[BACK]Return to usersch3.tex CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari-2.2 / doc

Diff for /OpenXM_contrib/pari-2.2/doc/Attic/usersch3.tex between version 1.1 and 1.2

version 1.1, 2001/10/02 11:16:58 version 1.2, 2002/09/11 07:26:42
Line 39  $$\hbox{%
Line 39  $$\hbox{%
 }$$  }$$
 typing in \kbd{foo(6,4)} would give  typing in \kbd{foo(6,4)} would give
 you \kbd{foo(6,4,3)}. In the rare case when you want to set some far away  you \kbd{foo(6,4,3)}. In the rare case when you want to set some far away
 flag, and leave the defaults in between as they stand, you can use the  argument, and leave the defaults in between as they stand, you can use the
 ``empty arg'' trick alluded to above: \kbd{foo(6,,1)} would yield  ``empty arg'' trick alluded to above: \kbd{foo(6,,1)} would yield
 \kbd{foo(6,2,1)}. By the way, \kbd{foo()} by itself yields  \kbd{foo(6,2,1)}. By the way, \kbd{foo()} by itself yields
 \kbd{foo(1,2,3)} as was to be expected. In this rather special case of a  \kbd{foo(1,2,3)} as was to be expected. In this rather special case of a
Line 50  to put optional arguments at the end of the argument l
Line 50  to put optional arguments at the end of the argument l
 they would not make sense otherwise), and in order of decreasing usefulness  they would not make sense otherwise), and in order of decreasing usefulness
 so that, most of the time, you will be able to ignore them.  so that, most of the time, you will be able to ignore them.
   
 \misctitle{Binary Flags}.\sidx{binary flag} For some of these optional  \misctitle{Flags}. A \tev{flag} is an argument which, rather than conveying
 flags, we adopted the customary binary notation as a compact way to  actual information to the routine, intructs it to change its default
 represent many toggles with just one number. Letting $(p_0,\dots,p_n)$ be a  behaviour, e.g.~return more or less information. All such
 list of switches (i.e.~of properties which can be assumed to take either  flags are optional, and will be called \fl\ in the function descriptions to
 the value $0$ or~$1$), the number $2^3 + 2^5=40$ means that $p_3$ and $p_5$  follow. There are two different kind of flags
   
   $\bullet$ generic: all valid values for the flag are individually
   described (``If \fl\ is equal to $1$, then\dots'').
   
   $\bullet$ binary:\sidx{binary flag} use customary binary notation as a
   compact way to represent many toggles with just one number. Letting
   $(p_0,\dots,p_n)$ be a list of switches (i.e.~of properties which take either
   the value $0$ or~$1$), the number $2^3 + 2^5 = 40$ means that $p_3$ and $p_5$
 have been set (that is, set to $1$), and none of the others were (that is,  have been set (that is, set to $1$), and none of the others were (that is,
 they were set to 0). This will usually be announced as ``The binary digits  they were set to $0$). This is announced as ``The binary digits of $\fl$ mean
 of $\fl$ mean 1: $p_0$, 2: $p_1$, 4: $p_2$'', and so on, using the  1: $p_0$, 2: $p_1$, 4: $p_2$'', and so on, using the available consecutive
 available consecutive powers of~$2$.  powers of~$2$.
   
   \misctitle{Mnemonics for flags}. Numeric flags as mentionned above are
   obscure, error-prone, and quite rigid: should the authors
   want to adopt a new flag numbering scheme (for instance when noticing
   flags with the same meaning but different numeric values), it would break
   backward compatibility. The only advantage of explicit numeric values is that
   they are fast to type, so their use is only advised when using the calculator
   GP.
   
   As an alternative, one can replace a numeric flag by a character string
   containing symbolic identifiers. For a generic flag, the mnemonic
   corresponding to the numeric identifier is given after it as in (taken from
   description of $\tet{log}(x,\{\fl=0\})$):
   
   \centerline{If \fl\ is equal to $1 = \kbd{AGM}$, use an agm formula\dots}
   
   \noindent which means that one can use indifferently \kbd{log($x$, 1)} or
   \kbd{log($x$, AGM)}.
   
   For a binary flag, mnemonics corresponding to the various toggles are given
   after each of them. They can be negated by prepending \kbd{no\_} to the
   mnemonic, or by removing such a prefix. These toggles are grouped together
   using any punctuation character (such as ',' or ';'). For instance (taken
   from description of $\tet{ploth}(X=a,b,\var{expr},\{\fl=0\},\{n=0\})$)
   
   \centerline{Binary digits of flags mean: $1=\kbd{Parametric}$,
   $2=\kbd{Recursive}$, \dots}
   
   \noindent so that, instead of $1$, one could use the mnemonic
   \kbd{"Parametric; no\_Recursive"}, or simply \kbd{"Parametric"} since
   \kbd{Recursive} is unset by default (default value of $\fl$ is $0$,
   i.e.~everything unset).
   
 \misctitle{Pointers}.\sidx{pointer} If a parameter in the function  \misctitle{Pointers}.\sidx{pointer} If a parameter in the function
 prototype is prefixed with a \& sign, as in  prototype is prefixed with a \& sign, as in
   
Line 71  to be typed in explicitly. As of version \vers, this \
Line 111  to be typed in explicitly. As of version \vers, this \
 is optional for all documented functions, hence the \& will always appear  is optional for all documented functions, hence the \& will always appear
 between brackets as in \kbd{issquare}$(x,\{\&e\})$.  between brackets as in \kbd{issquare}$(x,\{\&e\})$.
   
 \misctitle{About library programming}. To finish with our generic  \misctitle{About library programming}.
 simple-minded example, the \var{library} function \kbd{foo}, as defined  the \var{library} function \kbd{foo}, as defined
 above, is seen to have two mandatory arguments, $x$ and \fl (no PARI  at the beginning of this section, is seen to have two mandatory arguments,
 mathematical function has been implemented so as to accept a variable  $x$ and \fl: no PARI mathematical function has been implemented so as to
 number of arguments). When not mentioned otherwise, the result and  accept a variable number of arguments, so all arguments are mandatory when
 arguments of a function are assumed implicitly to be of type \kbd{GEN}.  programming with the library (often, variants are provided corresponding to
 Most other functions return an object of type \kbd{long} integer in C (see  the various flag values). When not mentioned otherwise, the result and
 Chapter~4). The variable or parameter names \var{prec} and \fl\ always  arguments of a function are assumed implicitly to be of type \kbd{GEN}. Most
 denote \kbd{long} integers.  other functions return an object of type \kbd{long} integer in C (see
   Chapter~4). The variable or parameter names \var{prec} and \fl\ always denote
   \kbd{long} integers.
   
 The \tet{entree} type is used by the library to implement iterators (loops,  The \tet{entree} type is used by the library to implement iterators (loops,
 sums, integrals, etc.) when a formal variable has to successively assume a  sums, integrals, etc.) when a formal variable has to successively assume a
Line 137  integers, add \kbd{O(p\pow k)} to the result; finally,
Line 179  integers, add \kbd{O(p\pow k)} to the result; finally,
   
 \syn{gdiv}{x,y} for $x$ \kbd{/} $y$.  \syn{gdiv}{x,y} for $x$ \kbd{/} $y$.
   
 \subseckbd{\bs}: The expression $x$ \kbd{\bs} $y$ is the  \subseckbd{\bs}: The expression \kbd{$x$ \bs\ $y$} is the \idx{Euclidean
 % keep "Euclidean" and "quotient" on same line for gphelp  quotient} of $x$ and $y$. If $y$ is a real scalar, this is defined as
 \idx{Euclidean quotient} of $x$ and $y$. The types must be either both  \kbd{floor($x$/$y$)} if $y > 0$, and \kbd{ceil($x$/$y$)} if $y < 0$ and
 integer or both polynomials. The result is the Euclidean quotient. In the  the division is not exact. Hence the remainder \kbd{$x$ - ($x$\bs$y$)*$y$}
 case of integer division, the quotient is such that the corresponding  is in $[0, |y|[$.
 remainder is non-negative.  
   
   Note that when $y$ is an integer and $x$ a polynomial, $y$ is first promoted
   to a polynomial of degree $0$. When $x$ is a vector or matrix, the operator
   is applied componentwise.
   
 \syn{gdivent}{x,y} for $x$ \kbd{\bs} $y$.  \syn{gdivent}{x,y} for $x$ \kbd{\bs} $y$.
   
 \subseckbd{\bs/}: The expression $x$ \b{/} $y$ is the Euclidean  \subseckbd{\bs/}: The expression $x$ \b{/} $y$ evaluates to the rounded
 quotient of $x$ and $y$.  The types must be either both integer or both  \idx{Euclidean quotient} of $x$ and $y$. This is the same as \kbd{$x$ \bs\ $y$}
 polynomials. The result is the rounded Euclidean quotient. In the case of  except for scalar division: the quotient is such that the corresponding
 integer division, the quotient is such that the corresponding remainder is  remainder is smallest in absolute value and in case of a tie the quotient
 smallest in absolute value and in case of a tie the quotient closest to  closest to $+\infty$ is chosen (hence the remainder would belong to
 $+\infty$ is chosen.  $]-|y|/2, |y|/2]$).
   
   When $x$ is a vector or matrix, the operator is applied componentwise.
   
 \syn{gdivround}{x,y} for $x$ \b{/} $y$.  \syn{gdivround}{x,y} for $x$ \b{/} $y$.
   
 \subseckbd{\%}: The expression $x$ \kbd{\%} $y$ is the  \subseckbd{\%}: The expression \kbd{$x$ \% $y$} evaluates to the modular
 % keep "Euclidean" and "remainder" on same line for gphelp  \idx{Euclidean remainder} of $x$ and $y$, which we now define. If $y$ is an
 \idx{Euclidean remainder} of $x$ and $y$. The modulus $y$ must be of type  integer, this is the smallest non-negative integer congruent to $x$ modulo
 integer or polynomial. The result is the remainder, always non-negative in  $y$. If $y$ is a polynomial, this is the polynomial of smallest degree
 the case of integers. Allowed dividend types are scalar exact types when  congruent to $x$ modulo $y$. When $y$ is a non-integral real number,
 the modulus is an integer, and polynomials, polmods and rational functions   \kbd{$x$\%$y$} is defined as \kbd{$x$ - ($x$\bs$y$)*$y$}. This
 when the modulus is a polynomial.  coincides with the definition for $y$ integer if and only if $x$ is an
   integer, but still belongs to $[0, |y|[$. For instance:
   \bprog
   ? (1/2) % 3
   %1 = 2
   ? 0.5 % 3
     ***   forbidden division t_REAL % t_INT.
   ? (1/2) % 3.0
   %2 = 1/2
   @eprog
   Note that when $y$ is an integer and $x$ a polynomial, $y$ is first promoted
   to a polynomial of degree $0$. When $x$ is a vector or matrix, the operator
   is applied componentwise.
   
 \syn{gmod}{x,y} for $x$ \kbd{\%} $y$.  \syn{gmod}{x,y} for $x$ \kbd{\%} $y$.
   
 \subsecidx{divrem}$(x,y)$: creates a column vector with two components,  \subsecidx{divrem}$(x,y,\{v\})$: creates a column vector with two components,
 the first being the Euclidean quotient, the second the Euclidean remainder,  the first being the Euclidean quotient (\kbd{$x$ \bs\ $y$}), the second the
 of the division of $x$ by $y$. This avoids the need to do two divisions if  Euclidean remainder (\kbd{$x$ - ($x$\bs$y$)*$y$}), of the division of $x$ by
 one needs both the quotient and the remainder. The arguments must be both  $y$. This avoids the need to do two divisions if one needs both the quotient
 integers or both polynomials; in the case of integers, the remainder is  and the remainder. If $v$ is present, and $x$, $y$ are multivariate
 non-negative.  polynomials, divide with respect to the variable $v$.
   
 \syn{gdiventres}{x,y}.  Beware that \kbd{divrem($x$,$y$)[2]} is in general not the same as
   \kbd{$x$ \% $y$}; there is no operator to obtain it in GP:
   \bprog
   ? divrem(1/2, 3)[2]
   %1 = 1/2
   ? (1/2) % 3
   %2 = 2
   ? divrem(Mod(2,9), 3)[2]
     ***   forbidden division t_INTMOD \ t_INT.
   ? Mod(2,9) % 6
   %3 = Mod(2,3)
   @eprog
   
   \syn{divrem}{x,y,v},where $v$ is a \kbd{long}. Also available as
   $\teb{gdiventres}(x,y)$ when $v$ is not needed.
   
 \subseckbd{\pow}: The expression $x\hbox{\kbd{\pow}}n$ is \idx{powering}.  \subseckbd{\pow}: The expression $x\hbox{\kbd{\pow}}n$ is \idx{powering}.
 If the exponent is an integer, then exact operations are performed using  If the exponent is an integer, then exact operations are performed using
 binary (left-shift) powering techniques. In particular, in this case $x$  binary (left-shift) powering techniques. In particular, in this case $x$
Line 208  Beware that
Line 281  Beware that
   
 \syn{gpow}{x,n,\var{prec}} for $x\hbox{\kbd{\pow}}n$.  \syn{gpow}{x,n,\var{prec}} for $x\hbox{\kbd{\pow}}n$.
   
 \subsecidx{shift}$(x,n)$ or $x$ \kbd{<<} $n$ (= $x$ \kbd{>>} $(-n)$): shifts  \subsecidx{shift}$(x,n,\{\fl=0\})$ or $x$ \kbd{<<} $n$ (= $x$ \kbd{>>} $(-n)$):
 $x$ componentwise left by $n$ bits if $n\ge0$ and right by $|n|$ bits if  shifts $x$ componentwise left by $n$ bits if $n\ge0$ and right by $|n|$ bits
 $n<0$. A left shift by $n$ corresponds to multiplication by $2^n$. A right  if $n<0$. A left shift by $n$ corresponds to multiplication by $2^n$. A right
 shift of an integer $x$ by $|n|$ corresponds to a Euclidean division of  shift of an integer $x$ by $|n|$ corresponds to a Euclidean division of $x$
 $x$ by $2^{|n|}$ with a  by $2^{|n|}$ with a remainder of the same sign as $x$, hence is not the same
 remainder of the same sign as $x$, hence is not the same (in general) as  (when $x < 0$) as $x \kbd{\bs} 2^{|n|}$. If $\fl$ is non-zero, this behaviour
 $x \kbd{\bs} 2^n$.  is modified and right shift of a negative $x$ \var{is} the same as $x
   \kbd{\bs} 2^{|n|}$ (which is consistent with $2$-complement semantic of
   negative numbers).
   
 \syn{gshift}{x,n} where $n$ is a \kbd{long}.  \syn{gshift3}{x,n,\fl} where $n$ is a \kbd{long}. Also available is
   $\teb{gshift}(x,n)$ for the case $\fl=0$.
   
 \subsecidx{shiftmul}$(x,n)$: multiplies $x$ by $2^n$. The difference with  \subsecidx{shiftmul}$(x,n)$: multiplies $x$ by $2^n$. The difference with
 \kbd{shift} is that when $n<0$, ordinary division takes place, hence for  \kbd{shift} is that when $n<0$, ordinary division takes place, hence for
Line 266  Also, \kbd{<>} is accepted as a synonym for \kbd{!=}. 
Line 342  Also, \kbd{<>} is accepted as a synonym for \kbd{!=}. 
 assignment statement.  assignment statement.
   
 \subsecidx{lex}$(x,y)$: gives the result of a lexicographic comparison  \subsecidx{lex}$(x,y)$: gives the result of a lexicographic comparison
 between $x$ and $y$. This is to be interpreted in quite a wide sense. For  between $x$ and $y$ (as $-1$, $0$ or $1$). This is to be interpreted in quite
 example, the vector $[1,3]$ will be considered smaller than the longer  a wide sense: It is admissible to compare objects of different types
 vector $[1,3,-1]$ (but of course larger than $[1,2,5]$),  (scalars, vectors, matrices), provided the scalars can be compared, as well
 i.e.~\kbd{lex([1,3], [1,3,-1])} will return $-1$.  as vectors/matrices of different lengths. The comparison is recursive.
   
   In case all components are equal up to the smallest length of the operands,
   the more complex is considered to be larger. More precisely, the longest is
   the largest; when lengths are equal, we have matrix $>$ vector $>$ scalar.
   For example:
   \bprog
   ? lex([1,3], [1,2,5])
   %1 = 1
   ? lex([1,3], [1,3,-1])
   %2 = -1
   ? lex([1], [[1]])
   %3 = -1
   ? lex([1], [1]~)
   %4 = 0
   @eprog
   
 \syn{lexcmp}{x,y}.  \syn{lexcmp}{x,y}.
   
 \subsecidx{sign}$(x)$: \idx{sign} ($0$, $1$ or $-1$) of $x$, which must be of  \subsecidx{sign}$(x)$: \idx{sign} ($0$, $1$ or $-1$) of $x$, which must be of
Line 359  i.e.~it chops off the $O(X^k)$. If $x$ is a vector, th
Line 450  i.e.~it chops off the $O(X^k)$. If $x$ is a vector, th
 the polynomial whose coefficients are given in $x$, with $x[1]$ being the  the polynomial whose coefficients are given in $x$, with $x[1]$ being the
 leading coefficient (which can be zero).  leading coefficient (which can be zero).
   
 Warning: this is \var{not} a substitution function. It is intended to be  \misctitle{Warning:} this is \var{not} a substitution function. It is
 quick and dirty. So if you try \kbd{Pol(a,y)} on the polynomial \kbd{a = x+y},  intended to be quick and dirty. So if you try \kbd{Pol(a,y)} on the
 you will get \kbd{y+y}, which is not a valid PARI object.  polynomial \kbd{a = x+y}, you will get \kbd{y+y}, which is not a valid PARI
   object.
   
 \syn{gtopoly}{x,v}, where $v$ is a variable number.  \syn{gtopoly}{x,v}, where $v$ is a variable number.
   
Line 479  Negative numbers behave as if modulo a huge power of $
Line 571  Negative numbers behave as if modulo a huge power of $
   
 \syn{gbitnegimply}{x,y}.  \syn{gbitnegimply}{x,y}.
   
 \subsecidx{bitor}$(x,y)$: bitwise (inclusive) \tet{or}\sidx{bitwise  \subsecidx{bitor}$(x,y)$: \sidx{bitwise inclusive or}bitwise (inclusive)
 inclusive or} of two integers $x$ and $y$, that is the integer  \tet{or} of two integers $x$ and $y$, that is the integer
 $$\sum (x_i~\kbd{or}~y_i) 2^i$$  $$\sum (x_i~\kbd{or}~y_i) 2^i$$
   
 Negative numbers behave as if modulo a huge power of $2$.  Negative numbers behave as if modulo a huge power of $2$.
   
 \syn{gbitor}{x,y}.  \syn{gbitor}{x,y}.
   
 \subsecidx{bittest}$(x,n)$: outputs the $n^{\text{th}}$ bit of $|x|$ starting  \subsecidx{bittest}$(x,n,\{c=1\})$: extracts $|c|$ bits starting from
 from the right (i.e.~the coefficient of $2^n$ in the binary expansion of $x$).  number $n$ from the right in the development of $|x|$ (i.e.~the coefficient
 The result is 0 or 1. To extract several bits at once as a vector, pass a  of $2^n$ in the binary expansion of $x$), returning the bits as an integer
 vector for $n$.  bitmap. That is, if $x = \sum x_i 2^i$ with the $x_i$ in $\{0,1\}$, this
   routine returns the integer
   $$ \sum_{0\leq i < |c|} x_{n + i} 2^i $$
   Bits at negative offsets are 0. A negative value of $c$ means that negative
   values of $x$ are treated in the spirit of $2$-complement arithmetic (i.e
   modulo a big power of $2$). To extract several bits (or groups of bits if
   $|c|>1$) separately at once as a vector, pass a vector for $n$.
   
 \syn{bittest}{x,n}, where $n$ and the result are \kbd{long}s.  \syn{gbittest3}{x,n,c}. Also available are $\teb{gbittest}(x,n)$
   (default case $c=1$) and for simple cases $\teb{bittest}(x,n)$, where $n$
   and the result are \kbd{long}s.
   
 \subsecidx{bitxor}$(x,y)$: bitwise (exclusive) \tet{or}\sidx{bitwise  \subsecidx{bitxor}$(x,y)$: bitwise (exclusive) \tet{or}\sidx{bitwise
 exclusive or} of two integers $x$ and $y$, that is the integer  exclusive or} of two integers $x$ and $y$, that is the integer
Line 633  the degree of a polynomial is equal to its length minu
Line 733  the degree of a polynomial is equal to its length minu
   
 \subsecidx{lift}$(x,\{v\})$: lifts an element $x=a \bmod n$ of $\Z/n\Z$ to  \subsecidx{lift}$(x,\{v\})$: lifts an element $x=a \bmod n$ of $\Z/n\Z$ to
 $a$ in $\Z$, and similarly lifts a polmod to a polynomial if $v$ is omitted.  $a$ in $\Z$, and similarly lifts a polmod to a polynomial if $v$ is omitted.
 Otherwise, lifts only polmods with main variable $v$ (if $v$ does not occur  Otherwise, lifts only polmods whose modulus has main variable $v$ (if $v$
 in $x$, lifts only intmods). If $x$ is of type fraction, complex, quadratic,  does not occur in $x$, lifts only intmods). If $x$ is of recursive (non
 polynomial, power series, rational function, vector or matrix, the lift is  modular) type, the lift is done coefficientwise. For $p$-adics, this routine
 done for each coefficient. For $p$-adics, this routine acts as  acts as \tet{truncate}. It is not allowed to have $x$ of type \typ{REAL}.
 \tet{truncate}. It is not allowed to have $x$ of type \typ{REAL}.  
   
   \bprog
   ? lift(Mod(5,3))
   %1 = 2
   ? lift(3 + O(3^9))
   %2 = 3
   ? lift(Mod(x,x^2+1))
   %3 = x
   ? lift(x * Mod(1,3) + Mod(2,3))
   %4 = x + 2
   ? lift(x * Mod(y,y^2+1) + Mod(2,3))
   %5 = y*x + Mod(2, 3)   \\@com do you understand this one ?
   ? lift(x * Mod(y,y^2+1) + Mod(2,3), x)
   %6 = Mod(y, y^2+1) * x + Mod(2, y^2+1)
   @eprog
   
 \syn{lift0}{x,v}, where $v$ is a \kbd{long} and an omitted $v$ is coded as  \syn{lift0}{x,v}, where $v$ is a \kbd{long} and an omitted $v$ is coded as
 $-1$. Also available is \teb{lift}$(x)$ = \kbd{lift0($x$,-1)}.  $-1$. Also available is \teb{lift}$(x)$ = \kbd{lift0($x$,-1)}.
   
Line 1012  small.
Line 1126  small.
   
 \subsecidx{besselk}$(\var{nu},x,\{\fl=0\})$: $K$-Bessel function of index  \subsecidx{besselk}$(\var{nu},x,\{\fl=0\})$: $K$-Bessel function of index
 \var{nu} (which can be complex) and argument $x$. Only real and positive  \var{nu} (which can be complex) and argument $x$. Only real and positive
 arguments  arguments $x$ are allowed in the present version \vers. If $\fl$ is equal to
 $x$ are allowed in the present version \vers. If $\fl$ is equal to 1,  1, uses another implementation of this function which is often faster. In the
 uses another implementation of this function which is often faster.  present version \vers, this function is not very accurate when $x$ is small.
   
 \syn{kbessel}{\var{nu},x,\var{prec}} and  \syn{kbessel}{\var{nu},x,\var{prec}} and
 $\teb{kbessel2}(\var{nu},x,\var{prec})$ respectively.  $\teb{kbessel2}(\var{nu},x,\var{prec})$ respectively.
Line 1047  repeatedly calling \kbd{eint1($i$ * x)}.
Line 1161  repeatedly calling \kbd{eint1($i$ * x)}.
 $\teb{eint1}(x,\var{prec})$.  $\teb{eint1}(x,\var{prec})$.
   
 \subsecidx{erfc}$(x)$: complementary error function  \subsecidx{erfc}$(x)$: complementary error function
 $(2/\sqrt\pi)\int_x^\infty e^{-t^2}\,dt$.  $(2/\sqrt\pi)\int_x^\infty e^{-t^2}\,dt$ ($x\in\R$).
   
 \syn{erfc}{x,\var{prec}}.  \syn{erfc}{x,\var{prec}}.
   
Line 1111  $\ln(p)=0$. Hence in particular $\exp(\ln(x))/x$ will 
Line 1225  $\ln(p)=0$. Hence in particular $\exp(\ln(x))/x$ will 
 equal to 1 but to a $(p-1)$-th root of unity (or $\pm1$ if $p=2$)  equal to 1 but to a $(p-1)$-th root of unity (or $\pm1$ if $p=2$)
 times a power of $p$.  times a power of $p$.
   
 If $\fl$ is equal to 1, use an agm formula suggested by Mestre, when $x$ is  If $\fl$ is equal to $1 = \kbd{AGM}$, use an agm formula suggested by Mestre,
 real, otherwise identical to \kbd{log}.  when $x$ is real, otherwise identical to \kbd{log}.
   
 \syn{glog}{x,\var{prec}} or $\teb{glogagm}(x,\var{prec})$.  \syn{glog}{x,\var{prec}} or $\teb{glogagm}(x,\var{prec})$.
   
Line 1370  Here $y$ must be an integer, but $x$ can be any PARI o
Line 1484  Here $y$ must be an integer, but $x$ can be any PARI o
   
 \syn{binome}{x,y}, where $y$ must be a \kbd{long}.  \syn{binome}{x,y}, where $y$ must be a \kbd{long}.
   
 \subsecidx{chinese}$(x,y)$: if $x$ and $y$ are both integermods or both  \subsecidx{chinese}$(x,\{y\})$: if $x$ and $y$ are both integermods or both
 polmods, creates (with the same type) a $z$ in the same residue class  polmods, creates (with the same type) a $z$ in the same residue class
 as $x$ and in the same residue class as $y$, if it is possible.  as $x$ and in the same residue class as $y$, if it is possible.
   
 This function also allows vector and matrix arguments, in which case the  This function also allows vector and matrix arguments, in which case the
 operation is recursively applied to each component of the vector or matrix.  operation is recursively applied to each component of the vector or matrix.
 For polynomial arguments, it is applied to each coefficient. Finally  For polynomial arguments, it is applied to each coefficient.
 $\kbd{chinese}(x,x) = x$ regardless of the type of $x$; this allows vector  
 arguments to contain other data, so long as they are identical in both  If $y$ is omitted, and $x$ is a vector, \kbd{chinese} is applied recursively
   to the components of $x$, yielding a residue belonging to the same class as all
   components of $x$.
   
   Finally $\kbd{chinese}(x,x) = x$ regardless of the type of $x$; this allows
   vector arguments to contain other data, so long as they are identical in both
 vectors.  vectors.
   
 \syn{chinois}{x,y}.  \syn{chinois}{x,y}.
   
 \subsecidx{content}$(x)$: computes the gcd of all the coefficients of $x$,  \subsecidx{content}$(x)$: computes the gcd of all the coefficients of $x$,
 when this gcd makes sense. If $x$ is a scalar, this simply returns $x$. If $x$  when this gcd makes sense. If $x$ is a scalar, this simply returns the
 is a polynomial (and by extension a power series), it gives the usual content  absolute value of $x$ if $x$ is rationnal (\typ{INT}, \typ{FRAC} or
 of $x$. If $x$ is a rational function, it gives the ratio of the contents of  \typ{FRACN}), and $x$ otherwise. If $x$ is a polynomial (and by extension a
 the numerator and the denominator. Finally, if $x$ is a vector or a matrix,  power series), it gives the usual content of $x$. If $x$ is a rational
 it gives the gcd of all the entries.  function, it gives the ratio of the contents of the numerator and the
   denominator. Finally, if $x$ is a vector or a matrix, it gives the gcd of all
   the entries.
   
 \syn{content}{x}.  \syn{content}{x}.
   
 \subsecidx{contfrac}$(x,\{b\},\{lmax\})$: creates the row vector whose  \subsecidx{contfrac}$(x,\{b\},\{nmax\})$: creates the row vector whose
 components are the partial quotients of the \idx{continued fraction}  components are the partial quotients of the \idx{continued fraction}
 expansion of $x$, the number of partial quotients being limited to $lmax$.  expansion of $x$. That is a result $[a_0,\dots,a_n]$ means that
 If $x$ is a real number, the expansion stops at the last significant partial  $x \approx a_0+1/(a_1+\dots+1/a_n)\dots)$. The output is normalized so that
 quotient if $lmax$ is omitted. $x$ can also be a rational function or a power  $a_n \neq 1$ (unless we also have $n = 0$).
 series.  
   
   The number of partial quotients $n$ is limited to $nmax$. If $x$ is a real
   number, the expansion stops at the last significant partial quotient if $nmax$
   is omitted. $x$ can also be a rational function or a power series.
   
 If a vector $b$ is supplied, the numerators will be equal to the coefficients  If a vector $b$ is supplied, the numerators will be equal to the coefficients
 of $b$. The length of the result is then equal to the length of $b$, unless a  of $b$ (instead of all equal to $1$ as above). The length of the result is
 partial remainder is encountered which is equal to zero. In which case the  then equal to the length of $b$, unless a partial remainder is encountered
 expansion stops. In the case of real numbers, the stopping criterion is thus  which is equal to zero, in which case the expansion stops. In the case of real
 different from the one mentioned above since, if $b$ is too long, some partial  numbers, the stopping criterion is thus different from the one mentioned above
 quotients may not be significant.  since, if $b$ is too long, some partial quotients may not be significant.
   
 If $b$ is an integer, the command is understood as \kbd{contfrac($x,lmax$)}.  If $b$ is an integer, the command is understood as \kbd{contfrac($x,nmax$)}.
   
 \syn{contfrac0}{x,b,lmax}. Also available are  \syn{contfrac0}{x,b,nmax}. Also available are
 $\teb{gboundcf}(x,lmax)$, $\teb{gcf}(x)$, or $\teb{gcf2}(b,x)$, where $lmax$  $\teb{gboundcf}(x,nmax)$, $\teb{gcf}(x)$, or $\teb{gcf2}(b,x)$, where $nmax$
 is a C integer.  is a C integer.
   
 \subsecidx{contfracpnqn}$(x)$: when $x$ is a vector or a one-row matrix, $x$  \subsecidx{contfracpnqn}$(x)$: when $x$ is a vector or a one-row matrix, $x$
Line 1522  Also available are
Line 1646  Also available are
 $\teb{factor}(x)$ (= $\teb{factor0}(x,-1)$),  $\teb{factor}(x)$ (= $\teb{factor0}(x,-1)$),
 $\teb{smallfact}(x)$ (= $\teb{factor0}(x,0)$).  $\teb{smallfact}(x)$ (= $\teb{factor0}(x,0)$).
   
 \subsecidx{factorback}$(f,\{nf\})$: $f$ being any factorization, gives back  \subsecidx{factorback}$(f,\{e\},\{nf\})$: gives back the factored object
 the factored object. If a second argument $\var{nf}$ is supplied, $f$ is  corresponding to a factorization. If the last argument is of number field
 assumed to be a prime ideal factorization in the number field $\var{nf}$.  type (e.g.~created by \kbd{nfinit} or \kbd{bnfinit}), assume we are dealing
 The resulting ideal is given in HNF\sidx{Hermite normal form} form.  with an ideal factorization in the number field. The resulting ideal product is
   given in HNF\sidx{Hermite normal form} form.
   
 \syn{factorback}{f,\var{nf}}, where an omitted  If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
   integral), and the corresponding factorization is the product of the
   $f[i]^{e[i]}$.
   
   If not, and $f$ is vector, it is understood as in the preceding case with
   $e$ a vector of 1 (the product of the $f[i]$ is returned). Finally,
   $f$ can be a regular factorization, as produced with any \kbd{factor}
   command. A few examples:
   \bprog
   ? factorback([2,2; 3,1])
   %1 = 12
   ? factorback([2,2], [3,1])
   %2 = 12
   ? factorback([5,2,3])
   %3 = 30
   ? factorback([2,2], [3,1], nfinit(x^3+2))
   %4 =
   [16 0 0]
   
   [0 16 0]
   
   [0 0 16]
   ? nf = nfinit(x^2+1); fa = idealfactor(nf, 10)
   %5 =
   [[2, [1, 1]~, 2, 1, [1, 1]~] 2]
   
   [[5, [-2, 1]~, 1, 1, [2, 1]~] 1]
   
   [[5, [2, 1]~, 1, 1, [-2, 1]~] 1]
   ? factorback(fa)
     ***   forbidden multiplication t_VEC * t_VEC.
   ? factorback(fa, nf)
   %6 =
   [10 0]
   
   [0 10]
   
   @eprog
   In the fourth example, $2$ and $3$ are interpreted as principal ideals in a
   cubic field. In the fifth one, \kbd{factorback(fa)} is meaningless since we
   forgot to indicate the number field, and the entries in the first column of
   \kbd{fa} can't be multiplied.
   
   \syn{factorback0}{f,e,\var{nf}}, where an omitted
   $\var{nf}$ or $e$ is entered as \kbd{NULL}. Also available is
   \tet{factorback}$(f,\var{nf})$ (case $e = \kbd{NULL}$) where an omitted
 $\var{nf}$ is entered as \kbd{NULL}.  $\var{nf}$ is entered as \kbd{NULL}.
   
 \subsecidx{factorcantor}$(x,p)$: factors the polynomial $x$ modulo the  \subsecidx{factorcantor}$(x,p)$: factors the polynomial $x$ modulo the
Line 1607  $\teb{simplefactmod}(x,p)$ (= $\teb{factormod}(x,p,1)$
Line 1777  $\teb{simplefactmod}(x,p)$ (= $\teb{factormod}(x,p,1)$
 \subsecidx{ffinit}$(p,n,\{v=x\})$: computes a monic polynomial of degree  \subsecidx{ffinit}$(p,n,\{v=x\})$: computes a monic polynomial of degree
 $n$ which is irreducible over $\F_p$. For instance if  $n$ which is irreducible over $\F_p$. For instance if
 \kbd{P = ffinit(3,2,y)}, you can represent elements in $\F_{3^2}$ as polmods  \kbd{P = ffinit(3,2,y)}, you can represent elements in $\F_{3^2}$ as polmods
 modulo \kbd{P}.  modulo \kbd{P}. Starting with version 2.2.3 this function use a fast variant
   of Adleman--Lenstra algorithm, and is much faster than in earlier versions.
   
 \syn{ffinit}{p,n,v}, where $v$ is a variable number.  \syn{ffinit}{p,n,v}, where $v$ is a variable number.
   
 \subsecidx{gcd}$(x,y,\{\fl=0\})$: creates the greatest common divisor of $x$  \subsecidx{gcd}$(x,\{y\},\{\fl=0\})$: creates the greatest common divisor of $x$
 and $y$. $x$ and $y$ can be of quite general types, for instance both  and $y$. $x$ and $y$ can be of quite general types, for instance both
 rational numbers. Vector/matrix types are also accepted, in which case  rational numbers. Vector/matrix types are also accepted, in which case
 the GCD is taken recursively on each component. Note that for these  the GCD is taken recursively on each component. Note that for these
 types, \kbd{gcd} is not commutative.  types, \kbd{gcd} is not commutative. \fl\ is obsolete and should not be used.
   
 If $\fl=0$, use \idx{Euclid}'s algorithm.  If $y$ is omitted and $x$ is a vector, return the $\text{gcd}$ of all
   components of $x$. The algorithm used is a naive \idx{Euclid} except for the
   following inputs:
   
 If $\fl=1$, use the modular gcd algorithm ($x$ and $y$ have to be  $\bullet$ integers: use modified right-shift binary (``plus-minus''
 polynomials, with integer coefficients).  variant).
   
 If $\fl=2$, use the \idx{subresultant algorithm}.  $\bullet$ univariate polynomials with coeffients in the same number
   field (in particular rational): use modular gcd algorithm.
   
 \syn{gcd0}{x,y,\fl}. Also available are  $\bullet$ general polynomials: use the \idx{subresultant algorithm} if
 $\teb{ggcd}(x,y)$, $\teb{modulargcd}(x,y)$, and $\teb{srgcd}(x,y)$  coefficient explosion is likely (exact, non modular, coefficients).
 corresponding to $\fl=0$, $1$ and $2$ respectively.  
   
   \syn{ggcd}{x,y}. For general polynomial inputs, $\teb{srgcd}(x,y)$ is also
   available. For univariate {\it rational} polynomials, one also has
   $\teb{modulargcd}(x,y)$.
   
 \subsecidx{hilbert}$(x,y,\{p\})$: \idx{Hilbert symbol} of $x$ and $y$ modulo  \subsecidx{hilbert}$(x,y,\{p\})$: \idx{Hilbert symbol} of $x$ and $y$ modulo
 $p$. If $x$ and $y$ are of type integer or fraction, an explicit third  $p$. If $x$ and $y$ are of type integer or fraction, an explicit third
 parameter $p$ must be supplied, $p=0$ meaning the place at infinity.  parameter $p$ must be supplied, $p=0$ meaning the place at infinity.
 Otherwise, $p$ needs not be given, and $x$ and $y$ can be of compatible types  Otherwise, $p$ needs not be given, and $x$ and $y$ can be of compatible types
 integer, fraction, real, integermod or $p$-adic.  integer, fraction, real, integermod a prime (result is undefined if the
   modulus is not prime), or $p$-adic.
   
 \syn{hil}{x,y,p}.  \syn{hil}{x,y,p}.
   
Line 1643  discriminant of a quadratic field, false (0) otherwise
Line 1821  discriminant of a quadratic field, false (0) otherwise
 simpler function $\teb{isfundamental}(x)$ which returns a \kbd{long}  simpler function $\teb{isfundamental}(x)$ which returns a \kbd{long}
 should be used if $x$ is known to be of type integer.  should be used if $x$ is known to be of type integer.
   
 \subsecidx{isprime}$(x,\{\fl=0\})$: if $\fl=0$ (default), true (1) if $x$ is a strong pseudo-prime  \subsecidx{isprime}$(x,\{\fl=0\})$: true (1) if $x$ is a (proven) prime
 for 10 randomly chosen bases, false (0) otherwise.  number, false (0) otherwise. This can be very slow when $x$ is indeed
   prime and has more than $1000$ digits, say. Use \tet{ispseudoprime} to
   quickly check for pseudo primality.
   
 If $\fl=1$, use Pocklington-Lehmer ``P-1'' test. true (1) if $x$ is  If $\fl=0$, use a combination of Baillie-PSW pseudo primality test (see
 prime, false (0) otherwise.  \tet{ispseudoprime}), Selfridge ``$p-1$'' test if $x-1$ is smooth enough, and
   Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) for general $x$.
   
 If $\fl=2$, use Pocklington-Lehmer ``P-1'' test and output a primality  If $\fl=1$, use Selfridge-Pocklington-Lehmer ``$p-1$'' test and output a
 certificate as follows: return 0 if $x$ is composite, 1 if $x$ is a  primality certificate as follows: return 0 if $x$ is composite, 1 if $x$ is
 small prime (currently strictly less than $341 550 071 728 321$), and  small enough that passing Baillie-PSW test guarantees its primality
 a matrix if $x$ is a large prime.  The matrix has three columns. The  (currently $x < 10^{13}$), $2$ if $x$ is a large prime whose primality could
 first contains the prime factors $p$, the second the corresponding  only sensibly be proven (given the algorithms implemented in PARI) using the
 elements $a_p$ as in Proposition~8.3.1 in GTM~138, and the third the  APRCL test. Otherwise ($x$ is large and $x-1$ is smooth) output a three
 output of isprime(p,2).  column matrix as a primality certificate. The first column contains the prime
   factors $p$ of $x-1$, the second the corresponding elements $a_p$ as in
   Proposition~8.3.1 in GTM~138, and the third the output of isprime(p,1).  The
   algorithm fails if one of the pseudo-prime factors is not prime, which is
   exceedingly unlikely (and well worth a bug report).
   
 In the two last cases, the algorithm fails if one of the (strong  If $\fl=2$, use APRCL.
 pseudo-)prime factors is not prime, but it should be exceedingly rare.  
   
   
 \syn{gisprime}{x,\fl}, but the simpler function $\teb{isprime}(x)$  \syn{gisprime}{x,\fl}, but the simpler function $\teb{isprime}(x)$
 which returns a \kbd{long} should be used if $x$ is known to be of  which returns a \kbd{long} should be used if $x$ is known to be of
 type integer. Also available is $\teb{plisprime}(N,\fl)$,  
 corresponding to $\teb{gisprime}(x,\fl+1)$ if $x$ is known to be of  
 type integer.  type integer.
   
   
 \subsecidx{ispseudoprime}$(x)$: true (1) if $x$ is a strong  \subsecidx{ispseudoprime}$(x,\{\fl\})$: true (1) if $x$ is a strong pseudo
 pseudo-prime for a randomly chosen base, false (0) otherwise.  prime (see below), false (0) otherwise. If this function returns false, $x$
   is not prime; if, on the other hand it returns true, it is only highly likely
   that $x$ is a prime number. Use \tet{isprime} (which is of course much
   slower) to prove that $x$ is indeed prime.
   
 \syn{gispsp}{x}, but the  If $\fl = 0$, checks whether $x$ is a Baillie-Pomerance-Selfridge-Wagstaff
 simpler function $\teb{ispsp}(x)$ which returns a \kbd{long}  pseudo prime (strong Rabin-Miller pseudo prime for base $2$, with
 should be used if $x$ is known to be of type integer.  end-matching to catch square roots of $-1$, followed by strong Lucas test for
   the sequence $(P,-1)$, $P$ smallest positive integer such that $P^2 - 4$ is
   not a square mod $x$).
   
   There are no known composite numbers passing this test, although it is
   expected that infinitely such numbers exist.
   
   If $\fl > 0$, checks whether $x$ is a strong Miller-Rabin pseudo prime (with
   end-matching) for $\fl$ randomly chosen bases.
   
   \syn{gispseudoprime}{x,\fl}, but the simpler function $\teb{ispseudoprime}(x)$
   which returns a \kbd{long} should be used if $x$ is known to be of type
   integer.
   
 \subsecidx{issquare}$(x,\{\&n\})$: true (1) if $x$ is square, false (0) if  \subsecidx{issquare}$(x,\{\&n\})$: true (1) if $x$ is square, false (0) if
 not. $x$ can be of any type. If $n$ is given and an exact square root had to  not. $x$ can be of any type. If $n$ is given and an exact square root had to
 be computed in the checking process, puts that square root in $n$. This is in  be computed in the checking process, puts that square root in $n$. This is in
Line 1700  must be of type integer.
Line 1896  must be of type integer.
   
 \syn{kronecker}{x,y}, the result ($0$ or $\pm 1$) is a \kbd{long}.  \syn{kronecker}{x,y}, the result ($0$ or $\pm 1$) is a \kbd{long}.
   
 \subsecidx{lcm}$(x,y)$: least common multiple of $x$ and $y$, i.e.~such  \subsecidx{lcm}$(x,\{y\})$: least common multiple of $x$ and $y$, i.e.~such
 that $\text{lcm}(x,y)*\text{gcd}(x,y)=\text{abs}(x*y)$.  that $\text{lcm}(x,y)*\text{gcd}(x,y)=\text{abs}(x*y)$.
   
   If $y$ is omitted and $x$ is a vector, return the $\text{lcm}$ of all
   components of $x$.
   
 \syn{glcm}{x,y}.  \syn{glcm}{x,y}.
   
 \subsecidx{moebius}$(x)$: \idx{Moebius} $\mu$-function of $|x|$. $x$ must  \subsecidx{moebius}$(x)$: \idx{Moebius} $\mu$-function of $|x|$. $x$ must
Line 1717  this function returns $x$ and not the smallest prime s
Line 1916  this function returns $x$ and not the smallest prime s
 \syn{nextprime}{x}.  \syn{nextprime}{x}.
   
 \subsecidx{numdiv}$(x)$: number of divisors of $|x|$. $x$ must be of type  \subsecidx{numdiv}$(x)$: number of divisors of $|x|$. $x$ must be of type
 integer, and the result is a \kbd{long}.  integer.
   
 \syn{numbdiv}{x}.  \syn{numbdiv}{x}.
   
Line 1743  are the first $x$ prime numbers, which must be among t
Line 1942  are the first $x$ prime numbers, which must be among t
   
 \syn{primes}{x}. $x$ must be a \kbd{long}.  \syn{primes}{x}. $x$ must be a \kbd{long}.
   
 \subsecidx{qfbclassno}$(x,\{\fl=0\})$: class number of the quadratic field  \subsecidx{qfbclassno}$(D,\{\fl=0\})$: ordinary class number of the quadratic
 of discriminant $x$. In the present version \vers, a simple algorithm is used  order of discriminant $D$. In the present version \vers, a $O(D^{1/2})$
 for $x>0$, so $x$ should not be too large (say $x<10^7$) for the time to be  algorithm is used for $D > 0$ (using Euler product and the functional
 reasonable. On the other hand, for $x<0$ one can reasonably compute  equation) so $D$ should not be too large, say $D < 10^8$, for the time to be
 classno($x$) for $|x|<10^{25}$, since the method used is \idx{Shanks}' method  reasonable. On the other hand, for $D < 0$ one can reasonably compute
 which is in $O(|x|^{1/4})$. For larger values of $|D|$, see  \kbd{qfbclassno($D$)} for $|D|<10^{25}$, since the routine uses
 \kbd{quadclassunit}.  \idx{Shanks}'method which is in $O(|D|^{1/4})$. For larger values of $|D|$,
   see \kbd{quadclassunit}, which unfortunately works reliably only for
   fundamental discriminants.
   
 If $\fl=1$, compute the class number using \idx{Euler product}s and the  If $\fl=1$, compute the class number using \idx{Euler product}s and the
 functional equation. However, it is in $O(|x|^{1/2})$.  functional equation. However, it is in $O(|D|^{1/2})$.
   
 \misctitle{Important warning.} For $D<0$, this function often gives  \misctitle{Important warning.} For $D < 0$, this function often gives
 incorrect results when the class group is non-cyclic, because the authors  incorrect results when the class group is non-cyclic, because the authors
 were too lazy to implement \idx{Shanks}' method completely. It is therefore  were too lazy to implement \idx{Shanks}' method completely. It is therefore
 strongly recommended to use either the version with $\fl=1$, the function  strongly recommended to use either the version with $\fl = 1$, the function
 $\kbd{qfhclassno}(-x)$ if $x$ is known to be a fundamental discriminant, or  $\kbd{qfbhclassno}(-D)$ if $D$ is known to be a fundamental discriminant, or
 the function \kbd{quadclassunit}.  the function \kbd{quadclassunit}.
   
 \syn{qfbclassno0}{x,\fl}. Also available are  \misctitle{Warning.} contrary to what its name implies, this routine does not
 $\teb{classno}(x)$ (= $\teb{qfbclassno}(x)$),  compute the number of classes of binary primitive forms of discriminant $D$,
 $\teb{classno2}(x)$ (= $\teb{qfbclassno}(x,1)$), and finally  which is equal to the \var{narrow} class number. The two notions are the same
 there exists the function $\teb{hclassno}(x)$ which computes the class  when $D < 0$ or the fundamental unit $\varepsilon$ has negative norm; when $D
 number of an imaginary quadratic field by counting reduced forms, an $O(|x|)$  > 0$ and $N\varepsilon > 0$, the number of classes of forms is twice the
   ordinary class number. This is a problem which we cannot fix for backward
   compatibility reasons. Use the following routine if you are only interested
   in the number of classes of form:
   \bprog
   QFBclassno(D) =
     qfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)
   @eprog
   \noindent Here are a few examples, including an erroneous answer:
   \bprog
   ? qfbclassno(400000028)
   time = 3,140 ms.
   %1 = 1
   ? quadclassunit(400000028).no
   time = 20 ms. \\@com{ much faster}
   %2 = 1
   ? qfbclassno(-400000028)
   time = 0 ms.
   %3 = 7253 \\@com{ correct, and fast enough}
   ? quadclassunit(-400000028).no
     ***   Warning: not a fundamental discriminant in quadclassunit.
   time = 0 ms.
   %4 = 7253
   ? qfbclassno(-2878367)
   time = 0 ms.
   %6 = 1056 \\@com{ This is wrong! Correct answer is $1152$}
   (14:40) gp > quadclassunit(-2878367)
   time = 10 ms.
   %7 = [1152, [48, 24], [Qfb(647, 189, 1126), Qfb(2, 1, 359796)], 1, 1.000250]
   @eprog
   
   \syn{qfbclassno0}{D,\fl}. Also available:
   $\teb{classno}(D)$ (= $\teb{qfbclassno}(D)$),
   $\teb{classno2}(D)$ (= $\teb{qfbclassno}(D,1)$), and finally
   there exists the function $\teb{hclassno}(D)$ which computes the class
   number of an imaginary quadratic field by counting reduced forms, an $O(|D|)$
 algorithm. See also \kbd{qfbhclassno}.  algorithm. See also \kbd{qfbhclassno}.
   
 \subsecidx{qfbcompraw}$(x,y)$ \idx{composition} of the binary quadratic forms  \subsecidx{qfbcompraw}$(x,y)$ \idx{composition} of the binary quadratic forms
Line 1783  non-negative and congruent to 0 or 3 modulo 4. See als
Line 2019  non-negative and congruent to 0 or 3 modulo 4. See als
 definite binary quadratic forms $x$ and $y$ using the NUCOMP and NUDUPL  definite binary quadratic forms $x$ and $y$ using the NUCOMP and NUDUPL
 algorithms of \idx{Shanks} (\`a la Atkin). $l$ is any positive constant,  algorithms of \idx{Shanks} (\`a la Atkin). $l$ is any positive constant,
 but for optimal speed, one should take $l=|D|^{1/4}$, where $D$ is the common  but for optimal speed, one should take $l=|D|^{1/4}$, where $D$ is the common
 discriminant of $x$ and $y$.  discriminant of $x$ and $y$. When $x$ and $y$ do not have the same
   discriminant, the result is undefined.
   
 \syn{nucomp}{x,y,l}. The auxiliary function  \syn{nucomp}{x,y,l}. The auxiliary function
 $\teb{nudupl}(x,l)$ should be used instead for speed when $x=y$.  $\teb{nudupl}(x,l)$ should be used instead for speed when $x=y$.
Line 2060  only available for curves defined over $\Q_p$.\smallsk
Line 2297  only available for curves defined over $\Q_p$.\smallsk
   
 Some functions, in particular those relative to height computations (see  Some functions, in particular those relative to height computations (see
 \kbd{ellheight}) require also that the curve be in minimal Weierstrass  \kbd{ellheight}) require also that the curve be in minimal Weierstrass
 form. This is achieved by the function \kbd{ellglobalred}.  form. This is achieved by the function \kbd{ellminimalmodel}.
   
 All functions related to elliptic curves share the prefix \kbd{ell}, and the  All functions related to elliptic curves share the prefix \kbd{ell}, and the
 precise curve we are interested in is always the first argument, in either  precise curve we are interested in is always the first argument, in either
Line 2082  known to hold in full generality thanks to the work of
Line 2319  known to hold in full generality thanks to the work of
 medium or long vector of the type given by \kbd{ellinit}. For this function  medium or long vector of the type given by \kbd{ellinit}. For this function
 to work for every $n$ and not just those prime to the conductor, $E$ must  to work for every $n$ and not just those prime to the conductor, $E$ must
 be a minimal Weierstrass equation. If this is not the case, use the  be a minimal Weierstrass equation. If this is not the case, use the
 function \kbd{ellglobalred} first before using \kbd{ellak}.  function \kbd{ellminimalmodel} first before using \kbd{ellak}.
   
 \syn{akell}{E,n}.  \syn{akell}{E,n}.
   
Line 2157  minimal model of $E$ and the global \idx{Tamagawa numb
Line 2394  minimal model of $E$ and the global \idx{Tamagawa numb
 elliptic curve given by a medium or long vector of the type given by  elliptic curve given by a medium or long vector of the type given by
 \kbd{ellinit}, {\it and is supposed to have all its coefficients $a_i$ in}  \kbd{ellinit}, {\it and is supposed to have all its coefficients $a_i$ in}
 $\Q$. The result is a 3 component vector $[N,v,c]$. $N$ is the arithmetic  $\Q$. The result is a 3 component vector $[N,v,c]$. $N$ is the arithmetic
 conductor of the curve, $v$ is itself a vector $[u,r,s,t]$ with rational  conductor of the curve. $v$ gives the coordinate change for $E$ over $\Q$ to
 components. It gives a coordinate change for $E$ over $\Q$ such that the  the minimal integral model (see \tet{ellminimalmodel}). Finally $c$ is the
 resulting model has integral coefficients, is everywhere minimal, $a_1$ is 0  product of the local Tamagawa numbers $c_p$, a quantity which enters in the
 or 1, $a_2$ is 0, 1 or $-1$ and $a_3$ is 0 or 1. Such a model is unique, and  \idx{Birch and Swinnerton-Dyer conjecture}.\sidx{minimal model}
 the vector $v$ is unique if we specify that $u$ is positive. To get the new  
 model, simply type \kbd{ellchangecurve(E,v)}. Finally $c$ is the product of  
 the local Tamagawa numbers $c_p$, a quantity which enters in the  
 \idx{Birch and Swinnerton-Dyer conjecture}.  
   
 \syn{globalreduction}{E}.  \syn{globalreduction}{E}.
   
Line 2297  $O(N^{1/2})$ algorithm.
Line 2530  $O(N^{1/2})$ algorithm.
 \syn{lseriesell}{E,s,A,\var{prec}} where $\var{prec}$ is a \kbd{long} and an  \syn{lseriesell}{E,s,A,\var{prec}} where $\var{prec}$ is a \kbd{long} and an
 omitted $A$ is coded as \kbd{NULL}.  omitted $A$ is coded as \kbd{NULL}.
   
   \subsecidx{ellminimalmodel}$(E,\{\&v\})$:  return the standard minimal
   integral model of the rational elliptic curve $E$. If present, sets $v$ to the
   corresponding change of variables, which is a vector $[u,r,s,t]$ with
   rational components. The return value is identical to that of
   \kbd{ellchangecurve(E, v)}.
   
   The resulting model has integral coefficients, is everywhere minimal, $a_1$
   is 0 or 1, $a_2$ is 0, 1 or $-1$ and $a_3$ is 0 or 1. Such a model is unique,
   and the vector $v$ is unique if we specify that $u$ is positive, which we do.
   \sidx{minimal model}
   
   \syn{ellminimalmodel}{E,\&v}, where an omitted $v$ is coded as \kbd{NULL}.
   
 \subsecidx{ellorder}$(E,z)$: gives the order of the point $z$ on the elliptic  \subsecidx{ellorder}$(E,z)$: gives the order of the point $z$ on the elliptic
 curve $E$ if it is a torsion point, zero otherwise. In the present version  curve $E$ if it is a torsion point, zero otherwise. In the present version
 \vers, this is implemented only for elliptic curves defined over $\Q$.  \vers, this is implemented only for elliptic curves defined over $\Q$.
Line 2364  $H/\Gamma_0(N)$ where $N$ is the conductor of the curv
Line 2610  $H/\Gamma_0(N)$ where $N$ is the conductor of the curv
 the power series for $u$ and $v$ is $x$, which is implicitly understood to be  the power series for $u$ and $v$ is $x$, which is implicitly understood to be
 equal to $\exp(2i\pi z)$. It is assumed that the curve is a \var{strong}  equal to $\exp(2i\pi z)$. It is assumed that the curve is a \var{strong}
 \idx{Weil curve}, and the Manin constant is equal to 1. The equation of  \idx{Weil curve}, and the Manin constant is equal to 1. The equation of
 the curve $E$ must be minimal (use \kbd{ellglobalred} to get a minimal  the curve $E$ must be minimal (use \kbd{ellminimalmodel} to get a minimal
 equation).  equation).
   
 \syn{taniyama}{E}, and the precision of the result is determined by the  \syn{taniyama}{E}, and the precision of the result is determined by the
Line 2445  associated to the number field: signature, maximal ord
Line 2691  associated to the number field: signature, maximal ord
 $\bullet$ $\tev{bnf}$ denotes a big number field, i.e.~a 10-component  $\bullet$ $\tev{bnf}$ denotes a big number field, i.e.~a 10-component
 vector in the format output by \tet{bnfinit}. This contains $\var{nf}$ and  vector in the format output by \tet{bnfinit}. This contains $\var{nf}$ and
 the deeper invariants of the field: units, class groups, as well as a lot of  the deeper invariants of the field: units, class groups, as well as a lot of
 technical data necessary for some complex fonctions like \kbd{bnfisprincipal}.  technical data necessary for some complex functions like \kbd{bnfisprincipal}.
   
 $\bullet$ $\tev{bnr}$ denotes a big ``ray number field'', i.e.~some data  $\bullet$ $\tev{bnr}$ denotes a big ``ray number field'', i.e.~some data
 structure output by \kbd{bnrinit}, even more complicated than $\var{bnf}$,  structure output by \kbd{bnrinit}, even more complicated than $\var{bnf}$,
Line 2531  determinant of a pseudo-matrix is the determinant of a
Line 2777  determinant of a pseudo-matrix is the determinant of a
 module it generates.  module it generates.
   
 Finally, when defining a relative extension, the base field should be  Finally, when defining a relative extension, the base field should be
 defined by a variable having a lower priority (i.e.~a higher number)  defined by a variable having a lower priority (i.e.~a higher number, see
 than the variable defining the extension. For example, under GP you can  \secref{se:priority}) than the variable defining the extension. For example,
 use the variable name $y$ (or $t$) to define the base field, and the  under GP you can use the variable name $y$ (or $t$) to define the base field,
 variable name $x$ to define the relative extension.  and the variable name $x$ to define the relative extension.
   
 Now a last set of definitions concerning the way big ray number fields  Now a last set of definitions concerning the way big ray number fields
 (or \var{bnr}) are input, using class field theory.  (or \var{bnr}) are input, using class field theory.
Line 2615  fundamental units, $w$ generates the torsion.\cr
Line 2861  fundamental units, $w$ generates the torsion.\cr
 \+\tet{reg}  &(\var{bnr},& \var{bnf},&&)&: & regulator.\cr  \+\tet{reg}  &(\var{bnr},& \var{bnf},&&)&: & regulator.\cr
   
 \+\tet{roots}&(\var{bnr},& \var{bnf},& \var{nf}&)&: & roots of the  \+\tet{roots}&(\var{bnr},& \var{bnf},& \var{nf}&)&: & roots of the
 polnomial generating the field.\cr  polynomial generating the field.\cr
   
 \+\tet{sign} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & $[r_1,r_2]$ the  \+\tet{sign} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & $[r_1,r_2]$ the
 signature of the field. This means that the field has $r_1$ real \cr  signature of the field. This means that the field has $r_1$ real \cr
Line 2653  finding class and unit groups under \idx{GRH}, due to 
Line 2899  finding class and unit groups under \idx{GRH}, due to 
 The general call to the functions concerning class groups of general number  The general call to the functions concerning class groups of general number
 fields (i.e.~excluding \kbd{quadclassunit}) involves a polynomial $P$ and a  fields (i.e.~excluding \kbd{quadclassunit}) involves a polynomial $P$ and a
 technical vector  technical vector
 $$\var{tech} = [c,c2,\var{nrel},\var{borne},\var{nrpid},\var{minsfb}],$$  $$\var{tech} = [c,c2,\var{nrel},\var{small\_norm},\var{nrpid},\var{minsfb}],$$
 where the parameters are to be understood as follows:  where the parameters are to be understood as follows:
   
 $P$ is the defining polynomial for the number field, which must be in  $P$ is the defining polynomial for the number field, which must be in
Line 2670  quadratic case, but then you should use the much faste
Line 2916  quadratic case, but then you should use the much faste
 \kbd{quadclassunit}). Reasonable values for $c$ are between $0.1$ and  \kbd{quadclassunit}). Reasonable values for $c$ are between $0.1$ and
 $2$. (The defaults are $c=c2=0.3$).  $2$. (The defaults are $c=c2=0.3$).
   
 $\var{nrel}$ is the number of initial extra relations requested in  $\var{nrel}$ is the number of initial extra relations requested in computing
 computing the  the relation matrix. Reasonable values are between 5 and 20. (The default is
 relation matrix. Reasonable values are between 5 and 20. (The default is 5).  5).
   
 $\var{borne}$ is a multiplicative coefficient of the Minkowski bound which  $\var{small\_norm}$ is a toggle used to disable the search for small norm
 controls  relations. If this parameter is set equal to $0$, the program does not search
 the search for small norm relations. If this parameter is set equal to 0, the  for small norm relations (default value is $1$). {\sl This is obsolete and
 program does not search for small norm relations. Otherwise reasonable values  should not be used. Set $\var{nrpid} = 0$ instead}.
 are between $0.5$ and $2.0$. (The default is $1.0$).  
   
 $\var{nrpid}$ is the maximal number of small norm relations associated to each  $\var{nrpid}$ is the maximal number of small norm relations associated to each
 ideal in the factor base. Irrelevant when $\var{borne}=0$. Otherwise,  ideal in the factor base. Irrelevant when $\var{small\_norm}=0$. Otherwise,
 reasonable values are between 4 and 20. (The default is 4).  reasonable values are between 4 and 20. (The default is 4).
   
 $\var{minsfb}$ is the minimal number of elements in the ``sub-factorbase''.  $\var{minsfb}$ is the minimal number of elements in the ``sub-factorbase''.
 If the  If the program does not seem to succeed in finding a full rank matrix (which
 program does not seem to succeed in finding a full rank matrix (which you can  you can see in GP by typing \kbd{\bs g 2}), increase this number. Reasonable
 see in GP by typing \kbd{\bs g 2}), increase this number. Reasonable values  values are between 2 and 5. (The default is 3).
 are between 2 and 5. (The default is 3).  
   
 \misctitle{Remarks.}  \misctitle{Remarks.}
   
Line 2815  Theory}, Graduate Texts in Maths \key{138}, Springer-V
Line 3059  Theory}, Graduate Texts in Maths \key{138}, Springer-V
   
 $\var{bnf}[1]$ contains the matrix $W$, i.e.~the matrix in Hermite normal  $\var{bnf}[1]$ contains the matrix $W$, i.e.~the matrix in Hermite normal
 form giving relations for the class group on prime ideal generators  form giving relations for the class group on prime ideal generators
 $(\p_i)_{1\le i\le r}$.  $(\wp_i)_{1\le i\le r}$.
   
 $\var{bnf}[2]$ contains the matrix $B$, i.e.~the matrix containing the  $\var{bnf}[2]$ contains the matrix $B$, i.e.~the matrix containing the
 expressions of the prime ideal factorbase in terms of the $\p_i$. It is an  expressions of the prime ideal factorbase in terms of the $\wp_i$. It is an
 $r\times c$ matrix.  $r\times c$ matrix.
   
 $\var{bnf}[3]$ contains the complex logarithmic embeddings of the system of  $\var{bnf}[3]$ contains the complex logarithmic embeddings of the system of
Line 2831  relations of the matrix $(W|B)$.
Line 3075  relations of the matrix $(W|B)$.
 $\var{bnf}[5]$ contains the prime factor base, i.e.~the list of prime  $\var{bnf}[5]$ contains the prime factor base, i.e.~the list of prime
 ideals used in finding the relations.  ideals used in finding the relations.
   
 $\var{bnf}[6]$ contains the permutation of the prime factor base which was  $\var{bnf}[6]$ used to contain a permutation of the prime factor base, but
 necessary to reduce the relation matrix to the form explained in subsection  has been obsoleted. It contains a dummy $0$.
 6.5.5 of GTM~138 (i.e.~with a big $c\times c$ identity matrix on the lower  
 right). Note that in the above mentioned book, the need to permute the rows  
 of the relation matrices which occur was not emphasized.  
   
 $\var{bnf}[9]$ is a 3-element row vector used in \tet{bnfisprincipal} only  $\var{bnf}[9]$ is a 3-element row vector used in \tet{bnfisprincipal} only
 and obtained as follows.  Let $D = U W V$ obtained by applying the  and obtained as follows.  Let $D = U W V$ obtained by applying the
 \idx{Smith normal form} algorithm to the matrix $W$ (= $\var{bnf}[1]$) and  \idx{Smith normal form} algorithm to the matrix $W$ (= $\var{bnf}[1]$) and
 let $U_r$ be the reduction of $U$ modulo $D$. The first elements of the  let $U_r$ be the reduction of $U$ modulo $D$. The first elements of the
 factorbase are given (in terms of \kbd{bnf.gen}) by the columns of $U_r$,  factorbase are given (in terms of \kbd{bnf.gen}) by the columns of $U_r$,
 with archimedian component $g_a$; let also $GD_a$ be the archimedian  with Archimedean component $g_a$; let also $GD_a$ be the Archimedean
 components of the generators of the (principal) ideals defined by the  components of the generators of the (principal) ideals defined by the
 \kbd{bnf.gen[i]\pow bnf.cyc[i]}. Then $\var{bnf}[9]=[U_r, g_a, GD_a]$.  \kbd{bnf.gen[i]\pow bnf.cyc[i]}. Then $\var{bnf}[9]=[U_r, g_a, GD_a]$.
   
Line 2947  simple true/false answer: it gives a row vector $[v_1,
Line 3188  simple true/false answer: it gives a row vector $[v_1,
   
  $v_1$ is the vector of components $c_i$ of the class of the ideal $x$ in the   $v_1$ is the vector of components $c_i$ of the class of the ideal $x$ in the
 class group, expressed on the generators $g_i$ given by \kbd{bnfinit}  class group, expressed on the generators $g_i$ given by \kbd{bnfinit}
 (specifically \kbd{\var{bnf}.clgp.gen} which is the same as  (specifically \kbd{\var{bnf}.gen}). The $c_i$ are chosen so that $0\le c_i<n_i$
 \kbd{\var{bnf}[8][1][3]}). The $c_i$ are chosen so that $0\le c_i<n_i$  where $n_i$ is the order of $g_i$ (the vector of $n_i$ being \kbd{\var{bnf}.cyc}).
 where $n_i$ is the order of $g_i$ (the vector of $n_i$ being  
 \kbd{\var{bnf}.clgp.cyc}, that is \kbd{\var{bnf}[8][1][2]}).  
   
  $v_2$ gives on the integral basis the components of $\alpha$ such that   $v_2$ gives on the integral basis the components of $\alpha$ such that
 $x=\alpha\prod_ig_i^{c_i}$. In particular, $x$ is principal if and only if  $x=\alpha\prod_ig_i^{c_i}$. In particular, $x$ is principal if and only if
 $v_1$ is equal to the zero vector, and if this the case $x=\alpha\Z_K$ where  $v_1$ is equal to the zero vector. In the latter case, $x = \alpha\Z_K$ where
 $\alpha$ is given by $v_2$. Note that if $\alpha$ is too large to be given, a  $\alpha$ is given by $v_2$. Note that if $\alpha$ is too large to be given, a
 warning message will be printed and $v_2$ will be set equal to the empty  warning message will be printed and $v_2$ will be set equal to the empty
 vector.  vector.
Line 3021  special case of \kbd{bnrclass}.
Line 3260  special case of \kbd{bnrclass}.
 \subsecidx{bnfsignunit}$(\var{bnf})$: $\var{bnf}$ being a big number field  \subsecidx{bnfsignunit}$(\var{bnf})$: $\var{bnf}$ being a big number field
 output by \kbd{bnfinit}, this computes an $r_1\times(r_1+r_2-1)$ matrix  output by \kbd{bnfinit}, this computes an $r_1\times(r_1+r_2-1)$ matrix
 having $\pm1$ components, giving the signs of the real embeddings of the  having $\pm1$ components, giving the signs of the real embeddings of the
 fundamental units.  fundamental units. The following functions compute generators for the totally
   positive units:
   
   \bprog
   /* exponents of totally positive units generators on bnf.tufu */
   tpuexpo(bnf)=
   { local(S,d,K);
   
     S = bnfsignunit(bnf); d = matsize(S);
     S = matrix(d[1],d[2], i,j, if (S[i,j] < 0, 1,0));
     S = concat(S, vectorv(d[1],i,1));   \\ sign(-1)
     K = lift(matker(S * Mod(1,2)));
     if (K, mathnfmodid(K, 2), 2*matid(d[1]))
   }
   
   /* totally positive units */
   tpu(bnf)=
   { local(vu, ex = tpuexpo(bnf));
   
     vu = nfbasistoalg(bnf, bnf.tufu);
     vector(length(ex)-1, i, factorback([vu, ex[,i+1]]))  \\ ex[,1] is 1
   }
   @eprog
   
 \syn{signunits}{\var{bnf}}.  \syn{signunits}{\var{bnf}}.
   
 \subsecidx{bnfreg}$(\var{bnf})$: $\var{bnf}$ being a big number field  \subsecidx{bnfreg}$(\var{bnf})$: $\var{bnf}$ being a big number field
Line 3057  $v[6]$ is a copy of $S$.
Line 3318  $v[6]$ is a copy of $S$.
 \syn{bnfsunit}{\var{bnf},S,\var{prec}}.  \syn{bnfsunit}{\var{bnf},S,\var{prec}}.
   
 \subsecidx{bnfunit}$(\var{bnf})$: $\var{bnf}$ being a big number field as  \subsecidx{bnfunit}$(\var{bnf})$: $\var{bnf}$ being a big number field as
 output by  output by \kbd{bnfinit}, outputs a two-component row vector giving in the
 \kbd{bnfinit}, outputs a two-component row vector giving in the first  first component the vector of fundamental units of the number field, and in
 component the vector of fundamental units of the number field, and in the  the second component the number of bit of accuracy which remained in the
 second component the number of bit of accuracy which remained in the  
 computation (which is always correct, otherwise an error message is printed).  computation (which is always correct, otherwise an error message is printed).
 This function is mainly for people who used the wrong flag in \kbd{bnfinit}  This function is mainly for people who used the wrong flag in \kbd{bnfinit}
 and would like to skip part of a lengthy \kbd{bnfinit} computation.  and would like to skip part of a lengthy \kbd{bnfinit} computation.
   
 \syn{buchfu}{\var{bnf}}.  \syn{buchfu}{\var{bnf}}.
   
 \subsecidx{bnrL1}$(\var{bnr},\var{subgroup},\{\fl=0\})$:  \subsecidx{bnrL1}$(\var{bnr},\{\var{subgroup}\},\{\fl=0\})$:
 \var{bnr} being the number field data which is output by  \var{bnr} being the number field data which is output by
 \kbd{bnrinit(,,1)} and \var{subgroup} being a square matrix defining a  \kbd{bnrinit(,,1)} and \var{subgroup} being a square matrix defining a
 congruence subgroup of the ray class group corresponding to \var{bnr}  congruence subgroup of the ray class group corresponding to \var{bnr}
 (or $0$ for the trivial congruence subgroup), returns for each  (the trivial congruence subgroup if omitted), returns for each
 \idx{character} $\chi$ of the ray class group which is trivial on this  \idx{character} $\chi$ of the ray class group which is trivial on this
 subgroup, the value at $s = 1$ (or $s = 0$) of the abelian  subgroup, the value at $s = 1$ (or $s = 0$) of the abelian
 $L$-function associated to $\chi$. For the value at $s = 0$, the  $L$-function associated to $\chi$. For the value at $s = 0$, the
Line 3095  Example:
Line 3355  Example:
 \bprog  \bprog
 bnf = bnfinit(x^2 - 229);  bnf = bnfinit(x^2 - 229);
 bnr = bnrinit(bnf,1,1);  bnr = bnrinit(bnf,1,1);
 bnrL1(bnr, 0)  bnrL1(bnr)
 @eprog\noindent  @eprog\noindent
 returns the order and the first non-zero term of the abelian  returns the order and the first non-zero term of the abelian
 $L$-functions $L(s, \chi)$ at $s = 0$ where $\chi$ runs through the  $L$-functions $L(s, \chi)$ at $s = 0$ where $\chi$ runs through the
 characters of the class group of $\Q(\sqrt{229})$. Then  characters of the class group of $\Q(\sqrt{229})$. Then
 \bprog  \bprog
 bnr2 = bnrinit(bnf,2,1);  bnr2 = bnrinit(bnf,2,1);
 bnrL1(bnr2,0,2)  bnrL1(bnr2,,2)
 @eprog\noindent  @eprog\noindent
 returns the order and the first non-zero terms of the abelian  returns the order and the first non-zero terms of the abelian
 $L$-functions $L_S(s, \chi)$ at $s = 0$ where $\chi$ runs through the  $L$-functions $L_S(s, \chi)$ at $s = 0$ where $\chi$ runs through the
Line 3112  $2$ (note that the ray class group modulo $2$ is in fa
Line 3372  $2$ (note that the ray class group modulo $2$ is in fa
 group, so \kbd{bnrL1(bnr2,0)} returns exactly the same answer as  group, so \kbd{bnrL1(bnr2,0)} returns exactly the same answer as
 \kbd{bnrL1(bnr,0)}!).  \kbd{bnrL1(bnr,0)}!).
   
 \syn{bnrL1}{\var{bnr},\var{subgroup},\fl,\var{prec}}  \syn{bnrL1}{\var{bnr},\var{subgroup},\fl,\var{prec}}, where an omitted
   \var{subgroup} is coded as \kbd{NULL}.
   
 \subsecidx{bnrclass}$(\var{bnf},\var{ideal},\{\fl=0\})$:  \subsecidx{bnrclass}$(\var{bnf},\var{ideal},\{\fl=0\})$:
 $\var{bnf}$ being a big number field  $\var{bnf}$ being a big number field
Line 3170  the conductor of this character as a modulus.
Line 3431  the conductor of this character as a modulus.
 \syn{bnrconductorofchar}{\var{bnr},\var{chi}}.  \syn{bnrconductorofchar}{\var{bnr},\var{chi}}.
   
 \subsecidx{bnrdisc}$(a1,\{a2\},\{a3\},\{\fl=0\})$: $a1$, $a2$, $a3$  \subsecidx{bnrdisc}$(a1,\{a2\},\{a3\},\{\fl=0\})$: $a1$, $a2$, $a3$
 defining a big ray number field $L$ over a groud field $K$ (see \kbd{bnr}  defining a big ray number field $L$ over a ground field $K$ (see \kbd{bnr}
 at the beginning of this section for the  at the beginning of this section for the
 meaning of $a1$, $a2$, $a3$), outputs a 3-component row vector $[N,R_1,D]$,  meaning of $a1$, $a2$, $a3$), outputs a 3-component row vector $[N,R_1,D]$,
 where $N$ is the (absolute) degree of $L$, $R_1$ the number of real places of  where $N$ is the (absolute) degree of $L$, $R_1$ the number of real places of
Line 3285  field and $\zeta = e^{2i\pi/N}$ where $N$ is the order
Line 3546  field and $\zeta = e^{2i\pi/N}$ where $N$ is the order
   
 \syn{bnrrootnumber}{\var{bnf},\var{chi},\fl}  \syn{bnrrootnumber}{\var{bnf},\var{chi},\fl}
   
 \subsecidx{bnrstark}${(\var{bnr},\var{subgroup},\{\fl=0\})}$: \var{bnr}  \subsecidx{bnrstark}${(\var{bnr},\{\var{subgroup}\},\{\fl=0\})}$: \var{bnr}
 being as output by \kbd{bnrinit(,,1)}, finds a relative equation for the  being as output by \kbd{bnrinit(,,1)}, finds a relative equation for the
 class field corresponding to the modulus in \var{bnr} and the given  class field corresponding to the modulus in \var{bnr} and the given
 congruence subgroup using \idx{Stark units} (set $\var{subgroup}=0$ if you  congruence subgroup using \idx{Stark units} (omit $\var{subgroup}=0$ if you
 want the whole ray class group). The main variable of \var{bnr} must not be  want the whole ray class group). The main variable of \var{bnr} must not be
 $x$, and the ground field and the class field must be totally real and not  $x$, and the ground field and the class field must be totally real. When the
 isomorphic to $\Q$ (over the rationnals, use \tet{polsubcyclo} or  base field is $\Q$, the vastly simpler \tet{galoissubcyclo} is used instead.
 \tet{galoissubcyclo}). \fl\ is optional and may be set to 0 to obtain a  
 reduced relative polynomial, 1 to be satisfied with any relative  
 polynomial, 2 to obtain an absolute polynomial and 3 to obtain the  
 irreducible relative polynomial of the Stark unit, 0 being default.  
 Example:  
   
   \fl\ is optional and may be set to 0 (default) to obtain a reduced relative
   polynomial, 1 to be satisfied with any relative polynomial, 2 to obtain an
   absolute polynomial and 3 to obtain the irreducible relative polynomial of
   the Stark unit. Example:
 \bprog  \bprog
 bnf = bnfinit(y^2 - 3);  bnf = bnfinit(y^2 - 3);
 bnr = bnrinit(bnf, 5, 1);  bnr = bnrinit(bnf, 5, 1);
Line 3319  In this case, the corresponding congruence group is a 
Line 3579  In this case, the corresponding congruence group is a 
 groups and, for the time being, the class field has to be obtained by  groups and, for the time being, the class field has to be obtained by
 splitting this group into its cyclic components.  splitting this group into its cyclic components.
   
 \syn{bnrstark}{\var{bnr},\var{subgroup},\fl}.  \syn{bnrstark}{\var{bnr},\var{subgroup},\fl}, where an omitted \var{subgroup}
   is coded by \kbd{NULL}.
   
 \subsecidx{dirzetak}$(\var{nf},b)$: gives as a vector the first $b$  \subsecidx{dirzetak}$(\var{nf},b)$: gives as a vector the first $b$
 coefficients of the \idx{Dedekind} zeta function of the number field $\var{nf}$  coefficients of the \idx{Dedekind} zeta function of the number field $\var{nf}$
Line 3330  considered as a \idx{Dirichlet series}.
Line 3591  considered as a \idx{Dirichlet series}.
 \subsecidx{factornf}$(x,t)$: factorization of the univariate polynomial $x$  \subsecidx{factornf}$(x,t)$: factorization of the univariate polynomial $x$
 over the number field defined by the (univariate) polynomial $t$. $x$ may  over the number field defined by the (univariate) polynomial $t$. $x$ may
 have coefficients in $\Q$ or in the number field. The main variable of  have coefficients in $\Q$ or in the number field. The main variable of
 $t$ must be of \var{lower} priority than that of $x$ (in other words the  $t$ must be of \var{lower} priority than that of $x$ (see
 variable number of $t$ must be \var{greater} than that of $x$). However if  \secref{se:priority}). However if
 the coefficients of the number field occur explicitly (as polmods) as  the coefficients of the number field occur explicitly (as polmods) as
 coefficients of $x$, the variable of these polmods \var{must} be the same as  coefficients of $x$, the variable of these polmods \var{must} be the same as
 the main variable of $t$. For example  the main variable of $t$. For example
Line 3360  If $\fl=1$ return only the polynomial $P$.
Line 3621  If $\fl=1$ return only the polynomial $P$.
 If $\fl=2$ return $[P,x,F]$ where $P$ and $x$ are as above and $F$ is the  If $\fl=2$ return $[P,x,F]$ where $P$ and $x$ are as above and $F$ is the
 factorization of $\var{gal}.pol$ over the field defined by $P$, where  factorization of $\var{gal}.pol$ over the field defined by $P$, where
 variable $v$ ($y$ by default) stands for a root of $P$. The priority of $v$  variable $v$ ($y$ by default) stands for a root of $P$. The priority of $v$
 must be less than the priority of the variable of $\var{gal}.pol$.  must be less than the priority of the variable of $\var{gal}.pol$ (see
   \secref{se:priority}). Example:
   
 Example:  
   
 \bprog  \bprog
 G = galoisinit(x^4+1);  G = galoisinit(x^4+1);
 galoisfixedfield(G,G.group[2],2)  galoisfixedfield(G,G.group[2],2)
Line 3374  computes the factorization  $x^4+1=(x^2-\sqrt{-2}x-1)(
Line 3634  computes the factorization  $x^4+1=(x^2-\sqrt{-2}x-1)(
 \syn{galoisfixedfield}{\var{gal},\var{perm},p}.  \syn{galoisfixedfield}{\var{gal},\var{perm},p}.
   
 \subsecidx{galoisinit}$(\var{pol},\{den\})$: computes the Galois group  \subsecidx{galoisinit}$(\var{pol},\{den\})$: computes the Galois group
 and all neccessary information for computing the fixed fields of the  and all necessary information for computing the fixed fields of the
 Galois extension $K/\Q$ where $K$ is the number field defined by  Galois extension $K/\Q$ where $K$ is the number field defined by
 $\var{pol}$ (monic irreducible polynomial in $\Z[X]$ or  $\var{pol}$ (monic irreducible polynomial in $\Z[X]$ or
 a number field as output by \tet{nfinit}). The extension $K/\Q$ must be  a number field as output by \tet{nfinit}). The extension $K/\Q$ must be
Line 3444  If present $den$ must be a suitable value for $\var{ga
Line 3704  If present $den$ must be a suitable value for $\var{ga
   
 \syn{galoisinit}{\var{gal},\var{den}}.  \syn{galoisinit}{\var{gal},\var{den}}.
   
   \subsecidx{galoisisabelian}$(\var{gal},{fl=0})$: \var{gal} being as output by \kbd{galoisinit}, return $0$ if
    \var{gal} is not an abelian group, and the HNF matrix of \var{gal} over \kbd{gal.gen} if $fl=0$, $1$ if
    $fl=1$.
   
   \syn{galoisisabelian}{\var{gal},\var{fl}} where \var{fl} is a C long integer.
   
 \subsecidx{galoispermtopol}$(\var{gal},\var{perm})$: \var{gal} being a  \subsecidx{galoispermtopol}$(\var{gal},\var{perm})$: \var{gal} being a
 Galois field as output by \kbd{galoisinit} and \var{perm} a element of  Galois field as output by \kbd{galoisinit} and \var{perm} a element of
 $\var{gal}.group$, return the polynomial defining the Galois  $\var{gal}.group$, return the polynomial defining the Galois
Line 3462  is greater or equal to $2$.
Line 3728  is greater or equal to $2$.
   
 \syn{galoispermtopol}{\var{gal},\var{perm}}.  \syn{galoispermtopol}{\var{gal},\var{perm}}.
   
 \subsecidx{galoissubcyclo}$(n,H,\{Z\},\{v\},\{fl=0\})$: If $fl=0$, compute a polynomial  \subsecidx{galoissubcyclo}$(N,H,\{fl=0\},\{v\})$: computes the subextension
 defining the subfield of $\Q(\zeta_n)$ fixed by the subgroup \var{H} of  of $\Q(\zeta_n)$ fixed by the subgroup $H \subset (\Z/n\Z)^*$. By the
 $(\Z/n\Z)^*$. The subgroup \var{H} can be given by a generator, a set of  Kronecker-Weber theorem, all abelian number fields can be generated in this
 generators given by a vector or a HNF matrix. If present \kbd{Z} must be  way (uniquely if $n$ is taken to be minimal).
 \kbd{znstar(n)}, and is currently only used when \var{H} is a HNF matrix. If  
 \var{v} is given, the polynomial is given in the variable \var{v}.  
   
 If $fl=1$, compute only the (finite part of) conductor of the abelian extension.  \noindent The pair $(n, H)$ is deduced from the parameters $(N, H)$ as follows
   
 If $fl=2$, output $[pol, f_0]$, where $pol$ is the polynomial as output when $fl=0$ and $f_0$ the conductor as output when $fl=1$.  $\bullet$ $N$ an integer: then $n = N$; $H$ is a generator, i.e. an
   integer or an integer modulo $n$; or a vector of generators.
   
 The following function can be used to compute all subfields of  $\bullet$ $N$ the output of \kbd{znstar($n$)}. $H$ as in the first case
 $\Q(\zeta_n)$ (of order less than \kbd{d}, if \kbd{d} is set):  above, or a matrix, taken to be a HNF left divisor of the SNF for $(\Z/n\Z)^*$
   (of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.
   
   $\bullet$ $N$ the output of \kbd{bnrinit(bnfinit(y), $m$, 1)} where $m$ is a
   module. $H$ as in the first case, or a matrix taken to be a HNF left
   divisor of the SNF for the ray class group modulo $m$
   (of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.
   
   In this last case, beware that $H$ is understood relatively to $N$; in
   particular, if the infinite place does not divide the module, e.g if $m$ is
   an integer, then it is not a subgroup of $(\Z/n\Z)^*$, but of its quotient by
   $\{\pm 1\}$.
   
   If $fl=0$, compute a polynomial (in the variable \var{v}) defining the
   the subfield of $\Q(\zeta_n)$ fixed by the subgroup \var{H} of $(\Z/n\Z)^*$.
   
   If $fl=1$, compute only the conductor of the abelian extension, as a module.
   
   If $fl=2$, output $[pol, N]$, where $pol$ is the polynomial as output when
   $fl=0$ and $N$ the conductor as output when $fl=1$.
   
   The following function can be used to compute all subfields of
   $\Q(\zeta_n)$ (of exact degree \kbd{d}, if \kbd{d} is set):
 \bprog  \bprog
 subcyclo(n, d = -1)=  subcyclo(n, d = -1)=
 {  {
   local(Z,G,S);    local(bnr,L,IndexBound);
   if (d < 0, d = n);    IndexBound = if (d < 0, n, [d]);
   Z = znstar(n);    bnr = bnrinit(bnfinit(y), [n,[1]], 1);
   G = matdiagonal(Z[2]);    L = subgrouplist(bnr, IndexBound, 1);
   S = [];    vector(#L,i, galoissubcyclo(bnr,L[i]));
   forsubgroup(H = G, d,  
     S = concat(S, galoissubcyclo(n, mathnf(concat(G,H)),Z));  
   );  
   S  
 }  }
 @eprog  @eprog\noindent
   Setting \kbd{L = subgrouplist(bnr, [d])} would produce subfields of exact
   conductor $n\infty$.
   
 \misctitle{Note:} The interface to this function needs to be cleaned up, and  \syn{galoissubcyclo}{N,H,fl,v} where \var{fl} is a C long integer, and
 so is subject to change.  \var{v} a variable number.
   
 \syn{galoissubcyclo}{n,H,Z,v} where n is a C long integer.  \subsecidx{galoissubfields}$(G,\{fl=0\},\{v\})$: Output all the subfields of the Galois group \var{G},
   as a vector.
   This works by applying \kbd{galoisfixedfield} to all subgroups. The meaning of the flag \var{fl} is
   the same as for \kbd{galoisfixedfield}.
   
   \syn{galoissubfields}{\var{G},fl,v}, where \var{fl} is a long and \var{v} a variable number.
   
   \subsecidx{galoissubgroups}$(G)$: Output all the subgroups of the Galois group \kbd{G}.
   A subgroup is a vector $[gen, orders]$, with the same meaning as for $\var{gal}.gen$
   and $\var{gal}.orders$. Hence \var{gen} is a vector of permutations generating the
   subgroup, and \var{orders} is the relatives orders of the generators. The cardinal
   of a subgroup is the product of the relative orders.
   
   \syn{galoissubgroups}{\var{G}}.
   
 \subsecidx{idealadd}$(\var{nf},x,y)$: sum of the two ideals $x$ and $y$ in the  \subsecidx{idealadd}$(\var{nf},x,y)$: sum of the two ideals $x$ and $y$ in the
 number field $\var{nf}$. When $x$ and $y$ are given by $\Z$-bases, this does  number field $\var{nf}$. When $x$ and $y$ are given by $\Z$-bases, this does
 not depend on $\var{nf}$ and can be used to compute the sum of any two  not depend on $\var{nf}$ and can be used to compute the sum of any two
Line 3517  $1\le i\le k$ and $\sum_{1\le i\le k}e[i]=1$.
Line 3814  $1\le i\le k$ and $\sum_{1\le i\le k}e[i]=1$.
   
 \subsecidx{idealappr}$(\var{nf},x,\{\fl=0\})$: if $x$ is a fractional ideal  \subsecidx{idealappr}$(\var{nf},x,\{\fl=0\})$: if $x$ is a fractional ideal
 (given in any form), gives an element $\alpha$ in $\var{nf}$ such that for  (given in any form), gives an element $\alpha$ in $\var{nf}$ such that for
 all prime ideals $\p$ such that the valuation of $x$ at $\p$ is non-zero, we  all prime ideals $\wp$ such that the valuation of $x$ at $\wp$ is non-zero, we
 have $v_{\p}(\alpha)=v_{\p}(x)$, and. $v_{\p}(\alpha)\ge0$ for all other  have $v_{\wp}(\alpha)=v_{\wp}(x)$, and. $v_{\wp}(\alpha)\ge0$ for all other
 ${\p}$.  ${\wp}$.
   
 If $\fl$ is non-zero, $x$ must be given as a prime ideal factorization, as  If $\fl$ is non-zero, $x$ must be given as a prime ideal factorization, as
 output by \kbd{idealfactor}, but possibly with zero or negative exponents.  output by \kbd{idealfactor}, but possibly with zero or negative exponents.
 This yields an element $\alpha$ such that for all prime ideals $\p$ occurring  This yields an element $\alpha$ such that for all prime ideals $\wp$ occurring
 in $x$, $v_{\p}(\alpha)$ is equal to the exponent of $\p$ in $x$, and for all  in $x$, $v_{\wp}(\alpha)$ is equal to the exponent of $\wp$ in $x$, and for all
 other prime ideals, $v_{\p}(\alpha)\ge0$. This generalizes  other prime ideals, $v_{\wp}(\alpha)\ge0$. This generalizes
 $\kbd{idealappr}(\var{nf},x,0)$ since zero exponents are allowed. Note that  $\kbd{idealappr}(\var{nf},x,0)$ since zero exponents are allowed. Note that
 the algorithm used is slightly different, so that  the algorithm used is slightly different, so that
 \kbd{idealappr(\var{nf},idealfactor(\var{nf},x))} may not be the same as  \kbd{idealappr(\var{nf},idealfactor(\var{nf},x))} may not be the same as
Line 3538  the algorithm used is slightly different, so that
Line 3835  the algorithm used is slightly different, so that
 column integral exponents), $y$ a vector of elements in $\var{nf}$ indexed by  column integral exponents), $y$ a vector of elements in $\var{nf}$ indexed by
 the ideals in $x$, computes an element $b$ such that  the ideals in $x$, computes an element $b$ such that
   
 $v_\p(b - y_\p) \geq v_\p(x)$ for all prime ideals in $x$ and $v_\p(b)\geq 0$  $v_\wp(b - y_\wp) \geq v_\wp(x)$ for all prime ideals in $x$ and $v_\wp(b)\geq 0$
 for all other $\p$.  for all other $\wp$.
   
 \syn{idealchinese}{\var{nf},x,y}.  \syn{idealchinese}{\var{nf},x,y}.
   
 \subsecidx{idealcoprime}$(\var{nf},x,y)$: given two integral ideals $x$ and $y$  \subsecidx{idealcoprime}$(\var{nf},x,y)$: given two integral ideals $x$ and $y$
 in the number field $\var{nf}$, finds a $\beta$ in the field, expressed on the  in the number field $\var{nf}$, finds a $\beta$ in the field, expressed on the
 integral basis $\var{nf}[7]$, such that $\beta\cdot y$ is an integral ideal  integral basis $\var{nf}[7]$, such that $\beta\cdot x$ is an integral ideal
 coprime to $x$.  coprime to $y$.
   
 \syn{idealcoprime}{\var{nf},x}.  \syn{idealcoprime}{\var{nf},x,y}.
   
 \subsecidx{idealdiv}$(\var{nf},x,y,\{\fl=0\})$: quotient $x\cdot y^{-1}$ of the  \subsecidx{idealdiv}$(\var{nf},x,y,\{\fl=0\})$: quotient $x\cdot y^{-1}$ of the
 two ideals $x$ and $y$ in the number field $\var{nf}$. The result is given in  two ideals $x$ and $y$ in the number field $\var{nf}$. The result is given in
Line 3839  entries are expressed as a column vector on the integr
Line 4136  entries are expressed as a column vector on the integr
   
 \syn{algtobasis}{\var{nf},x}.  \syn{algtobasis}{\var{nf},x}.
   
 \subsecidx{nfbasis}$(x,\{\fl=0\},\{p\})$: \idx{integral basis} of the number  \subsecidx{nfbasis}$(x,\{\fl=0\},\{fa\})$: \idx{integral basis} of the number
 field defined by the irreducible, preferably monic, polynomial $x$,  field defined by the irreducible, preferably monic, polynomial $x$, using a
 using a modified version of the \idx{round 4} algorithm by  modified version of the \idx{round 4} algorithm by default, due to David
 default. The binary digits of $\fl$ have the following meaning:  \idx{Ford}, Sebastian \idx{Pauli} and Xavier \idx{Roblot}. The binary digits
   of $\fl$ have the following meaning:
   
 1: assume that no square of a prime greater than the default \kbd{primelimit}  1: assume that no square of a prime greater than the default \kbd{primelimit}
 divides the discriminant of $x$, i.e.~that the index of $x$ has only small  divides the discriminant of $x$, i.e.~that the index of $x$ has only small
 prime divisors.  prime divisors.
   
 2: use \idx{round 2} algorithm. For small degrees and coefficient size, this is  2: use \idx{round 2} algorithm. For small degrees and coefficient size, this
 sometimes a little faster. (This program is the translation into C of a program  is sometimes a little faster. (This program is the translation into C of a
 written by David \idx{Ford} in Algeb.)  program written by David \idx{Ford} in Algeb.)
   
 Thus for instance, if $\fl=3$, this uses the round 2 algorithm and outputs  Thus for instance, if $\fl=3$, this uses the round 2 algorithm and outputs
 an order which will be maximal at all the small primes.  an order which will be maximal at all the small primes.
   
 If $p$ is present, we assume (without checking!) that it is the two-column  If $fa$ is present, we assume (without checking!) that it is the two-column
 matrix of the factorization of the discriminant of the polynomial $x$. Note  matrix of the factorization of the discriminant of the polynomial $x$. Note
 that it does \var{not} have to be a complete factorization. This is  that it does \var{not} have to be a complete factorization. This is
 especially useful if only a local integral basis for some small set of places  especially useful if only a local integral basis for some small set of places
 is desired: only factors with exponents greater or equal to 2 will be  is desired: only factors with exponents greater or equal to 2 will be
 considered.  considered.
   
 \syn{nfbasis0}{x,\fl,p}. An extended version  \syn{nfbasis0}{x,\fl,fa}. An extended version
 is $\teb{nfbasis}(x,\&d,\fl,p)$, where $d$ will receive the discriminant of  is $\teb{nfbasis}(x,\&d,\fl,fa)$, where $d$ will receive the discriminant of
 the number field (\var{not} of the polynomial $x$), and an omitted $p$ should  the number field (\var{not} of the polynomial $x$), and an omitted $fa$ should
 be input as \kbd{gzero}. Also available are $\teb{base}(x,\&d)$ ($\fl=0$),  be input as \kbd{NULL}. Also available are $\teb{base}(x,\&d)$ ($\fl=0$),
 $\teb{base2}(x,\&d)$ ($\fl=2$) and $\teb{factoredbase}(x,p,\&d)$.  $\teb{base2}(x,\&d)$ ($\fl=2$) and $\teb{factoredbase}(x,fa,\&d)$.
   
 \subsecidx{nfbasistoalg}$(\var{nf},x)$: this is the inverse function of  \subsecidx{nfbasistoalg}$(\var{nf},x)$: this is the inverse function of
 \kbd{nfalgtobasis}. Given an object $x$ whose entries are expressed on the  \kbd{nfalgtobasis}. Given an object $x$ whose entries are expressed on the
Line 3881  is particularly useful in conjunction with \kbd{nfhnfm
Line 4179  is particularly useful in conjunction with \kbd{nfhnfm
   
 \syn{nfdetint}{\var{nf},x}.  \syn{nfdetint}{\var{nf},x}.
   
 \subsecidx{nfdisc}$(x,\{\fl=0\},\{p\})$: \idx{field discriminant} of the  \subsecidx{nfdisc}$(x,\{\fl=0\},\{fa\})$: \idx{field discriminant} of the
 number field defined by the integral, preferably monic, irreducible  number field defined by the integral, preferably monic, irreducible
 polynomial $x$. $\fl$ and $p$ are exactly as in \kbd{nfbasis}. That is, $p$  polynomial $x$. $\fl$ and $fa$ are exactly as in \kbd{nfbasis}. That is, $fa$
 provides the matrix of a partial factorization of the discriminant of $x$,  provides the matrix of a partial factorization of the discriminant of $x$,
 and binary digits of $\fl$ are as follows:  and binary digits of $\fl$ are as follows:
   
  1: assume that no square of a prime greater than \kbd{primelimit}  1: assume that no square of a prime greater than \kbd{primelimit}
 divides the discriminant.  divides the discriminant.
   
  2: use the round 2 algorithm, instead of the default \idx{round 4}.  2: use the round 2 algorithm, instead of the default \idx{round 4}. This
 This should be  should be slower except maybe for polynomials of small degree and
 slower except maybe for polynomials of small degree and coefficients.  coefficients.
   
 \syn{nfdiscf0}{x,\fl,p} where, to omit $p$, you should input \kbd{gzero}. You  \syn{nfdiscf0}{x,\fl,fa} where, to omit $fa$, you should input \kbd{NULL}. You
 can also use $\teb{discf}(x)$ ($\fl=0$).  can also use $\teb{discf}(x)$ ($\fl=0$).
   
 \subsecidx{nfeltdiv}$(\var{nf},x,y)$: given two elements $x$ and $y$ in  \subsecidx{nfeltdiv}$(\var{nf},x,y)$: given two elements $x$ and $y$ in
Line 3967  an element $x$ of the number field $\var{nf}$ and a pr
Line 4265  an element $x$ of the number field $\var{nf}$ and a pr
 \kbd{modpr} format compute a canonical representative for the class of $x$  \kbd{modpr} format compute a canonical representative for the class of $x$
 modulo \var{pr}.  modulo \var{pr}.
   
 \syn{nfreducemodpr2}{\var{nf},x,\var{pr}}.  \syn{nfreducemodpr}{\var{nf},x,\var{pr}}.
   
 \subsecidx{nfeltval}$(\var{nf},x,\var{pr})$: given an element $x$ in  \subsecidx{nfeltval}$(\var{nf},x,\var{pr})$: given an element $x$ in
 \var{nf} and a prime ideal \var{pr} in the format output by  \var{nf} and a prime ideal \var{pr} in the format output by
Line 3982  principal ideal), but it would be less efficient.
Line 4280  principal ideal), but it would be less efficient.
 polynomial $x$ over the number field $\var{nf}$ given by \kbd{nfinit}. $x$  polynomial $x$ over the number field $\var{nf}$ given by \kbd{nfinit}. $x$
 has coefficients in $\var{nf}$ (i.e.~either scalar, polmod, polynomial or  has coefficients in $\var{nf}$ (i.e.~either scalar, polmod, polynomial or
 column vector). The main variable of $\var{nf}$ must be of \var{lower}  column vector). The main variable of $\var{nf}$ must be of \var{lower}
 priority than that of $x$ (in other words, the variable number of $\var{nf}$  priority than that of $x$ (see \secref{se:priority}). However if
 must be \var{greater} than that of $x$). However if the polynomial defining  the polynomial defining the number field occurs explicitly  in the
 the number field occurs explicitly  in the coefficients of $x$ (as modulus of  coefficients of $x$ (as modulus of a \typ{POLMOD}), its main variable must be
 a \typ{POLMOD}), its main variable must be \var{the same} as the main  \var{the same} as the main variable of $x$. For example,
 variable of $x$. For example,  
 \bprog  \bprog
 ? nf = nfinit(y^2 + 1);  ? nf = nfinit(y^2 + 1);
 ? nffactor(nf, x^2 + y); \\@com OK  ? nffactor(nf, x^2 + y); \\@com OK
Line 4003  polmod, polynomial, column vector) or modulo the prime
Line 4300  polmod, polynomial, column vector) or modulo the prime
 modulo the rational prime under \var{pr}, polmod or polynomial with  modulo the rational prime under \var{pr}, polmod or polynomial with
 integermod coefficients, column vector of integermod). The prime ideal  integermod coefficients, column vector of integermod). The prime ideal
 \var{pr} \var{must} be in the format output by \kbd{idealprimedec}. The  \var{pr} \var{must} be in the format output by \kbd{idealprimedec}. The
 main variable of $\var{nf}$ must be of lower priority than that of $x$ (in  main variable of $\var{nf}$ must be of lower priority than that of $x$
 other words the variable number of $\var{nf}$ must be greater than that of  (see \secref{se:priority}). However if the coefficients of the number
 $x$). However if the coefficients of the number field occur explicitly (as  field occur explicitly (as polmods) as coefficients of $x$, the variable of
 polmods) as coefficients of $x$, the variable of these polmods \var{must}  these polmods \var{must} be the same as the main variable of $t$ (see
 be the same as the main variable of $t$ (see \kbd{nffactor}).  \kbd{nffactor}).
   
 \syn{nffactormod}{\var{nf},x,\var{pr}}.  \syn{nffactormod}{\var{nf},x,\var{pr}}.
   
Line 4101  preferably monic, irreducible polynomial in $\Z[X]$, i
Line 4398  preferably monic, irreducible polynomial in $\Z[X]$, i
 by \var{pol}. As such, it's a technical object passed as the first argument  by \var{pol}. As such, it's a technical object passed as the first argument
 to most \kbd{nf}\var{xxx} functions, but it contains some information which  to most \kbd{nf}\var{xxx} functions, but it contains some information which
 may be directly useful. Access to this information via \var{member  may be directly useful. Access to this information via \var{member
 functions} is prefered since the specific data organization specified below  functions} is preferred since the specific data organization specified below
 may change in the future. Currently, \kbd{nf} is a row vector with 9  may change in the future. Currently, \kbd{nf} is a row vector with 9
 components:  components:
   
Line 4115  $\var{nf}[3]$ contains the discriminant $d(K)$ (\kbd{\
Line 4412  $\var{nf}[3]$ contains the discriminant $d(K)$ (\kbd{\
 $\var{nf}[4]$ contains the index of $\var{nf}[1]$,  $\var{nf}[4]$ contains the index of $\var{nf}[1]$,
 i.e.~$[\Z_K : \Z[\theta]]$, where $\theta$ is any root of $\var{nf}[1]$.  i.e.~$[\Z_K : \Z[\theta]]$, where $\theta$ is any root of $\var{nf}[1]$.
   
 $\var{nf}[5]$ is a vector containing 7 matrices $M$, $MC$, $T2$, $T$,  $\var{nf}[5]$ is a vector containing 7 matrices $M$, $G$, $T2$, $T$,
 $MD$, $TI$, $MDI$ useful for certain computations in the number field $K$.  $MD$, $TI$, $MDI$ useful for certain computations in the number field $K$.
   
 \quad$\bullet$ $M$ is the $(r1+r2)\times n$ matrix whose columns represent  \quad$\bullet$ $M$ is the $(r1+r2)\times n$ matrix whose columns represent
 the numerical values of the conjugates of the elements of the integral  the numerical values of the conjugates of the elements of the integral
 basis.  basis.
   
 \quad$\bullet$ $MC$ is essentially the conjugate of the transpose of $M$,  \quad$\bullet$ $G$ is such that $T2 = {}^t G G$, where $T2$ is the quadratic
 except that the last $r2$ columns are also multiplied by 2.  form $T_2(x) = \sum |\sigma(x)|^2$, $\sigma$ running over the embeddings of
   $K$ into $\C$.
   
 \quad$\bullet$ $T2$ is an $n\times n$ matrix equal to the real part of the  \quad$\bullet$ The $T2$ component is deprecated and currently unused.
 product $MC\cdot M$ (which is a real positive definite symmetric matrix), the  
 so-called $T_2$-matrix (\kbd{\var{nf}.t2}).  
   
 \quad$\bullet$ $T$ is the $n\times n$ matrix whose coefficients are  \quad$\bullet$ $T$ is the $n\times n$ matrix whose coefficients are
 $\text{Tr}(\omega_i\omega_j)$ where the $\omega_i$ are the elements of the  $\text{Tr}(\omega_i\omega_j)$ where the $\omega_i$ are the elements of the
 integral basis. Note that $T=\overline{MC}\cdot M$ and in particular that  integral basis. Note also that $\det(T)$ is equal to the discriminant of the
 $T=T_2$ if the field is totally real (in practice $T_2$ will have real  field $K$.
 approximate entries and $T$ will have integer entries). Note also that  
 $\det(T)$ is equal to the discriminant of the field $K$.  
   
 \quad$\bullet$ The columns of $MD$ (\kbd{\var{nf}.diff}) express a $\Z$-basis  \quad$\bullet$ The columns of $MD$ (\kbd{\var{nf}.diff}) express a $\Z$-basis
 of the different of $K$ on the integral basis.  of the different of $K$ on the integral basis.
Line 4153  $\var{nf}[6]$ is the vector containing the $r1+r2$ roo
Line 4447  $\var{nf}[6]$ is the vector containing the $r1+r2$ roo
 embeddings of the number field into $\C$ (the first $r1$ components are real,  embeddings of the number field into $\C$ (the first $r1$ components are real,
 the next $r2$ have positive imaginary part).  the next $r2$ have positive imaginary part).
   
 $\var{nf}[7]$ is an integral basis in Hermite normal form for $\Z_K$  $\var{nf}[7]$ is an integral basis for $\Z_K$ (\kbd{\var{nf}.zk}) expressed
 (\kbd{\var{nf}.zk}) expressed on the powers of~$\theta$.  on the powers of~$\theta$. Its first element is guaranteed to be $1$. This
   basis is LLL-reduced with respect to $T_2$ (strictly speaking, it is a
   permutation of such a basis, due to the condition that the first element be
   $1$).
   
 $\var{nf}[8]$ is the $n\times n$ integral matrix expressing the power  $\var{nf}[8]$ is the $n\times n$ integral matrix expressing the power
 basis in terms of the integral basis, and finally  basis in terms of the integral basis, and finally
Line 4168  useful given the existence of \tet{nfnewprec}, to inpu
Line 4465  useful given the existence of \tet{nfnewprec}, to inpu
 \kbd{bnf} instead of a polynomial.  \kbd{bnf} instead of a polynomial.
   
 The special input format $[x,B]$ is also accepted where $x$ is a polynomial  The special input format $[x,B]$ is also accepted where $x$ is a polynomial
 as above and $B$ is the integer basis, as computed by \tet{nfbasis}. This can  as above and $B$ is the integer basis, as would be computed by \tet{nfbasis}.
 be useful since \kbd{nfinit} uses the round 4 algorithm by default, which can  This can be useful if the integer basis is known in advance.
 be very slow in pathological cases where round 2 (\kbd{nfbasis(x,2)}) would  
 succeed very quickly.  
   
 If $\fl=2$: \var{pol} is changed into another polynomial $P$ defining the same  If $\fl=2$: \var{pol} is changed into another polynomial $P$ defining the same
 number field, which is as simple as can easily be found using the  number field, which is as simple as can easily be found using the
Line 4246  $d$ of the number field defined by the (monic, integra
Line 4541  $d$ of the number field defined by the (monic, integra
 \var{pol} (all subfields if $d$ is null or omitted). The result is a vector  \var{pol} (all subfields if $d$ is null or omitted). The result is a vector
 of subfields, each being given by $[g,h]$, where $g$ is an absolute equation  of subfields, each being given by $[g,h]$, where $g$ is an absolute equation
 and $h$ expresses one of the roots of $g$ in terms of the root $x$ of the  and $h$ expresses one of the roots of $g$ in terms of the root $x$ of the
 polynomial defining $\var{nf}$. This routine uses J.~Kl\"uners's algorithm,  polynomial defining $\var{nf}$. This routine uses J.~Kl\"uners's algorithm
 our naïve implementation would be very slow when no sufficiently inert primes  in the general case, and B.~Allombert's \tet{galoissubfields} when \var{nf}
 can be found, e.g.~when \var{nf} is a compositum of many quadratic fields. So  is Galois (with weakly supersolvable Galois group).\sidx{Galois}\sidx{subfield}
 it may abort with an error message (\kbd{too many block systems}) if it looks  
 like the computation is hopeless. This shall eventually be  
 corrected, using the ideas from \kbd{nfgaloisconj}.\sidx{Galois}\sidx{subfield}  
   
 %If the field is abelian, you can circonvene the problem by using  
 %\tet{galoisinit} and \tet{galoisfixedfield}, as in  
 %\bprog  
 %  subf(pol) =  
 %  {  
 %    local(gal,G,H,h,l,gen, L = []);  
 %    gl = galoisinit(pol);  
 %    G = matdiagonal(Vec(g.orders));  
 %    l = length(G); gen = Mat(vectorv(l,i, g.gen[i]));  
 %    forsubgroup(H = G,,  
 %      h = mathnf(concat(H,G));  
 %      perm = vector(l,i, factorback(concat(gen, h[,i])));  
 %      L = concat(L, [galoisfixedfield(g, perm)])  
 %    ); L  
 %  }  
 %@eprog  
 %which returns the same output as \kbd{nfsubfields(pol)}. For non-abelian  
 %Galois fields, you can still use \tet{galoisinit} and \teb{galoisfixedfield},  
 %but you will have to use another package than PARI to compute the subgroup  
 %lattice, since \tet{forsubgroup} is restricted to the abelian case.  
   
 \syn{subfields}{\var{nf},d}.  \syn{subfields}{\var{nf},d}.
   
 \subsecidx{nfroots}$(\var{nf},x)$: roots of the polynomial $x$ in the number  \subsecidx{nfroots}$(\var{nf},x)$: roots of the polynomial $x$ in the number
 field $\var{nf}$ given by \kbd{nfinit} without multiplicity. $x$ has  field $\var{nf}$ given by \kbd{nfinit} without multiplicity. $x$ has
 coefficients in the number field (scalar, polmod, polynomial, column  coefficients in the number field (scalar, polmod, polynomial, column
 vector). The main variable of $\var{nf}$ must be of lower priority than that  vector). The main variable of $\var{nf}$ must be of lower priority than that
 of $x$ (in other words the variable number of $\var{nf}$ must be greater than  of $x$ (see \secref{se:priority}). However if the coefficients of the
 that of $x$). However if the coefficients of the number field occur  number field occur explicitly (as polmods) as coefficients of $x$, the
 explicitly (as polmods) as coefficients of $x$, the variable of these  variable of these polmods \var{must} be the same as the main variable of $t$
 polmods \var{must} be the same as the main variable of $t$ (see  (see \kbd{nffactor}).
 \kbd{nffactor}).  
   
 \syn{nfroots}{\var{nf},x}.  \syn{nfroots}{\var{nf},x}.
   
Line 4364  are also implemented.
Line 4634  are also implemented.
   
 The output is a 3-component vector $[n,s,k]$ with the following meaning: $n$  The output is a 3-component vector $[n,s,k]$ with the following meaning: $n$
 is the cardinality of the group, $s$ is its signature ($s=1$ if the group is  is the cardinality of the group, $s$ is its signature ($s=1$ if the group is
 a subgroup of the alternating group $A_n$, $s=-1$ otherwise), and $k$ is the  a subgroup of the alternating group $A_n$, $s=-1$ otherwise).
 number of the group corresponding to a given pair $(n,s)$ ($k=1$ except in 2  
 cases). Specifically, the groups are coded as follows, using standard  $k$ is more arbitrary and the choice made up to version~2.2.3 of PARI is rather
 notations (see GTM 138, quoted at the beginning of this section; see also  unfortunate: for $n > 7$, $k$ is the numbering of the group among all
 ``The transitive groups of degree up to eleven'', by G.~Butler and J.~McKay  transitive subgroups of $S_n$, as given in ``The transitive groups of degree up
 in Communications in Algebra, vol.~11, 1983, pp.~863--911):  to eleven'', G.~Butler and J.~McKay, Communications in Algebra, vol.~11, 1983,
   pp.~863--911 (group $k$ is denoted $T_k$ there). And for $n \leq 7$, it was ad
   hoc, so as to ensure that a given triple would design a unique group.
   Specifically, for polynomials of degree $\leq 7$, the groups are coded as
   follows, using standard notations
 \smallskip  \smallskip
 In degree 1: $S_1=[1,-1,1]$.  In degree 1: $S_1=[1,1,1]$.
 \smallskip  \smallskip
 In degree 2: $S_2=[2,-1,1]$.  In degree 2: $S_2=[2,-1,1]$.
 \smallskip  \smallskip
Line 4393  In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,1]$, $M_{21}=[
Line 4667  In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,1]$, $M_{21}=[
 $M_{42}=[42,-1,1]$, $PSL_2(7)=PSL_3(2)=[168,1,1]$, $A_7=[2520,1,1]$,  $M_{42}=[42,-1,1]$, $PSL_2(7)=PSL_3(2)=[168,1,1]$, $A_7=[2520,1,1]$,
 $S_7=[5040,-1,1]$.  $S_7=[5040,-1,1]$.
 \smallskip  \smallskip
 The method used is that of resolvent polynomials and is sensitive to the  This is deprecated and obsolete, but for reasons of backward compatibility,
 current precision. The precision is updated internally but, in very rare  we cannot change this behaviour yet. So you can use the default
 cases, a wrong result may be returned if the initial precision was not  \tet{newgaloisformat} to switch to a consistent naming scheme, namely $k$ is
 sufficient.  always the standard numbering of the group among all transitive subgroups of
   $S_n$. If this default is in effect, the above groups will be coded as:
   \smallskip
   In degree 1: $S_1=[1,1,1]$.
   \smallskip
   In degree 2: $S_2=[2,-1,1]$.
   \smallskip
   In degree 3: $A_3=C_3=[3,1,1]$, $S_3=[6,-1,2]$.
   \smallskip
   In degree 4: $C_4=[4,-1,1]$, $V_4=[4,1,2]$, $D_4=[8,-1,3]$, $A_4=[12,1,4]$,
   $S_4=[24,-1,5]$.
   \smallskip
   In degree 5: $C_5=[5,1,1]$, $D_5=[10,1,2]$, $M_{20}=[20,-1,3]$,
    $A_5=[60,1,4]$, $S_5=[120,-1,5]$.
   \smallskip
   In degree 6: $C_6=[6,-1,1]$, $S_3=[6,-1,2]$, $D_6=[12,-1,3]$, $A_4=[12,1,4]$,
   $G_{18}=[18,-1,5]$, $A_4\times C_2=[24,-1,6]$, $S_4^+=[24,1,7]$,
   $S_4^-=[24,-1,8]$, $G_{36}^-=[36,-1,9]$, $G_{36}^+=[36,1,10]$,
   $S_4\times C_2=[48,-1,11]$, $A_5=PSL_2(5)=[60,1,12]$, $G_{72}=[72,-1,13]$,
   $S_5=PGL_2(5)=[120,-1,14]$, $A_6=[360,1,15]$, $S_6=[720,-1,16]$.
   \smallskip
   In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,2]$, $M_{21}=[21,1,3]$,
   $M_{42}=[42,-1,4]$, $PSL_2(7)=PSL_3(2)=[168,1,5]$, $A_7=[2520,1,6]$,
   $S_7=[5040,-1,7]$.
   \smallskip
   
 \syn{galois}{x,\var{prec}}.  \misctitle{Warning} The method used is that of resolvent polynomials and is
   sensitive to the current precision. The precision is updated internally but,
   in very rare cases, a wrong result may be returned if the initial precision
   was not sufficient.
   
 \subsecidx{polred}$(x,\{\fl=0\},\{p\})$: finds polynomials with reasonably  \syn{galois}{x,\var{prec}}. To enable the new format in library mode, set the
   global variable \tet{new_galois_format} to $1$.
   
   \subsecidx{polred}$(x,\{\fl=0\},\{fa\})$: finds polynomials with reasonably
 small coefficients defining subfields of the number field defined by $x$.  small coefficients defining subfields of the number field defined by $x$.
 One of the polynomials always defines $\Q$ (hence is equal to $x-1$),  One of the polynomials always defines $\Q$ (hence is equal to $x-1$),
 and another always defines the same number field as $x$ if $x$ is irreducible.  and another always defines the same number field as $x$ if $x$ is irreducible.
Line 4409  polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[x,Z\_K\_basis]
Line 4713  polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[x,Z\_K\_basis]
   
 The following binary digits of $\fl$ are significant:  The following binary digits of $\fl$ are significant:
   
 1: does a partial reduction only. This means that only a suborder of the  1: possibly use a suborder of the maximal order. The primes dividing the
 maximal order may be used.  index of the order chosen are larger than \tet{primelimit} or divide integers
   stored in the \tet{addprimes} table.
   
 2: gives also elements. The result is a two-column matrix, the first column  2: gives also elements. The result is a two-column matrix, the first column
 giving the elements defining these subfields, the second giving the  giving the elements defining these subfields, the second giving the
 corresponding minimal polynomials.  corresponding minimal polynomials.
   
 If $p$ is given, it is assumed that it is the two-column matrix of the  If $fa$ is given, it is assumed that it is the two-column matrix of the
 factorization of the discriminant of the polynomial $x$.  factorization of the discriminant of the polynomial $x$.
   
 \syn{polred0}{x,\fl,p,\var{prec}}, where an omitted $p$ is  \syn{polred0}{x,\fl,fa}, where an omitted $fa$ is coded by \kbd{NULL}. Also
 coded by $gzero$. Also available are $\teb{polred}(x,\var{prec})$ and  available are $\teb{polred}(x)$ and $\teb{factoredpolred}(x,fa)$, both
 $\teb{factoredpolred}(x,p,\var{prec})$, both corresponding to $\fl=0$.  corresponding to $\fl=0$.
   
 \subsecidx{polredabs}$(x,\{\fl=0\})$: finds one of the polynomial defining  \subsecidx{polredabs}$(x,\{\fl=0\})$: finds one of the polynomial defining
 the same number field as the one defined by $x$, and such that the sum of the  the same number field as the one defined by $x$, and such that the sum of the
Line 4429  squares of the modulus of the roots (i.e.~the $T_2$-no
Line 4734  squares of the modulus of the roots (i.e.~the $T_2$-no
 All $x$ accepted by \tet{nfinit} are also allowed here (e.g. non-monic  All $x$ accepted by \tet{nfinit} are also allowed here (e.g. non-monic
 polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[x,Z\_K\_basis]}).  polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[x,Z\_K\_basis]}).
   
   \misctitle{Warning:} this routine uses an exponential-time algorithm to
   enumerate all potential generators, and may be exceedingly slow when the
   number field has many subfields, hence a lot of elements of small $T_2$-norm.
   E.g. do not try it on the compositum of many quadratic fields, use
   \tet{polred} instead.
   
 The binary digits of $\fl$ mean  The binary digits of $\fl$ mean
   
 1: outputs a two-component row vector $[P,a]$, where $P$ is the default  1: outputs a two-component row vector $[P,a]$, where $P$ is the default
Line 4438  whose minimal polynomial is equal to $x$.
Line 4749  whose minimal polynomial is equal to $x$.
 4: gives \var{all} polynomials of minimal $T_2$ norm (of the two polynomials  4: gives \var{all} polynomials of minimal $T_2$ norm (of the two polynomials
 $P(x)$ and $P(-x)$, only one is given).  $P(x)$ and $P(-x)$, only one is given).
   
 \syn{polredabs0}{x,\fl,\var{prec}}.  16: possibly use a suborder of the maximal order. The primes dividing the
   index of the order chosen are larger than \tet{primelimit} or divide integers
   stored in the \tet{addprimes} table. In that case it may happen that the
   output polynomial does not have minimal $T_2$ norm.\label{se:polredabs}
   
   \syn{polredabs0}{x,\fl}.
   
 \subsecidx{polredord}$(x)$: finds polynomials with reasonably small  \subsecidx{polredord}$(x)$: finds polynomials with reasonably small
 coefficients and of the same degree as that of $x$ defining suborders of the  coefficients and of the same degree as that of $x$ defining suborders of the
 order defined by $x$. One of the polynomials always defines $\Q$ (hence  order defined by $x$. One of the polynomials always defines $\Q$ (hence
Line 4496  where \var{conductor} is the conductor of the extensio
Line 4812  where \var{conductor} is the conductor of the extensio
 class group corresponding to the conductor given as a 3-component  class group corresponding to the conductor given as a 3-component
 vector [h,cyc,gen] as usual for a group, and \var{subgroup} is a  vector [h,cyc,gen] as usual for a group, and \var{subgroup} is a
 matrix in HNF defining the subgroup of the ray class group on the  matrix in HNF defining the subgroup of the ray class group on the
 given generators gen. If $\fl$ is non-zero, check under GRH that  given generators gen. If $\fl$ is non-zero, check that \var{pol} indeed
 \var{pol} indeed defines an Abelian extension, return 0 if it does not.  defines an Abelian extension, return 0 if it does not.
   
 \syn{rnfconductor}{\var{rnf},\var{pol},\fl}.  \syn{rnfconductor}{\var{rnf},\var{pol},\fl}.
   
Line 4526  the relative
Line 4842  the relative
 discriminant of $L$. This is a two-element row vector $[D,d]$, where $D$ is  discriminant of $L$. This is a two-element row vector $[D,d]$, where $D$ is
 the relative ideal discriminant and $d$ is the relative discriminant  the relative ideal discriminant and $d$ is the relative discriminant
 considered as an element of $\var{nf}^*/{\var{nf}^*}^2$. The main variable of  considered as an element of $\var{nf}^*/{\var{nf}^*}^2$. The main variable of
 $\var{nf}$ \var{must} be of lower priority than that of \var{pol}.  $\var{nf}$ \var{must} be of lower priority than that of \var{pol}, see
   \secref{se:priority}.
   
 Note: As usual, $\var{nf}$ can be a $\var{bnf}$ as output by \kbd{nfinit}.  Note: As usual, $\var{nf}$ can be a $\var{bnf}$ as output by \kbd{nfinit}.
   
Line 4587  $\theta = \beta+k\alpha$ where $\theta$ is a root of $
Line 4904  $\theta = \beta+k\alpha$ where $\theta$ is a root of $
 of $\var{pol}$.  of $\var{pol}$.
   
   The main variable of $\var{nf}$ \var{must} be of lower priority than that    The main variable of $\var{nf}$ \var{must} be of lower priority than that
 of \var{pol}. Note that for efficiency, this does not check whether the  of \var{pol} (see \secref{se:priority}). Note that for efficiency, this does
 relative equation is irreducible over $\var{nf}$, but only if it is  not check whether the relative equation is irreducible over $\var{nf}$, but
 squarefree. If it is reducible but squarefree, the result will be the  only if it is squarefree. If it is reducible but squarefree, the result will
 absolute equation of the \'etale algebra defined by \var{pol}. If \var{pol}  be the absolute equation of the \'etale algebra defined by \var{pol}. If
 is not squarefree, an error message will be issued.  \var{pol} is not squarefree, an error message will be issued.
   
 \syn{rnfequation0}{\var{nf},\var{pol},\fl}.  \syn{rnfequation0}{\var{nf},\var{pol},\fl}.
   
Line 4690  the ideal list starts with $x$, all the other ideals b
Line 5007  the ideal list starts with $x$, all the other ideals b
 format considered as base field, and \var{pol} a polynomial defining a relative  format considered as base field, and \var{pol} a polynomial defining a relative
 extension over $\var{nf}$, this computes all the necessary data to work in the  extension over $\var{nf}$, this computes all the necessary data to work in the
 relative extension. The main variable of \var{pol} must be of higher priority  relative extension. The main variable of \var{pol} must be of higher priority
 (i.e.~lower number) than that of $\var{nf}$, and the coefficients of \var{pol}  (i.e.~lower number, see \secref{se:priority}) than that of $\var{nf}$, and
 must be in $\var{nf}$.  the coefficients of \var{pol} must be in $\var{nf}$.
   
 The result is an 11-component row vector as follows (most of the components  The result is an 11-component row vector as follows (most of the components
 are technical), the numbering being very close to that of \kbd{nfinit}. In  are technical), the numbering being very close to that of \kbd{nfinit}. In
Line 4708  are the number of real and complex places of $L$ above
Line 5025  are the number of real and complex places of $L$ above
 $K$ so that $r_{j,1}=0$ and $r_{j,2}=n$ if $j$ is a complex place, while if  $K$ so that $r_{j,1}=0$ and $r_{j,2}=n$ if $j$ is a complex place, while if
 $j$ is a real place we have $r_{j,1}+2r_{j,2}=n$.  $j$ is a real place we have $r_{j,1}+2r_{j,2}=n$.
   
 $\var{rnf}[3]$ is a two-component row vector $[\d(L/K),s]$ where $\d(L/K)$  $\var{rnf}[3]$ is a two-component row vector $[\goth{d}(L/K),s]$ where
 is the relative ideal discriminant of $L/K$ and $s$ is the discriminant of  $\goth{d}(L/K)$ is the relative ideal discriminant of $L/K$ and $s$ is the
 $L/K$ viewed as an element of $K^*/(K^*)^2$, in other words it is the output  discriminant of $L/K$ viewed as an element of $K^*/(K^*)^2$, in other words it is
 of \kbd{rnfdisc}.  the output of \kbd{rnfdisc}.
   
 $\var{rnf}[4]$ is the ideal index $\f$, i.e.~such that  $\var{rnf}[4]$ is the ideal index $\goth{f}$, i.e.~such that
 $d(pol)\Z_K=\f^2\d(L/K)$.  $d(pol)\Z_K=\goth{f}^2\goth{d}(L/K)$.
   
 $\var{rnf}[5]$ is a vector \var{vm} with 7 entries useful for certain  $\var{rnf}[5]$ is a vector \var{vm} with 7 entries useful for certain
 computations in the relative extension $L/K$. $\var{vm}[1]$ is a vector of  computations in the relative extension $L/K$. $\var{vm}[1]$ is a vector of
Line 4786  free, false (0) if not.
Line 5103  free, false (0) if not.
   
 \syn{rnfisfree}{\var{bnf},x}, and the result is a \kbd{long}.  \syn{rnfisfree}{\var{bnf},x}, and the result is a \kbd{long}.
   
 \subsecidx{rnfisnorm}$(\var{bnf},\var{ext},\var{el},\{\fl=1\})$: similar to  \subsecidx{rnfisnorm}$(\var{T},\var{a},\{\fl=0\})$: similar to
 \kbd{bnfisnorm} but in the relative case. This tries to decide whether the  \kbd{bnfisnorm} but in the relative case. $T$ is as output by
 element \var{el} in \var{bnf} is the norm of some $y$ in \var{ext}.  \tet{rnfisnorminit} applied to the extension $L/K$. This tries to decide
 $\var{bnf}$ is as output by \kbd{bnfinit}.  whether the element $a$ in $K$ is the norm of some $x$ in the extension
   $L/K$.
   
 $\var{ext}$ is a relative extension which has to be a row vector whose  The output is a vector $[x,q]$, where $\var{a}=\var{Norm}(x)*q$. The
 components are:  algorithm looks for a solution $x$ which is an $S$-integer, with $S$ a list
   of places of $K$ containing at least the ramified primes, the generators of
   the class group of $L$, as well as those primes dividing \var{a}. If $L/K$ is
   Galois, then this is enough; otherwise, $\fl$ is used to add more primes to
   $S$: all the places above the primes $p \leq \fl$ (resp.~$p|\fl$) if $\fl>0$
   (resp.~$\fl<0$).
   
 $\var{ext}[1]$: a relative equation of the number field \var{ext} over  The answer is guaranteed (i.e.~\var{a} is a norm iff $q = 1$) if the field is
 \var{bnf}. As usual, the priority of the variable of the polynomial  Galois, or, under \idx{GRH}, if $S$ contains all primes less than
 defining the ground field \var{bnf} (say $y$) must be lower than the  $12\log^2\left|\text{disc}(\var{M})\right|$, where \var{M} is the normal
 main variable of $\var{ext}[1]$, say $x$.  closure of $L/K$.
   
 $\var{ext}[2]$: the generator $y$ of the base field as a polynomial in $x$ (as  If \tet{rnfisnorminit} has determined (or was told) that $L/K$ is
 given by \kbd{rnfequation} with $\fl = 1$).  \idx{Galois}, and $\fl \neq 0$, a Warning is issued (so that you can set
   $\fl = 1$ to check whether $L/K$ is known to be Galois, according to $T$).
   
 $\var{ext}[3]$: is the \kbd{bnfinit} of the absolute extension $\var{ext}/\Q$.  Example:
   
 This returns a vector $[a,b]$, where $\var{el}=\var{Norm}(a)*b$. It looks for a  
 solution which is an $S$-integer, with $S$ a list of places (of \var{bnf})  
 containing the ramified primes, the generators of the class group of  
 \var{ext}, as well as those primes dividing \var{el}. If $\var{ext}/\var{bnf}$  
 is known to be \idx{Galois}, set $\fl=0$ (here \var{el} is a norm iff $b=1$).  
 If $\fl$ is non zero add to $S$ all the places above the primes which: divide  
 $\fl$ if $\fl<0$, or are less than $\fl$ if $\fl>0$. The answer is guaranteed  
 (i.e.~\var{el} is a norm iff $b=1$) under \idx{GRH}, if $S$ contains all  
 primes less than $12\log^2\left|\text{disc}(\var{Ext})\right|$, where  
 \var{Ext} is the normal closure of $\var{ext} / \var{bnf}$. Example:  
   
 \bprog  \bprog
 bnf = bnfinit(y^3 + y^2 - 2*y - 1);  bnf = bnfinit(y^3 + y^2 - 2*y - 1);
 p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);  p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);
 rnf = rnfequation(bnf,p,1);  T = rnfisnorminit(bnf, p);
 ext = [p, rnf[2], bnfinit(rnf[1])];  rnfisnorm(T, 17)
 rnfisnorm(bnf,ext,17, 1)  
 @eprog  @eprog
 \noindent checks whether $17$ is a norm in the Galois extension $\Q(\beta) /  \noindent checks whether $17$ is a norm in the Galois extension $\Q(\beta) /
 \Q(\alpha)$, where $\alpha^3 + \alpha^2 - 2\alpha - 1 = 0$ and $\beta^2 +  \Q(\alpha)$, where $\alpha^3 + \alpha^2 - 2\alpha - 1 = 0$ and $\beta^2 +
 \alpha^2 + 2*\alpha + 1 = 0$ (it is).  \alpha^2 + 2\alpha + 1 = 0$ (it is).
   
 \syn{rnfisnorm}{\var{bnf},ext,x,\fl,\var{prec}}.  \syn{rnfisnorm}{\var{T},x,\fl}.
   
 \subsecidx{rnfkummer}$(\var{bnr},\var{subgroup},\{deg=0\})$: \var{bnr}  \subsecidx{rnfisnorminit}$(\var{pol},\var{polrel},\{\fl=2\})$:
   let $K$ be defined by a root of \var{pol}, and $L/K$ the extension defined by
   the polynomial \var{polrel}. As usual, \var{pol} can in fact be an \var{nf},
   or \var{bnf}, etc; if \var{pol} has degree $1$ (the base field is $\Q$),
   polrel is also allowed to be an \var{nf}, etc. Computes technical data needed
   by \tet{rnfisnorm} to solve norm equations $Nx = a$, for $x$ in $L$, and $a$
   in $K$.
   
   If $\fl = 0$, do not care whether $L/K$ is Galois or not.
   
   If $\fl = 1$, $L/K$ is assumed to be Galois (unchecked), which speeds up
   \tet{rnfisnorm}.
   
   If $\fl = 2$, let the routine determine whether $L/K$ is Galois.
   
   \syn{rnfisnorminit}{\var{pol},\var{polrel},\fl}.
   
   \subsecidx{rnfkummer}$(\var{bnr},\{\var{subgroup}\},\{deg=0\})$: \var{bnr}
 being as output by \kbd{bnrinit}, finds a relative equation for the  being as output by \kbd{bnrinit}, finds a relative equation for the
 class field corresponding to the module in \var{bnr} and the given  class field corresponding to the module in \var{bnr} and the given
 congruence subgroup. If \var{deg} is positive, outputs the list of all  congruence subgroup (the full ray class field if \var{subgroup} is omitted).
 relative equations of degree \var{deg} contained in the ray class field  If \var{deg} is positive, outputs the list of all relative equations of
 defined by \var{bnr}.  degree \var{deg} contained in the ray class field defined by \var{bnr}, with
   the same conductor as $(\var{bnr}, \var{subgroup})$.
   
 (THIS PROGRAM IS STILL IN DEVELOPMENT STAGE)  \misctitle{Warning:} this routine only works for subgroups of prime index. It
   uses Kummer theory, adjoining necessary roots of unity (it needs to compute a
   tough \kbd{bnfinit} here), and finds a generator via Hecke's characterization
   of ramification in Kummer extensions of prime degree. If your extension does
   not have prime degree, for the time being, you have to split it by hand as a
   tower of such extensions.
   
 \syn{rnfkummer}{\var{bnr},\var{subgroup},\var{deg},\var{prec}},  \syn{rnfkummer}{\var{bnr},\var{subgroup},\var{deg},\var{prec}}, where
 where \var{deg} is a \kbd{long}.  \var{deg} is a \kbd{long} and an omitted \var{subgroup} is coded as
   \kbd{NULL}
   
 \subsecidx{rnflllgram}$(\var{nf},\var{pol},\var{order})$: given a polynomial  \subsecidx{rnflllgram}$(\var{nf},\var{pol},\var{order})$: given a polynomial
 \var{pol} with coefficients in \var{nf} defining a relative extension $L$ and  \var{pol} with coefficients in \var{nf} defining a relative extension $L$ and
Line 4854  class field as output by \kbd{bnrinit} and \var{pol} a
Line 5190  class field as output by \kbd{bnrinit} and \var{pol} a
 defining an \idx{Abelian extension}, computes the norm group (alias Artin  defining an \idx{Abelian extension}, computes the norm group (alias Artin
 or Takagi group) corresponding to the Abelian extension of $\var{bnf}=bnr[1]$  or Takagi group) corresponding to the Abelian extension of $\var{bnf}=bnr[1]$
 defined by \var{pol}, where the module corresponding to \var{bnr} is assumed  defined by \var{pol}, where the module corresponding to \var{bnr} is assumed
 to be a multiple of the conductor (i.e.~polrel defines a subextension of  to be a multiple of the conductor (i.e.~\var{pol} defines a subextension of
 bnr). The result is the HNF defining the norm group on the given generators  bnr). The result is the HNF defining the norm group on the given generators
 of $\var{bnr}[5][3]$. Note that neither the fact that \var{pol} defines an  of $\var{bnr}[5][3]$. Note that neither the fact that \var{pol} defines an
 Abelian extension nor the fact that the module is a multiple of the conductor  Abelian extension nor the fact that the module is a multiple of the conductor
Line 4866  is checked. The result is undefined if the assumption 
Line 5202  is checked. The result is undefined if the assumption 
 Given a monic polynomial \var{pol} with coefficients in $\var{nf}$, finds a  Given a monic polynomial \var{pol} with coefficients in $\var{nf}$, finds a
 list of relative polynomials defining some subfields, hopefully simpler and  list of relative polynomials defining some subfields, hopefully simpler and
 containing the original field. In the present version \vers, this is slower  containing the original field. In the present version \vers, this is slower
 than \kbd{rnfpolredabs}.  and less efficient than \kbd{rnfpolredabs}.
   
 \syn{rnfpolred}{\var{nf},\var{pol},\var{prec}}.  \syn{rnfpolred}{\var{nf},\var{pol},\var{prec}}.
   
 \subsecidx{rnfpolredabs}$(\var{nf},\var{pol},\{\fl=0\})$: relative version of  \subsecidx{rnfpolredabs}$(\var{nf},\var{pol},\{\fl=0\})$: relative version of
 \kbd{polredabs}. Given a monic polynomial \var{pol} with coefficients in  \kbd{polredabs}. Given a monic polynomial \var{pol} with coefficients in
 $\var{nf}$, finds a simpler relative polynomial defining the same field. If  $\var{nf}$, finds a simpler relative polynomial defining the same field. The
 $\fl=1$, returns $[P,a]$ where $P$ is the default output and $a$ is an  binary digits of $\fl$ mean
   
   1: returns $[P,a]$ where $P$ is the default output and $a$ is an
 element expressed on a root of $P$ whose characteristic polynomial is  element expressed on a root of $P$ whose characteristic polynomial is
 \var{pol}, if $\fl=2$, returns an absolute polynomial (same as  \var{pol}
   
   2: returns an absolute polynomial (same as
 {\tt rnfequation(\var{nf},rnfpolredabs(\var{nf},\var{pol}))}  {\tt rnfequation(\var{nf},rnfpolredabs(\var{nf},\var{pol}))}
   but faster).
   
 \noindent but faster).  16: possibly use a suborder of the maximal order. This is slower than the
   default when the relative discriminant is smooth, and much faster otherwise.
   See \secref{se:polredabs}.
   
 \misctitle{Remark.} In the present implementation, this is both faster and  \misctitle{Remark.} In the present implementation, this is both faster and
 much more efficient than \kbd{rnfpolred}, the difference being more  much more efficient than \kbd{rnfpolred}, the difference being more
Line 4899  a four-element row vector $[A,I,D,d]$, where $D$ is th
Line 5241  a four-element row vector $[A,I,D,d]$, where $D$ is th
 discriminant and $d$ is the relative discriminant considered as an element of  discriminant and $d$ is the relative discriminant considered as an element of
 $\var{nf}^*/{\var{nf}^*}^2$.  $\var{nf}^*/{\var{nf}^*}^2$.
   
 Note: As usual, $\var{nf}$ can be a $\var{bnf}$ as output by \kbd{bnfinit}.  
   
 \syn{rnfpseudobasis}{\var{nf},\var{pol}}.  \syn{rnfpseudobasis}{\var{nf},\var{pol}}.
   
 \subsecidx{rnfsteinitz}$(\var{nf},x)$: given a number field $\var{nf}$ as  \subsecidx{rnfsteinitz}$(\var{nf},x)$: given a number field $\var{nf}$ as
Line 4914  as in \kbd{rnfpseudobasis}. The name of this function 
Line 5254  as in \kbd{rnfpseudobasis}. The name of this function 
 that the ideal class of the last ideal of $I$ (which is well defined) is  that the ideal class of the last ideal of $I$ (which is well defined) is
 called the \idx{Steinitz class} of the module $\Z_L$.  called the \idx{Steinitz class} of the module $\Z_L$.
   
 Note: $\var{nf}$ can be a $\var{bnf}$ as output by \kbd{bnfinit}.  
   
 \syn{rnfsteinitz}{\var{nf},x}.  \syn{rnfsteinitz}{\var{nf},x}.
   
 \subsecidx{subgrouplist}$(\var{bnr},\{\var{bound}\},\{\fl=0\})$:  \subsecidx{subgrouplist}$(\var{bnr},\{\var{bound}\},\{\fl=0\})$:
 \var{bnr} being as output by \kbd{bnrinit} or a list of cyclic components  \var{bnr} being as output by \kbd{bnrinit} or a list of cyclic components
 of a finite Abelian group $G$, outputs the list of subgroups of $G$  of a finite Abelian group $G$, outputs the list of subgroups of $G$. Subgroups
 (of index bounded by \var{bound}, if not omitted). Subgroups are given  are given as HNF\sidx{Hermite normal form} left divisors of the
 as HNF\sidx{Hermite normal form} left divisors of the  SNF\sidx{Smith normal form} matrix corresponding to $G$.
 SNF\sidx{Smith normal form} matrix corresponding to $G$. If $\fl=0$  
 (default) and \var{bnr} is as output by  
 \kbd{bnrinit}, gives only the subgroups whose modulus is the conductor.  
   
 \syn{subgrouplist0}{\var{bnr},\var{bound},\fl}, where \var{bound} and $\fl$  \misctitle{Warning:} the present implementation cannot treat a group $G$
 are long integers.  where any cyclic factor has more than $2^{31}$, resp.~$2^{63}$ elements on a
   $32$-bit, resp.~$64$-bit architecture. \tet{forsubgroup} is a bit more
   general and can handle $G$ if all $p$-Sylow subgroups of $G$ satisfy the
   condition above.
   
   If $\fl=0$ (default) and \var{bnr} is as output by $\kbd{bnrinit}(,,1)$, gives
   only the subgroups whose modulus is the conductor. Otherwise, the modulus is
   not taken into account.
   
   If \var{bound} is present, and is a positive integer, restrict the output to
   subgroups of index less than \var{bound}. If \var{bound} is a vector
   containing a single positive integer $B$, then only subgroups of index
   exactly equal to $B$ are computed. For instance
   \bprog
   ? subgrouplist([6,2])
   %1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],
         [1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
   ? subgrouplist([6,2],3)    \\@com index less than 3
   %2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
   ? subgrouplist([6,2],[3])  \\@com index 3
   %3 = [[3, 0; 0, 1]]
   ? bnr = bnrinit(bnfinit(x), [120,[1]], 1);
   ? L = subgrouplist(bnr, [8]);
   @eprog\noindent
   In the last example, $L$ corresponds to the 24 subfields of
   $\Q(\zeta_{120})$, of degree $8$ and conductor $120\infty$ (by setting \fl,
   we see there are a total of $43$ subgroups of degree $8$).
   \bprog
   ? vector(#L, i, galoissubcyclo(bnr, L[i]))
   @eprog\noindent
   will produce their equations. (For a general base field, you would
   have to rely on \tet{bnrstark}, or \tet{rnfkummer}.)
   
   \syn{subgrouplist0}{\var{bnr},\var{bound},\fl}, where $\fl$
   is a long integer, and an omitted \var{bound} is coded by \kbd{NULL}.
   
 \subsecidx{zetak}$(\var{znf},x,\{\fl=0\})$: \var{znf} being a number  \subsecidx{zetak}$(\var{znf},x,\{\fl=0\})$: \var{znf} being a number
 field initialized by \kbd{zetakinit} (\var{not} by \kbd{nfinit}),  field initialized by \kbd{zetakinit} (\var{not} by \kbd{nfinit}),
 computes the value of the \idx{Dedekind} zeta function of the number  computes the value of the \idx{Dedekind} zeta function of the number
Line 5037  the same extension of $\Q_p$ as $a$.
Line 5406  the same extension of $\Q_p$ as $a$.
   
 \subsecidx{polcoeff}$(x,s,\{v\})$: coefficient of degree $s$ of the  \subsecidx{polcoeff}$(x,s,\{v\})$: coefficient of degree $s$ of the
 polynomial $x$, with respect to the main variable if $v$ is omitted, with  polynomial $x$, with respect to the main variable if $v$ is omitted, with
 respect to $v$ otherwise.  respect to $v$ otherwise. Also applies to power series, scalars (polynomial
   of degree $0$), and to rational functions provided the denominator is a
   monomial.
   
 \syn{polcoeff0}{x,s,v}, where $v$ is a \kbd{long} and an omitted $v$ is coded  \syn{polcoeff0}{x,s,v}, where $v$ is a \kbd{long} and an omitted $v$ is coded
 as $-1$. Also available is \teb{truecoeff}$(x,v)$.  as $-1$. Also available is \teb{truecoeff}$(x,v)$.
Line 5141  GP it is kept in the variable \kbd{realprecision} and 
Line 5512  GP it is kept in the variable \kbd{realprecision} and 
 user, but it must be explicitly given as a second argument in library mode.  user, but it must be explicitly given as a second argument in library mode.
   
 The algorithm used is a modification of A.~Sch\"onhage\sidx{Sch\"onage}'s  The algorithm used is a modification of A.~Sch\"onhage\sidx{Sch\"onage}'s
 remarkable root-finding algorithm, due to and implemented by X.~Gourdon.  root-finding algorithm, due to and implemented by X.~Gourdon. Barring bugs, it
 Barring bugs, it is guaranteed to converge and to give the roots to the  is guaranteed to converge and to give the roots to the required accuracy.
 required accuracy.  
   
 If $\fl=1$, use a variant of the Newton-Raphson method, which is \var{not}  If $\fl=1$, use a variant of the Newton-Raphson method, which is \var{not}
 guaranteed to converge, but is rather fast. If you get the messages ``too  guaranteed to converge, but is rather fast. If you get the messages ``too
 many iterations in roots'' or ``INTERNAL ERROR: incorrect result in roots'',  many iterations in roots'' or ``INTERNAL ERROR: incorrect result in roots'',
 use the default function (i.e.~no flag or $\fl=0$). This used to be the  use the default algorithm. This used to be the default root-finding function in
 default root-finding function in PARI until version 1.39.06.  PARI until version 1.39.06.
   
 \syn{roots}{\var{pol},\var{prec}} or $\teb{rootsold}(\var{pol},\var{prec})$.  \syn{roots}{\var{pol},\var{prec}} or $\teb{rootsold}(\var{pol},\var{prec})$.
   
Line 5166  $\teb{rootmod2}(\var{pol},p)$ ($\fl=1$).
Line 5536  $\teb{rootmod2}(\var{pol},p)$ ($\fl=1$).
   
 \subsecidx{polrootspadic}$(\var{pol},p,r)$: row vector of $p$-adic roots of the  \subsecidx{polrootspadic}$(\var{pol},p,r)$: row vector of $p$-adic roots of the
 polynomial \var{pol} with $p$-adic precision equal to $r$. Multiple roots are  polynomial \var{pol} with $p$-adic precision equal to $r$. Multiple roots are
 \var{not} repeated. $p$ is assumed to be a prime.  \var{not} repeated. $p$ is assumed to be a prime, and \var{pol} to be
   non-zero modulo $p$.
   
 \syn{rootpadic}{\var{pol},p,r}, where $r$ is a \kbd{long}.  \syn{rootpadic}{\var{pol},p,r}, where $r$ is a \kbd{long}.
   
Line 5178  polynomial \var{pol} in the interval $]a,b]$, using St
Line 5549  polynomial \var{pol} in the interval $]a,b]$, using St
 \teb{sturm}\kbd{(\var{pol})} is equivalent to  \teb{sturm}\kbd{(\var{pol})} is equivalent to
 \key{sturmpart}\kbd{(\var{pol},NULL,NULL)}. The result is a \kbd{long}.  \key{sturmpart}\kbd{(\var{pol},NULL,NULL)}. The result is a \kbd{long}.
   
 \subsecidx{polsubcyclo}$(n,d,\{v=x\})$: gives a polynomial (in variable  \subsecidx{polsubcyclo}$(n,d,\{v=x\})$: gives polynomials (in variable
 $v$) defining the sub-Abelian extension of degree $d$ of the cyclotomic  $v$) defining the sub-Abelian extensions of degree $d$ of the cyclotomic
 field $\Q(\zeta_n)$, where $d\mid \phi(n)$. $(\Z/n\Z)^*$ has to be cyclic  field $\Q(\zeta_n)$, where $d\mid \phi(n)$.
 (i.e.~$n=2$, $4$, $p^k$ or $2p^k$ for an odd prime $p$). The function  
 \tet{galoissubcyclo} covers the general case.  
   
 \syn{subcyclo}{n,d,v}, where $v$ is a variable number.  If there is exactly one such extension the output is a polynomial, else it is
   a vector of polynomials, eventually empty.
   
   To be sure to get a vector, you can use \kbd{concat([],polsubcyclo(n,d))}
   
   The function \tet{galoissubcyclo} allows to specify more closely which sub-Abelian extension should be computed.
   
   \syn{polsubcyclo}{n,d,v}, where $n$, $d$ and $v$ are \kbd{long} and $v$ is a
   variable number. When $(\Z/n\Z)^*$ is cyclic, you can use
   \teb{subcyclo}$(n,d,v)$, where $n$, $d$ and $v$ are \kbd{long} and $v$ is a
   variable number.
   
 \subsecidx{polsylvestermatrix}$(x,y)$: forms the Sylvester matrix  \subsecidx{polsylvestermatrix}$(x,y)$: forms the Sylvester matrix
 corresponding to the two polynomials $x$ and $y$, where the coefficients of  corresponding to the two polynomials $x$ and $y$, where the coefficients of
 the polynomials are put in the columns of the matrix (which is the natural  the polynomials are put in the columns of the matrix (which is the natural
Line 5290  as \kbd{NULL}.
Line 5669  as \kbd{NULL}.
 \subsecidx{thueinit}$(P,\{\fl=0\})$: initializes the \var{tnf}  \subsecidx{thueinit}$(P,\{\fl=0\})$: initializes the \var{tnf}
 corresponding to $P$. It is meant to be used in conjunction with \tet{thue}  corresponding to $P$. It is meant to be used in conjunction with \tet{thue}
 to solve Thue equations $P(x,y) = a$, where $a$ is an integer. If $\fl$ is  to solve Thue equations $P(x,y) = a$, where $a$ is an integer. If $\fl$ is
 non-zero, certify the result unconditionnaly, Otherwise, assume \idx{GRH},  non-zero, certify the result unconditionnally, Otherwise, assume \idx{GRH},
 this being much faster of course.  this being much faster of course.
   
 \syn{thueinit}{P,\fl,\var{prec}}.  \syn{thueinit}{P,\fl,\var{prec}}.
Line 5311  guaranteed to be irreducible!). One can check the clos
Line 5690  guaranteed to be irreducible!). One can check the clos
 polynomial evaluation or substitution, or by computing the roots of the  polynomial evaluation or substitution, or by computing the roots of the
 polynomial given by algdep.  polynomial given by algdep.
   
 If $x$ is padic, $\fl$ is meaningless and the algorithm LLL-reduces the  If $x$ is $p$-adic, $\fl$ is meaningless and the algorithm LLL-reduces the
 ``dual lattice'' corresponding to the powers of $x$.  ``dual lattice'' corresponding to the powers of $x$.
   
 Otherwise, if $\fl$ is zero, the algorithm used is a variant of the \idx{LLL}  Otherwise, if $\fl$ is zero, the algorithm used is a variant of the \idx{LLL}
Line 5414  If $\fl>0$, uses the LLL algorithm. $\fl$ is a paramet
Line 5793  If $\fl>0$, uses the LLL algorithm. $\fl$ is a paramet
 between one half the number of decimal digits of precision and that number  between one half the number of decimal digits of precision and that number
 (see \kbd{algdep}).  (see \kbd{algdep}).
   
 If $\fl<0$, returns as soon as one relation has been found.  If $\fl<0$, $x$ is allowed to be (and in any case interpreted as) a matrix.
   Returns a non trivial element of the kernel of $x$, or $0$ if $x$ has trivial
   kernel.
   
 \syn{lindep0}{x,\fl,\var{prec}}. Also available is  \syn{lindep0}{x,\fl,\var{prec}}. Also available is
 $\teb{lindep}(x,\var{prec})$ ($\fl=0$).  $\teb{lindep}(x,\var{prec})$ ($\fl=0$).
Line 5623  any type.
Line 6004  any type.
   
 If $x$ is known to have integral entries, set $\fl=1$.  If $x$ is known to have integral entries, set $\fl=1$.
   
 \noindent Note: The library function $\tet{ker_mod_p}(x, p)$, where $x$ has  \noindent Note: The library function $\tet{FpM_ker}(x, p)$, where $x$ has
 integer entries and $p$ is prime, which is equivalent to but many orders of  integer entries and $p$ is prime, which is equivalent to but many orders of
 magnitude faster than \kbd{matker(x*Mod(1,p))} and needs much less stack  magnitude faster than \kbd{matker(x*Mod(1,p))} and needs much less stack
 space. To use it under GP, type \kbd{install(ker\_mod\_p, GG)} first.  space. To use it under GP, type \kbd{install(FpM\_ker, GG)} first.
   
 \syn{matker0}{x,\fl}. Also available are $\teb{ker}(x)$ ($\fl=0$),  \syn{matker0}{x,\fl}. Also available are $\teb{ker}(x)$ ($\fl=0$),
 $\teb{keri}(x)$ ($\fl=1$) and $\kbd{ker\_mod\_p}(x,p)$.  $\teb{keri}(x)$ ($\fl=1$) and $\kbd{ker\_mod\_p}(x,p)$.
Line 5640  If $\fl=0$, uses a modified integer LLL algorithm.
Line 6021  If $\fl=0$, uses a modified integer LLL algorithm.
 If $\fl=1$, uses $\kbd{matrixqz}(x,-2)$. If LLL reduction of the final result  If $\fl=1$, uses $\kbd{matrixqz}(x,-2)$. If LLL reduction of the final result
 is not desired, you can save time using \kbd{matrixqz(matker(x),-2)} instead.  is not desired, you can save time using \kbd{matrixqz(matker(x),-2)} instead.
   
 If $\fl=2$, uses another modified LLL. In the present version \vers, only  
 independent rows are allowed in this case.  
   
 \syn{matkerint0}{x,\fl}. Also available is  \syn{matkerint0}{x,\fl}. Also available is
 $\teb{kerint}(x)$ ($\fl=0$).  $\teb{kerint}(x)$ ($\fl=0$).
   
Line 5788  result is a transformation matrix $T$ such that $x\cdo
Line 6166  result is a transformation matrix $T$ such that $x\cdo
 basis of the lattice generated by the column vectors of $x$.  basis of the lattice generated by the column vectors of $x$.
   
 If $\fl=0$ (default), the computations are done with real numbers (i.e.~not  If $\fl=0$ (default), the computations are done with real numbers (i.e.~not
 with rational numbers) hence are fast but as presently programmed (version  with rational numbers), using Householder matrices for orthogonalization
 \vers) are numerically unstable.  (as presently programmed: slow but stable).
   
 If $\fl=1$, it is assumed that the corresponding Gram matrix is integral.  If $\fl=1$, it is assumed that the corresponding Gram matrix is integral.
 The computation is done entirely with integers and the algorithm is both  The computation is done entirely with integers and the algorithm is both
Line 5805  two distinct basis vectors $v_i, \, v_j$.]
Line 6183  two distinct basis vectors $v_i, \, v_j$.]
 This can be significantly faster than $\fl=1$ when one row is huge compared  This can be significantly faster than $\fl=1$ when one row is huge compared
 to the other rows.  to the other rows.
   
 If $\fl=3$, all computations are done in rational numbers. This does not  
 incur numerical instability, but is extremely slow. This function is  
 essentially superseded by case 1, so will soon disappear.  
   
 If $\fl=4$, $x$ is assumed to have integral entries, but needs not be of  If $\fl=4$, $x$ is assumed to have integral entries, but needs not be of
 maximal rank. The result is a two-component vector of matrices~: the  maximal rank. The result is a two-component vector of matrices~: the
 columns of the first matrix represent a basis of the integer kernel of $x$  columns of the first matrix represent a basis of the integer kernel of $x$
Line 5818  of the matrix $x$.
Line 6192  of the matrix $x$.
   
 If $\fl=5$, case as case $4$, but $x$ may have polynomial coefficients.  If $\fl=5$, case as case $4$, but $x$ may have polynomial coefficients.
   
 If $\fl=7$, uses an older version of case $0$ above.  
   
 If $\fl=8$, same as case $0$, where $x$ may have polynomial coefficients.  If $\fl=8$, same as case $0$, where $x$ may have polynomial coefficients.
   
 If $\fl=9$, variation on case $1$, using content.  
   
 \syn{qflll0}{x,\fl,\var{prec}}. Also available are  \syn{qflll0}{x,\fl,\var{prec}}. Also available are
 $\teb{lll}(x,\var{prec})$ ($\fl=0$), $\teb{lllint}(x)$ ($\fl=1$), and  $\teb{lll}(x,\var{prec})$ ($\fl=0$), $\teb{lllint}(x)$ ($\fl=1$), and
 $\teb{lllkerim}(x)$ ($\fl=4$).  $\teb{lllkerim}(x)$ ($\fl=4$).
Line 5843  $\fl=4$: $x$ has integer entries, gives the kernel and
Line 6213  $\fl=4$: $x$ has integer entries, gives the kernel and
   
 $\fl=5$: same as $4$ for generic $x$.  $\fl=5$: same as $4$ for generic $x$.
   
 $\fl=7$: an older version of case $0$.  
   
 \syn{qflllgram0}{x,\fl,\var{prec}}. Also available are  \syn{qflllgram0}{x,\fl,\var{prec}}. Also available are
 $\teb{lllgram}(x,\var{prec})$ ($\fl=0$), $\teb{lllgramint}(x)$ ($\fl=1$), and  $\teb{lllgram}(x,\var{prec})$ ($\fl=0$), $\teb{lllgramint}(x)$ ($\fl=1$), and
 $\teb{lllgramkerim}(x)$ ($\fl=4$).  $\teb{lllgramkerim}(x)$ ($\fl=4$).
Line 6006  For example, \kbd{vecextract(x, vecsort(x,,1))} is equ
Line 6374  For example, \kbd{vecextract(x, vecsort(x,,1))} is equ
 $\bullet$ 2: sorts $x$ by ascending lexicographic order (as per the  $\bullet$ 2: sorts $x$ by ascending lexicographic order (as per the
 \kbd{lex} comparison function).  \kbd{lex} comparison function).
   
 $\bullet$ 4: use decreasing instead of ascending order.  $\bullet$ 4: use descending instead of ascending order.
   
 \syn{vecsort0}{x,k,flag}. To omit $k$, use \kbd{NULL} instead. You can also  \syn{vecsort0}{x,k,flag}. To omit $k$, use \kbd{NULL} instead. You can also
 use the simpler functions  use the simpler functions
Line 6030  last two arguments is omitted, fill the vector with ze
Line 6398  last two arguments is omitted, fill the vector with ze
   
 \synt{vecteur}{GEN nmax, entree *ep, char *expr}.  \synt{vecteur}{GEN nmax, entree *ep, char *expr}.
   
   \subsecidx{vectorsmall}$(n,\{X\},\{\var{expr}=0\})$: creates a row vector of small integers (type
   \typ{VECSMALL}) with $n$ components whose components are the expression
   \var{expr} evaluated at the integer points between 1 and $n$. If one of the
   last two arguments is omitted, fill the vector with zeroes.
   
   \synt{vecteursmall}{GEN nmax, entree *ep, char *expr}.
   
 \subsecidx{vectorv}$(n,X,\var{expr})$: as \tet{vector}, but returns a  \subsecidx{vectorv}$(n,X,\var{expr})$: as \tet{vector}, but returns a
 column vector (type \typ{COL}).  column vector (type \typ{COL}).
   
Line 6207  the positive divisors of $n$.
Line 6582  the positive divisors of $n$.
 Arithmetic functions like \tet{sigma} use the multiplicativity of the  Arithmetic functions like \tet{sigma} use the multiplicativity of the
 underlying expression to speed up the computation. In the present version  underlying expression to speed up the computation. In the present version
 \vers, there is no way to indicate that \var{expr} is multiplicative in  \vers, there is no way to indicate that \var{expr} is multiplicative in
 $n$, hence specialized functions should be prefered whenever possible.  $n$, hence specialized functions should be preferred whenever possible.
   
 \synt{divsum}{entree *ep, GEN num, char *expr}.  \synt{divsum}{entree *ep, GEN num, char *expr}.
   
Line 6363  Overlapping regions will thus be drawn twice, and the 
Line 6738  Overlapping regions will thus be drawn twice, and the 
 transparent. Then display the whole drawing in a special window on your  transparent. Then display the whole drawing in a special window on your
 screen.  screen.
   
 \subsecidx{plotfile}$(s)$: set the output file for plotting output. Special  \subsecidx{plotfile}$(s)$: set the output file for plotting output. The
 filename \kbd{-} redirects to the same place as PARI output.  special filename \kbd{"-"} redirects to the same place as PARI output. This
   is only taken into account by the \kbd{gnuplot} interface.
   
 \subsecidx{ploth}$(X=a,b,\var{expr},\{\fl=0\},\{n=0\})$: high precision  \subsecidx{ploth}$(X=a,b,\var{expr},\{\fl=0\},\{n=0\})$: high precision
 plot of the function $y=f(x)$ represented by the expression \var{expr}, $x$  plot of the function $y=f(x)$ represented by the expression \var{expr}, $x$
Line 6388  the same window.
Line 6764  the same window.
   
 \noindent The binary digits of $\fl$ mean:  \noindent The binary digits of $\fl$ mean:
   
 $\bullet$ 1: \tev{parametric plot}. Here \var{expr} must be a vector with  $\bullet$ $1 = \kbd{Parametric}$: \tev{parametric plot}. Here \var{expr} must
 an even number of components. Successive pairs are then understood as the  be a vector with an even number of components. Successive pairs are then
 parametric coordinates of a plane curve. Each of these are then drawn.  understood as the parametric coordinates of a plane curve. Each of these are
   then drawn.
   
 For instance:  For instance:
   
Line 6403  curves.
Line 6780  curves.
 $y=x$.  $y=x$.
   
   
 $\bullet$ 2: \tev{recursive plot}. If this flag is set, only \var{one}  $\bullet$ $2 = \kbd{Recursive}$: \tev{recursive plot}. If this flag is set,
 curve can be drawn at time, i.e.~\var{expr} must be either a two-component  only \var{one} curve can be drawn at time, i.e.~\var{expr} must be either a
 vector (for a single parametric curve, and the parametric flag \var{has} to  two-component vector (for a single parametric curve, and the parametric flag
 be set), or a scalar function. The idea is to choose pairs of successive  \var{has} to be set), or a scalar function. The idea is to choose pairs of
 reference points, and if their middle point is not too far away from the  successive reference points, and if their middle point is not too far away
 segment joining them, draw this as a local approximation to the curve.  from the segment joining them, draw this as a local approximation to the
 Otherwise, add the middle point to the reference points. This is very fast,  curve. Otherwise, add the middle point to the reference points. This is very
 and usually more precise than usual plot. Compare the results of  fast, and usually more precise than usual plot. Compare the results of
 $$\kbd{ploth(X=-1,1,sin(1/X),2)}\quad  $$\kbd{ploth(X=-1,1,sin(1/X),2)}\quad
  \text{and}\quad\kbd{ploth(X=-1,1,sin(1/X))}$$   \text{and}\quad\kbd{ploth(X=-1,1,sin(1/X))}$$
 for instance. But beware that if you are extremely unlucky, or choose too few  for instance. But beware that if you are extremely unlucky, or choose too few
Line 6425  curve with slightly different parameters.
Line 6802  curve with slightly different parameters.
   
 The other values toggle various display options:  The other values toggle various display options:
   
 $\bullet$ 4: do not rescale plot according to the computed extrema. This is  $\bullet$ $4 = \kbd{no\_Rescale}$: do not rescale plot according to the
 meant to be used when graphing multiple functions on a rectwindow (as a  computed extrema. This is meant to be used when graphing multiple functions
 \tet{plotrecth} call), in conjuction with \tet{plotscale}.  on a rectwindow (as a \tet{plotrecth} call), in conjunction with
   \tet{plotscale}.
   
 $\bullet$ 8: do not print the $x$-axis.  $\bullet$ $8 = \kbd{no\_X\_axis}$: do not print the $x$-axis.
   
 $\bullet$ 16: do not print the $y$-axis.  $\bullet$ $16 = \kbd{no\_Y\_axis}$: do not print the $y$-axis.
   
 $\bullet$ 32: do not print frame.  $\bullet$ $32 = \kbd{no\_Frame}$: do not print frame.
   
 $\bullet$ 64: only plot reference points, do not join them.  $\bullet$ $64 = \kbd{no\_Lines}$: only plot reference points, do not join them.
   
 $\bullet$ 256: use splines to interpolate the points.  $\bullet$ $128 = \kbd{Points_too}$: plot both lines and points.
   
 $\bullet$ 512: plot no $x$-ticks.  $\bullet$ $256 = \kbd{Splines}$: use splines to interpolate the points.
   
 $\bullet$ 1024: plot no $y$-ticks.  $\bullet$ $512 = \kbd{no\_X\_ticks}$: plot no $x$-ticks.
   
 $\bullet$ 2048: plot all ticks with the same length.  $\bullet$ $1024 = \kbd{no\_Y\_ticks}$: plot no $y$-ticks.
   
   $\bullet$ $2048 = \kbd{Same\_ticks}$: plot all ticks with the same length.
   
 \subsecidx{plothraw}$(\var{listx},\var{listy},\{\fl=0\})$: given  \subsecidx{plothraw}$(\var{listx},\var{listy},\{\fl=0\})$: given
 \var{listx} and \var{listy} two vectors of equal length, plots (in high  \var{listx} and \var{listy} two vectors of equal length, plots (in high
 precision) the points whose $(x,y)$-coordinates are given in \var{listx}  precision) the points whose $(x,y)$-coordinates are given in \var{listx}
Line 6468  must be between $0$ and $1$) and internally converted 
Line 6848  must be between $0$ and $1$) and internally converted 
 The plotting device imposes an upper bound for $x$ and $y$, for instance the  The plotting device imposes an upper bound for $x$ and $y$, for instance the
 number of pixels for screen output. These bounds are available through the  number of pixels for screen output. These bounds are available through the
 \tet{plothsizes} function. The following sequence initializes in a portable  \tet{plothsizes} function. The following sequence initializes in a portable
 way (i.e independant of the output device) a window of maximal size, accessed  way (i.e independent of the output device) a window of maximal size, accessed
 through coordinates in the $[0,1000] \times [0,1000]$ range~:  through coordinates in the $[0,1000] \times [0,1000]$ range~:
   
 \bprog  \bprog
Line 6479  plotscale(0, 0,1000, 0,1000);
Line 6859  plotscale(0, 0,1000, 0,1000);
   
 \subsecidx{plotkill}$(w)$: erase rectwindow $w$ and free the corresponding  \subsecidx{plotkill}$(w)$: erase rectwindow $w$ and free the corresponding
 memory. Note that if you want to use the rectwindow $w$ again, you have to  memory. Note that if you want to use the rectwindow $w$ again, you have to
 use \kbd{initrect} first to specify the new size. So it's better in this case  use \kbd{plotinit} first to specify the new size. So it's better in this case
 to use \kbd{initrect} directly as this throws away any previous work in the  to use \kbd{plotinit} directly as this throws away any previous work in the
 given rectwindow.  given rectwindow.
   
 \subsecidx{plotlines}$(w,X,Y,\{\fl=0\})$: draw on the rectwindow $w$  \subsecidx{plotlines}$(w,X,Y,\{\fl=0\})$: draw on the rectwindow $w$
Line 6544  rectwindow $w$ the curve output of \kbd{ploth}$(w,X=a,
Line 6924  rectwindow $w$ the curve output of \kbd{ploth}$(w,X=a,
   
 \var{data} is a vector of vectors, each corresponding to a list a coordinates.  \var{data} is a vector of vectors, each corresponding to a list a coordinates.
 If parametric plot is set, there must be an even number of vectors, each  If parametric plot is set, there must be an even number of vectors, each
 successive pair corresponding to a curve. Otherwise, the first one containe  successive pair corresponding to a curve. Otherwise, the first one contains
 the $x$ coordinates, and the other ones contain the $y$-coordinates  the $x$ coordinates, and the other ones contain the $y$-coordinates
 of curves to plot.  of curves to plot.
   
Line 6688  HNF\sidx{Hermite normal form} form), one can for insta
Line 7068  HNF\sidx{Hermite normal form} form), one can for insta
 [1, 0; 0, 2]  [1, 0; 0, 2]
 [2, 0; 0, 1]  [2, 0; 0, 1]
 [1, 0; 0, 1]  [1, 0; 0, 1]
 @eprog  @eprog\noindent
 Note that in this last representation, the index $[G:H]$ is given by the  Note that in this last representation, the index $[G:H]$ is given by the
 determinant. See \tet{galoissubcyclo} and \tet{galoisfixedfield} for  determinant. See \tet{galoissubcyclo} and \tet{galoisfixedfield} for
 \tet{nfsubfields} applications to \idx{Galois} theory.  \tet{nfsubfields} applications to \idx{Galois} theory.
   
   \misctitle{Warning:} the present implementation cannot treat a group $G$, if
   one of its $p$-Sylow subgroups has a cyclic factor has more than $2^{31}$,
   resp.~$2^{63}$ elements on a $32$-bit, resp.~$64$-bit architecture.
   
 \subsubsecidx{forvec}$(X=v,\var{seq},\{\fl=0\})$: $v$ being an $n$-component  \subsubsecidx{forvec}$(X=v,\var{seq},\{\fl=0\})$: $v$ being an $n$-component
 vector (where $n$ is arbitrary) of two-component vectors $[a_i,b_i]$  vector (where $n$ is arbitrary) of two-component vectors $[a_i,b_i]$
 for $1\le i\le n$, the \var{seq} is evaluated with the formal variable  for $1\le i\le n$, the \var{seq} is evaluated with the formal variable
Line 6725  statement is \var{not} a loop (obviously!).
Line 7109  statement is \var{not} a loop (obviously!).
   
 \subsubsecidx{next}$(\{n=1\})$: interrupts execution of current $seq$,  \subsubsecidx{next}$(\{n=1\})$: interrupts execution of current $seq$,
 resume the next iteration of the innermost enclosing loop, within the  resume the next iteration of the innermost enclosing loop, within the
 current fonction call (or top level loop). If $n$ is specified, resume at  current function call (or top level loop). If $n$ is specified, resume at
 the $n$-th enclosing loop. If $n$ is bigger than the number of enclosing  the $n$-th enclosing loop. If $n$ is bigger than the number of enclosing
 loops, all enclosing loops are exited.  loops, all enclosing loops are exited.
   
 \subsubsecidx{return}$(\{x=0\})$: returns from current subroutine, with  \subsubsecidx{return}$(\{x=0\})$: returns from current subroutine, with
 result $x$.  result $x$. If $x$ is omitted, return the \kbd{(void)} value (return no
   result, like \kbd{print}).
   
 \subsubsecidx{until}$(a,\var{seq})$: evaluates expression sequence \var{seq}  \subsubsecidx{until}$(a,\var{seq})$: evaluates expression sequence \var{seq}
 until $a$ is not equal to 0 (i.e.~until $a$ is true). If $a$ is initially  until $a$ is not equal to 0 (i.e.~until $a$ is true). If $a$ is initially
Line 7030  result of the evaluation of \var{rec}, and the control
Line 7415  result of the evaluation of \var{rec}, and the control
 GP prompt. In particular, current computation is then lost.  GP prompt. In particular, current computation is then lost.
   
 The following error handler prints the list of all user variables, then  The following error handler prints the list of all user variables, then
 stores in a file their name and their values:  stores in a file their name and their values:\sidx{writebin}
 \bprog  \bprog
 ? { trap( ,  ? { trap( ,
       print(reorder);        print(reorder);
       write("crash", reorder);        writebin("crash")) }
       write("crash", eval(reorder))) }  
 @eprog  @eprog
   
 If no recovery code is given (\var{rec} is omitted) a so-called  If no recovery code is given (\var{rec} is omitted) a so-called
Line 7134  the corresponding user variable to the saved value. E.
Line 7518  the corresponding user variable to the saved value. E.
 x = 1; writebin("log")  x = 1; writebin("log")
 @eprog  @eprog
 \noindent reading \kbd{log} into a clean session will set \kbd{x} to $1$.  \noindent reading \kbd{log} into a clean session will set \kbd{x} to $1$.
 The relative variables priorities of new variables set in this way remain the  The relative variables priorities (see \secref{se:priority}) of new variables
 same (preset variables retain their former priority, but are set to the new  set in this way remain the same (preset variables retain their former
 value). In particular, reading such a session log into a clean session will  priority, but are set to the new value). In particular, reading such a
 restore all variables exactly as they were in the original one.  session log into a clean session will restore all variables exactly as they
   were in the original one.
   
 User functions, installed functions and history objects can not be saved via  User functions, installed functions and history objects can not be saved via
 this function. Just as a regular input file, a binary file can be compressed  this function. Just as a regular input file, a binary file can be compressed
 using \tet{gzip}, provided the file name has the standard \kbd{.gz}  using \tet{gzip}, provided the file name has the standard \kbd{.gz}
 extension. \label{se:writebin}\sidx{binary file}  extension. \label{se:writebin}\sidx{binary file}
   
   In the present implementation, the binary files are architecture dependant
   and compatibility with future versions of GP is not guaranteed. Hence
   binary files should not be used for long term storage (also, they are
   larger and harder to compress than text files).
   
 \subsubsecidx{writetex}$(\var{filename},\{\var{str}*\})$: as \kbd{write},  \subsubsecidx{writetex}$(\var{filename},\{\var{str}*\})$: as \kbd{write},
 in \TeX\ format.\label{se:writetex}  in \TeX\ format.\label{se:writetex}

Legend:
Removed from v.1.1  
changed lines
  Added in v.1.2

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>