}{ln$(x)$ {\rm or} log$(x)$}
620: %
621: \li{gamma function $\Gamma(x)=\int_0^\infty e^{-t}t^{x-1}dt$}{gamma$(x)$}
622: %\li{half-integer gamma function $\Gamma(n+1/2)$}{gammah$(n)$}
623: \li{logarithm of gamma function}{lngamma$(x)$}
624: \li{$\psi(x)=\Gamma'(x)/\Gamma(x)$}{psi$(x)$}
625: \li{incomplete gamma function ($y=\Gamma(s)$)}{incgam$(s,x,\{y\})$}
626: \li{exponential integral $\int_x^\infty e^{-t}/t\,dt$}{eint1$(x)$}
627: \li{error function $2/\sqrt\pi\int_x^\infty e^{-t^2}dt$}{erfc$(x)$}
628: \li{dilogarithm of $x$}{dilog$(x)$}
629: \li{$m$th polylogarithm of $x$}{polylog$(m,x,\fl)$}
630: \li{$U$-confluent hypergeometric function}{hyperu$(a,b,u)$}
631: \li{$J$-Bessel function $J_{n+1/2}(x)$}{besseljh$(n,x)$}
632: \li{$K$-Bessel function of index \var{nu}}{besselk$(\var{nu},x)$}
633:
634: \section{Elementary Arithmetic Functions}
635: \li{vector of binary digits of $|x|$}{binary$(x)$}
636: \li{give bit number $n$ of integer $x$}{bittest$(x,n)$}
637: \li{ceiling of $x$}{ceil$(x)$}
638: \li{floor of $x$}{floor$(x)$}
639: \li{fractional part of $x$}{frac$(x)$}
640: \li{round $x$ to nearest integer}{round$(x,\{\&e\})$}
641: \li{truncate $x$}{truncate$(x,\{\&e\})$}
642: \li{gcd of $x$ and $y$}{gcd$(x,y)$}
643: \li{LCM of $x$ and $y$}{lcm$(x,y)$}
644: \li{gcd of entries of a vector/matrix}{content$(x)$}
645: \par
646: \subsec{Primes and Factorization}
647: \li{add primes in $v$ to the prime table}{addprimes$(v)$}
648: \li{the $n$th prime}{prime$(n)$}
649: \li{vector of first $n$ primes}{primes$(n)$}
650: \li{smallest prime $\ge x$}{nextprime$(x)$}
651: \li{largest prime $\le x$}{precprime$(x)$}
652: \li{factorization of $x$}{factor$(x,\{lim\})$}
653: \li{reconstruct $x$ from its factorization}{factorback$(fa,\{nf\})$}
654: \par
655: \subsec{Divisors}
656: \li{number of distinct prime divisors}{omega$(x)$}
657: \li{number of prime divisors with mult}{bigomega$(x)$}
658: \li{number of divisors of $x$}{numdiv$(x)$}
659: \li{row vector of divisors of $x$}{divisors$(x)$}
660: \li{sum of ($k$-th powers of) divisors of $x$}{sigma$(x,\{k\})$}
661: \par
662: \subsec{Special Functions and Numbers}
663: \li{binomial coefficient $x\choose y$}{binomial$(x,y)$}
664: \li{Bernoulli number $B_n$ as real}{bernreal$(n)$}
665: \li{Bernoulli vector $B_0,B_2,\ldots,B_{2n}$}{bernvec$(n)$}
666: \li{$n$th Fibonacci number}{fibonacci$(n)$}
667: \li{Euler $\phi$-function}{eulerphi$(x)$}
668: \li{M\"obius $\mu$-function}{moebius$(x)$}
669: \li{Hilbert symbol of $x$ and $y$ (at $p$)}{hilbert$(x,y,\{p\})$}
670: \li{Kronecker-Legendre symbol $({x\over y})$}{kronecker$(x,y)$}
671: \par
672: \subsec{Miscellaneous}
673: \li{integer or real factorial of $x$}{$x!$ {\rm or} fact$(x)$}
674: \li{integer square root of $x$}{sqrtint$(x)$}
675: \li{solve $z\equiv x$ and $z\equiv y$}{chinese$(x,y)$}
676: \li{minimal $u,v$ so $xu+yv=\gcd(x,y)$}{bezout$(x,y)$}
677: \li{multiplicative order of $x$ (intmod)}{znorder$(x)$}
678: \li{primitive root mod prime power $q$}{znprimroot$(q)$}
679: \li{structure of $(\ZZ/n\ZZ)^*$}{znstar$(n)$}
680: \li{continued fraction of $x$}{contfrac$(x,\{b\},\{lmax\})$}
681: \li{last convergent of continued fraction $x$}{contfracpnqn$(x)$}
682: \li{best rational approximation to $x$}{bestappr$(x,k)$}
683:
684: \section{True-False Tests}
685: \li{is $x$ the disc. of a quadratic field?}{isfundamental$(x)$}
686: \li{is $x$ a prime?}{isprime$(x)$}
687: \li{is $x$ a strong pseudo-prime?}{ispseudoprime$(x)$}
688: \li{is $x$ square-free?}{issquarefree$(x)$}
689: \li{is $x$ a square?}{issquare$(x,\{\&n\})$}
690: \li{is \var{pol}\ irreducible?}{polisirreducible$(\var{pol})$}
691:
692: % This goes at the bottom of the second page (column 6)
693: \copyrightnotice
694: %
695:
696: %%%%%%%%%%% Extra Material (part II)
697: %
698: \newcolumn
699: \title{PARI-GP Reference Card (2)}
700: \centerline{(PARI-GP version \PARIversion)}
701:
702: \section{Elliptic Curves}
703: %
704: Elliptic curve initially given by $5$-tuple $E=$\kbd{[a1,a2,a3,a4,a6]}.
705: Points are \kbd{[x,y]}, the origin is \kbd{[0]}.
706: \hfill\break
707: \li{Initialize elliptic struct. $\var{ell}$, i.e create}{ellinit$(E,\fl)$}
708: \leavevmode\strut\hskip1em
709: $a_1,a_2,a_3,a_4,a_6,b_2,b_4,b_6,b_8,c_4,c_6,disc,j$. This data can be
710: recovered by typing \kbd{\var{ell}.a1},$\dots$,\kbd{\var{ell}.j}.
711: If $\var{fl}$ omitted, also
712: \hfill\break
713: \beginindentedkeys
714: \li{$E$ defined over $\RR$}{}
715: \begindoubleindentedkeys
716: \key{$x$-coords. of points of order $2$}{\var{ell}.roots}
717: \key{real and complex periods}{\var{ell}.omega}
718: \key{associated quasi-periods}{\var{ell}.eta}
719: \key{volume of complex lattice}{\var{ell}.area}
720: \enddoubleindentedkeys
721: \li{$E$ defined over $\QQ_p$, $|j|_p>1$}{}
722: \begindoubleindentedkeys
723: \key{$x$-coord. of unit $2$ torsion point}{\var{ell}.roots}
724: \key{Tate's $[u^2, u, q]$}{\var{ell}.tate}
725: \key{Mestre's $w$}{\var{ell}.w}
726: \endindentedkeys
727: \li{change curve $E$ using $v=[u,r,s,t]$}{ellchangecurve$(ell,v)$}
728: \li{change point $z$ using $v=[u,r,s,t]$}{ellchangepoint$(z,v)$}
729: \li{cond, min mod, Tamgawa nmbr $[N,v,c]$}{ellglobalred$(ell)$}
730: \li{Kodaira type of $p$ fiber of $E$}{elllocalred$(ell,p)$}
731: \li{add points $z1+z2$}{elladd$(ell,z1,z2)$}
732: \li{subtract points $z1-z2$}{ellsub$(ell,z1,z2)$}
733: \li{compute $n\cdot z$}{ellpow$(ell,z,n)$}
734: \li{check if $z$ is on $E$}{ellisoncurve$(ell,z)$}
735: \li{order of torsion point $z$}{ellorder$(ell,z)$}
736: \li{torsion subgroup with generators}{elltors$(ell)$}
737: \li{$y$-coordinates of point(s) for $x$}{ellordinate$(ell,x)$}
738: \li{canonical bilinear form taken at $z1$, $z2$}{ellbil$(ell,z1,z2)$}
739: \li{canonical height of $z$}{ellheight$(ell,z,\fl)$}
740: \li{height regulator matrix for pts in $x$}{ellheightmatrix$(ell,x)$}
741: \li{$p$th coeff $a_p$ of $L$-function, $p$ prime}{ellap$(ell,p)$}
742: \li{$k$th coeff $a_k$ of $L$-function}{ellak$(ell,k)$}
743: \li{vector of first $n$ $a_k$'s in $L$-function}{ellan$(ell,n)$}
744: \li{$L(E,s)$, set $A\approx1$}{elllseries$(ell,s,\{A\})$}
745: \li{root number for $L(E,.)$ at $p$}{ellrootno$(ell,\{p\})$}
746: \li{modular parametrization of $E$}{elltaniyama$(ell)$}
747: \li{point $[\wp(z),\wp'(z)]$ corresp. to $z$}{ellztopoint$(ell,z)$}
748: \li{complex $z$ such that $p=[\wp(z),\wp'(z)]$}{ellpointtoz$(ell,p)$}
749:
750: \section{Elliptic \& Modular Functions}
751: %
752: \li{arithmetic-geometric mean}{agm$(x,y)$}
753: \li{elliptic $j$-function $1/q+744+\cdots$}{ellj$(x)$}
754: \li{Weierstrass $\sigma$ function}{ellsigma$(ell,z,\fl)$}
755: \li{Weierstrass $\wp$ function}{ellwp$(ell,\{z\},\fl)$}
756: \li{Weierstrass $\zeta$ function}{ellzeta$(ell,z)$}
757: \li{modified Dedekind $\eta$ func. $\prod(1-q^n)$}{eta$(x,\fl)$}
758: \li{Jacobi sine theta function}{theta$(q,z)$}
759: \li{k-th derivative at z=0 of \kbd{theta}$(q,z)$}{thetanullk$(q,k)$}
760: \li{Weber's $f$ functions}{weber$(x,\fl)$}
761: \li{Riemann's zeta $\zeta(s)=\sum n^{-s}$}{zeta$(s)$}
762: %
763: \shortcopyrightnotice
764: \newcolumn
765:
766: \section{Graphic Functions}
767: \li{crude graph of \expr\ between $a$ and $b$}{plot$(X=a,b,expr)$}
768: \subsec{High-resolution plot {\rm (immediate plot)}}
769: \li{plot \expr\ between $a$ and $b$}{ploth$(X=a,b,expr,\fl,\{n\})$}
770: \li{plot points given by lists $lx$, $ly$}{plothraw$(lx,ly,\fl)$}
771: \li{terminal dimensions}{plothsizes$()$}
772: %
773: \subsec{Rectwindow functions}
774: \li{init window $w$, with size $x$,$y$}{plotinit$(w,x,y)$}
775: \li{erase window $w$}{plotkill$(w)$}
776: \li{copy $w$ to $w2$ with offset $(dx,dy)$}{plotcopy$(w,w2,dx,dy)$}
777: \li{scale coordinates in $w$}{plotscale$(w,x_1,x_2,y_1,y_2)$}
778: \li{\kbd{ploth} in $w$}{plotrecth$(w,X=a,b,expr,\fl,\{n\})$}
779: \li{\kbd{plothraw} in $w$}{plotrecthraw$(w,data,\fl)$}
780: \li{draw window $w_1$ at $(x_1,y_1)$, \dots} {plotdraw$([[w_1,x_1,y_1],\dots])$}
781: %
782: \subsec{Low-level Rectwindow Functions}
783: %\li{}{plotlinetype$(w,)$}
784: %\li{}{plotpointtype$(w,)$}
785: %\li{}{plotterm$(w,)$}
786: \li{set current drawing color in $w$ to $c$}{plotcolor$(w,c)$}
787: \li{current position of cursor in $w$}{plotcursor$(w)$}
788: %
789: \li{write $s$ at cursor's position}{plotstring$(w,s)$}
790: \li{move cursor to $(x,y)$}{plotmove$(w,x,y)$}
791: \li{move cursor to $(x+dx,y+dy)$}{plotrmove$(w,dx,dy)$}
792: \li{draw a box to $(x_2,y_2)$}{plotbox$(w,x_2,y_2)$}
793: \li{draw a box to $(x+dx,y+dy)$}{plotrbox$(w,dx,dy)$}
794: \li{draw polygon}{plotlines$(w,lx,ly,\fl)$}
795: \li{draw points}{plotpoints$(w,lx,ly)$}
796: \li{draw line to $(x+dx,y+dy)$}{plotrline$(w,dx,dy)$}
797: \li{draw point $(x+dx,y+dy)$}{plotrpoint$(w,dx,dy)$}
798: %
799: \subsec{Postscript Functions}
800: \li{as {\tt ploth}}{psploth$(X=a,b,expr,\fl,\{n\})$}
801: \li{as {\tt plothraw}}{psplothraw$(lx,ly,\fl)$}
802: \li{as {\tt plotdraw}}{psdraw$([[w_1,x_1,y_1],\dots])$}
803: \newcolumn
804:
805: \section{Binary Quadratic Forms}
806: %
807: \li{create $ax^2+bxy+cy^2$ (distance $d$) }{Qfb$(a,b,c,\{d\})$}
808: \li{reduce $x$ ($s =\sqrt{D}$, $l=\lfloor s\rfloor$)}
809: {qfbred$(x,\fl,\{D\},\{l\},\{s\})$}
810: \li{composition of forms}{$x*y$ {\rm or }qfbnucomp$(x,y,l)$}
811: \li{$n$-th power of form}{$x$\pow$n$ {\rm or }qfbnupow$(x,n)$}
812: \li{composition without reduction}{qfbcompraw$(x,y)$}
813: \li{$n$-th power without reduction}{qfbpowraw$(x,n)$}
814: \li{prime form of disc. $x$ above prime $p$}{qfbprimeform$(x,p)$}
815: \li{class number of disc. $x$}{qfbclassno$(x)$}
816: \li{Hurwitz class number of disc. $x$}{qfbhclassno$(x)$}
817:
818: \section{Quadratic Fields}
819: %
820: \li{quadratic number $\omega=\sqrt x$ or $(1+\sqrt x)/2$}{quadgen$(x)$}
821: \li{minimal polynomial of $\omega$}{quadpoly$(x)$}
822: \li{discriminant of $\QQ(\sqrt{D})$}{quaddisc$(x)$}
823: \li{regulator of real quadratic field}{quadregulator$(x)$}
824: \li{fundamental unit in real $\QQ(x)$}{quadunit$(x)$}
825: \li{class group of $\QQ(\sqrt{D})$}{quadclassunit$(D,\fl,\{t\})$}
826: \li{Hilbert class field of $\QQ(\sqrt{D})$}{quadhilbert$(D,\fl)$}
827: \li{ray class field modulo $f$ of $\QQ(\sqrt{D})$}{quadray$(D,f,\fl)$}
828:
829: \section{General Number Fields: Initializations}
830: A number field $K$ is given by a monic irreducible $f\in\ZZ[X]$.\hfill\break
831: \li{init number field structure \var{nf}}{nfinit$(f,\fl)$}
832: \subsec{nf members:}
833: \beginindentedkeys
834: \key{polynomial defining \var{nf}, $f(\theta)=0$}{\var{nf}.pol}
835: \key{number of [real,complex] places}{\var{nf}.sign}
836: \key{discriminant of \var{nf}}{\var{nf}.disc}
837: \key{$T_2$ matrix}{\var{nf}.t2}
838: \key{vector of roots of $f$}{\var{nf}.roots}
839: \key{integral basis of $\ZZ_K$ as powers of $\theta$}{\var{nf}.zk}
840: \key{different}{\var{nf}.diff}
841: \key{codifferent}{\var{nf}.codiff}
842: \endindentedkeys
843: \li{recompute \var{nf}\ using current precision}{nfnewprec$(nf)$}
844: \li{init relative \var{rnf}\ given by $g=0$ over $K$}{rnfinit$(\var{nf},g)$}
845: %
846: \li{init big number field structure \var{bnf}}{bnfinit$(f,\fl)$}
847: \subsec{bnf members: {\rm same as \var{nf}, plus}}
848: \beginindentedkeys
849: \key{underlying \var{nf}}{\var{bnf}.nf}
850: \key{classgroup}{\var{bnf}.clgp}
851: \key{regulator}{\var{bnf}.reg}
852: \key{fundamental units}{\var{bnf}.fu}
853: \key{torsion units}{\var{bnf}.tu}
854: \key{$[tu,fu]$, $[fu,tu]$}{\var{bnf}.tufu{\rm/}futu}
855: \endindentedkeys
856: \li{compute a \var{bnf}\ from small \var{bnf}}{bnfmake$(\var{sbnf})$}
857: %
858: \li{add $S$-class group and units, yield \var{bnfs}}{bnfsunit$(\var{nf},S)$}
859: \li{init class field structure \var{bnr}}{bnrinit$(\var{bnf},m,\fl)$}
860: %
861: \subsec{bnr members: {\rm same as \var{bnf}, plus}}
862: \beginindentedkeys
863: \key{underlying \var{bnf}}{\var{bnr}.bnf}
864: \key{structure of $(\ZZ_K/m)^*$}{\var{bnr}.zkst}
865: \endindentedkeys
866:
867: \section{Simple Arithmetic Invariants (nf)}
868: Elements are rational numbers, polynomials, polmods, or column vectors (on
869: integral basis \kbd{\var{nf}.zk}).\hfill\break
870: \li{integral basis of field def. by $f=0$}{nfbasis$(f)$}
871: \li{field discriminant of field $f=0$}{nfdisc$(f)$}
872: \li{reverse polmod $a=A(X)\mod T(X)$}{modreverse$(a)$}
873: \li{Galois group of field $f=0$, $\deg f\le 11$}{polgalois$(f)$}
874: \li{smallest poly defining $f=0$}{polredabs$(f,\fl)$}
875: \li{small polys defining subfields of $f=0$}{polred$(f,\fl,\{p\})$}
876: \li{small polys defining suborders of $f=0$}{polredord$(f)$}
877: \li{poly of degree $\le k$ with root $x\in\CC$}{algdep$(x,k)$}
878: \li{small linear rel.\ on coords of vector $x$}{lindep$(x)$}
879: \li{are fields $f=0$ and $g=0$ isomorphic?}{nfisisom$(f,g)$}
880: \li{is field $f=0$ a subfield of $g=0$?}{nfisincl$(f,g)$}
881: \li{compositum of $f=0$, $g=0$}{polcompositum$(f,g,\fl)$}
882: %
883: \li{basic element operations (prefix \kbd{nfelt}):}{}
884: \leavevmode\strut\hskip1em
885: $($\kbd{nfelt}$)$\kbd{mul}, \kbd{pow}, \kbd{div}, \kbd{diveuc},
886: \kbd{mod}, \kbd{divrem}, \kbd{val}
887: \hfill\break
888: %
889: \li{express $x$ on integer basis}{nfalgtobasis$(\var{nf},x)$}
890: \li{express element\ $x$ as a polmod}{nfbasistoalg$(\var{nf},x)$}
891: \li{quadratic Hilbert symbol (at $p$)}{nfhilbert$(\var{nf},a,b,\{p\})$}
892: \li{roots of $g$ belonging to {\tt nf}}{nfroots$(\var{nf},g)$}
893: \li{factor $g$ in {\tt nf}}{nffactor$(\var{nf},g)$}
894: \li{factor $g$ mod prime $pr$ in {\tt nf}}{nffactormod$(\var{nf},g,pr)$}
895: \li{number of roots of $1$ in {\tt nf}}{nfrootsof1$(nf)$}
896: \li{conjugates of a root $\theta$ of {\tt nf}}{nfgaloisconj$(\var{nf},\fl)$}
897: \li{apply Galois automorphism $s$ to $x$}{nfgaloisapply$(\var{nf},s,x)$}
898: \li{subfields (of degree $d$) of {\tt nf}}{nfsubfields$(\var{nf},\{d\})$}
899: %
900: \subsec{Dedekind Zeta Function $\zeta_K$}
901: \li{$\zeta_K$ as Dirichlet series, $N(I)<b$}{dirzetak$(\var{nf},b)$}
902: \li{init \var{nfz}\ for field $f=0$}{zetakinit$(f)$}
903: \li{compute $\zeta_K(s)$}{zetak$(\var{nfz},s,\fl)$}
904: \li{Artin root number of $K$}{bnrrootnumber$(\var{bnr},\var{chi},\fl)$}
905:
906: \section{Class Groups \& Units (\var{bnf}, bnr)}
907: \leavevmode
908: $a1,\{a2\},\{a3\}$ usually $bnr,subgp$ or $\var{bnf},module,\{subgp\}$
909: \hfill\break
910: %
911: \li{remove GRH assumption from \var{bnf}}{bnfcertify$(\var{bnf})$}
912: \li{expo.~of ideal $x$ on class gp}{bnfisprincipal$(\var{bnf},x,\fl)$}
913: \li{expo.~of ideal $x$ on ray class gp}{bnrisprincipal$(\var{bnr},x,\fl)$}
914: \li{expo.~of $x$ on fund.~units}{bnfisunit$(\var{bnf},x)$}
915: \li{as above for $S$-units}{bnfissunit$(\var{bnfs},x)$}
916: \li{fundamental units of \var{bnf}}{bnfunit$(\var{bnf})$}
917: \li{signs of real embeddings of \kbd{\var{bnf}.fu}}{bnfsignunit$(\var{bnf})$}
918: %
919: \subsec{Class Field Theory}
920: \li{ray class group structure for mod.~$m$}{bnrclass$(\var{bnf},m,\fl)$}
921: \li{ray class number for mod.~$m$}{bnrclassno$(\var{bnf},m)$}
922: \li{discriminant of class field ext}{bnrdisc$(a1,\{a2\},\{a3\})$}
923: \li{ray class numbers, $l$ list of mods}{bnrclassnolist$(\var{bnf},l)$}
924: \li{discriminants of class fields}{bnrdisclist$(\var{bnf},l,\{arch\},\fl)$}
925: \li{decode output from \kbd{bnrdisclist}}{bnfdecodemodule$(\var{nf},fa)$}
926: \li{is modulus the conductor?}{bnrisconductor$(a1,\{a2\},\{a3\})$}
927: \li{conductor of character $chi$}{bnrconductorofchar$(\var{bnr},chi)$}
928: \li{conductor of extension}{bnrconductor$(a1,\{a2\},\{a3\},\fl)$}
929: \li{conductor of extension def.\ by $g$}{rnfconductor$(\var{bnf},g)$}
930: \li{Artin group of ext.\ def'd by $g$}{rnfnormgroup$(\var{bnr},g)$}
931: \li{subgroups of {\tt bnr}, index $<=b$}{subgrouplist$(\var{bnr},b,\fl)$}
932: \li{rel.\ eq.\ for class field def'd by $sub$}{rnfkummer$(\var{bnr},sub,\{d\})$}
933: \li{same, using Stark units (real field)}{bnrstark$(\var{bnr},sub,\fl)$}
934:
935: \newcolumn
936: \title{PARI-GP Reference Card (2)}
937: \centerline{(PARI-GP version \PARIversion)}
938:
939: \section{Ideals}
940: Ideals are elements, primes, or matrix of generators in HNF.\hfill\break
941: \li{is $id$ an ideal in {\tt nf}?}{nfisideal$(\var{nf},id)$}
942: \li{is $x$ principal in {\tt bnf}?}{bnfisprincipal$(\var{bnf},x)$}
943: \li{principal ideal generated by $x$}{idealprincipal$(\var{nf},x)$}
944: \li{principal idele generated by $x$}{ideleprincipal$(\var{nf},x)$}
945: \li{give $[a,b]$, s.t.~ $a\ZZ_K+b\ZZ_K = x$}{idealtwoelt$(\var{nf},x,\{a\})$}
946: \li{put ideal $a$ ($a\ZZ_K+b\ZZ_K$) in HNF form}{idealhnf$(\var{nf},a,\{b\})$}
947: \li{norm of ideal $x$}{idealnorm$(\var{nf},x)$}
948: \li{minimum of ideal $x$ (direction $v$)}{idealmin$(\var{nf},x,v)$}
949: \li{LLL-reduce the ideal $x$ (direction $v$)}{idealred$(\var{nf},x,\{v\})$}
950: %
951: \subsec{Ideal Operations}
952: \li{add ideals $x$ and $y$}{idealadd$(\var{nf},x,y)$}
953: \li{multiply ideals $x$ and $y$}{idealmul$(\var{nf},x,y,\fl)$}
954: \li{intersection of ideals $x$ and $y$}{idealintersect$(\var{nf},x,y,\fl)$}
955: \li{$n$-th power of ideal $x$}{idealpow$(\var{nf},x,n,\fl)$}
956: \li{inverse of ideal $x$}{idealinv$(\var{nf},x)$}
957: \li{divide ideal $x$ by $y$}{idealdiv$(\var{nf},x,y,\fl)$}
958: \li{Find $[a,b]\in x\times y$, $a+b=1$}{idealaddtoone$(\var{nf},x,\{y\})$}
959: %
960: \subsec{Primes and Multiplicative Structure}
961: \li{factor ideal $x$ in {\tt nf}}{idealfactor$(\var{nf},x)$}
962: \li{recover $x$ from its factorization in {\tt nf}}{factorback$(x,nf)$}
963: \li{decomposition of prime $p$ in {\tt nf}}{idealprimedec$(\var{nf},p)$}
964: \li{valuation of $x$ at prime ideal $pr$}{idealval$(\var{nf},x,pr)$}
965: \li{weak approximation theorem in {\tt nf}}{idealchinese$(\var{nf},x,y)$}
966: \li{give $bid=$structure of $(\ZZ_K/id)^*$}{idealstar$(\var{nf},id,\fl)$}
967: \li{discrete log of $x$ in $(\ZZ_K/bid)^*$}{ideallog$(\var{nf},x,bid)$}
968: \li{\kbd{idealstar} of all ideals of norm $\le b$}{ideallist$(\var{nf},b,\fl)$}
969: \li{add archimedean places}{ideallistarch$(\var{nf},b,\{ar\},\fl)$}
970: \li{init \kbd{prmod} structure}{nfmodprinit$(\var{nf},pr)$}
971: \li{kernel of matrix $M$ in $(\ZZ_K/pr)^*$}{nfkermodpr$(\var{nf},M,prmod)$}
972: \li{solve $M x = B$ in $(\ZZ_K/pr)^*$}{nfsolvemodpr$(\var{nf},M,B,prmod)$}
973:
974: \section{Relative Number Fields (rnf)}
975: Extension $L/K$ is defined by $g\in K[x]$. We have $order\subset L$.
976: \hfill\break
977: %
978: \li{absolute equation of $L$}{rnfequation$(\var{nf},g,\fl)$}
979: %
980: \subsec{Lifts and Push-downs}
981: \li{absolute $\rightarrow$ relative repres.\ for $x$}
982: {rnfeltabstorel$(\var{rnf},x)$}
983: \li{relative $\rightarrow$ absolute repres.\ for $x$}
984: {rnfeltreltoabs$(\var{rnf},x)$}
985: \li{lift $x$ to the relative field}{rnfeltup$(\var{rnf},x)$}
986: \li{push $x$ down to the base field}{rnfeltdown$(\var{rnf},x)$}
987: \leavevmode idem for $x$ ideal:
988: \kbd{$($rnfideal$)$reltoabs}, \kbd{abstorel}, \kbd{up}, \kbd{down}\hfill\break
989: %
990: \li{relative {\tt nfalgtobasis}}{rnfalgtobasis$(\var{rnf},x)$}
991: \li{relative {\tt nfbasistoalg}}{rnfbasistoalg$(\var{rnf},x)$}
992: \li{relative {\tt idealhnf}}{rnfidealhnf$(\var{rnf},x)$}
993: \li{relative {\tt idealmul}}{rnfidealmul$(\var{rnf},x,y)$}
994: \li{relative {\tt idealtwoelt}}{rnfidealtwoelt$(\var{rnf},x)$}
995: %
996: \subsec{Projective $\ZZ_K$-modules, maximal order}
997: \li{relative {\tt polred}}{rnfpolred$(\var{nf},g)$}
998: \li{relative {\tt polredabs}}{rnfpolredabs$(\var{nf},g)$}
999: \li{characteristic poly.\ of $a$ mod $g$}{rnfcharpoly$(\var{nf},g,a,\{v\})$}
1000: \li{relative Dedekind criterion, prime $pr$}{rnfdedekind$(\var{nf},g,pr)$}
1001: \li{discriminant of relative extension}{rnfdisc$(\var{nf},g)$}
1002: \li{pseudo-basis of $\ZZ_L$}{rnfpseudobasis$(\var{nf},g)$}
1003: \li{relative HNF basis of $order$}{rnfhnfbasis$(\var{bnf},order)$}
1004: \li{reduced basis for $order$}{rnflllgram$(\var{nf},g,order)$}
1005: \li{determinant of pseudo-matrix $A$}{rnfdet$(\var{nf},A)$}
1006: \li{Steinitz class of $order$}{rnfsteinitz$(\var{nf},order)$}
1007: \li{is \var{order} a free $\ZZ_K$-module?}{rnfisfree$(\var{bnf},\var{order})$}
1008: \li{true basis of \var{order}, if it is free}{rnfbasis$(\var{bnf},\var{order})$}
1009: %
1010: \subsec{Norms}
1011: \li{absolute norm of ideal $x$}{rnfidealnormabs$(\var{rnf},x)$}
1012: \li{relative norm of ideal $x$}{rnfidealnormrel$(\var{rnf},x)$}
1013: \li{solutions of $N_{K/\QQ}(y)=x\in \ZZ$}{bnfisintnorm$(\var{bnf},x)$}
1014: \li{is $x\in\QQ$ a norm from $K$?}{bnfisnorm$(\var{bnf},x,\fl)$}
1015: \li{is $x\in K$ a norm from $L$?}{rnfisnorm$(\var{bnf},ext,x,\fl)$}
1016: \vfill
1017: \copyrightnotice
1018: \bye
1019: % Local variables:
1020: % compile-command: "tex PARIRefCard"
1021: % End:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>