Annotation of OpenXM_contrib/pari-2.2/misc/new.dic, Revision 1.1.1.1
1.1 noro 1: O
2: abs
3: acos
4: acosh
5: addell(e,z1,z2)=elladd(e,z1,z2);
6: addprimes
7: adj(x)=matadjoint(x);
8: agm
9: akell(e,n)=ellak(e,n);
10: algdep
11: algdep2(x,n,dec)=algdep(x,n,dec);
12: algtobasis(nf,x)=nfalgtobasis(nf,x);
13: allocatemem
14: anell(e,n)=ellan(e,n);
15: apell(e,n)=ellap(e,n);
16: apell2(e,n)=ellap(e,n,1);
17: apprpadic(x,a)=padicappr(x,a);
18: arg
19: asin
20: asinh
21: assmat(x)=matcompanion(x);
22: atan
23: atanh
24: basis(x)=nfbasis(x);
25: basis2(x)=nfbasis(x,2);
26: basistoalg(nf,x)=nfbasistoalg(nf,x);
27: bernreal
28: bernvec
29: bestappr
30: bezout
31: bezoutres
32: bigomega
33: bilhell(e,z1,z2)=ellbil(e,z1,z2);
34: bin(x,y)=binomial(x,y);
35: binary
36: bittest
37: boundcf(x,lmax)=contfrac(x,,lmax);
38: boundfact(x,lim)=factor(x,lim);
39: box(x,a)=plotbox(x,a);
40: buchcertify(bnf)=bnfcertify(bnf);
41: buchfu(bnf)=bnfunit(bnf);
42: buchgen(P)=bnfclassunit(P,2);
43: buchgenforcefu(P)=bnfclassunit(P,1);
44: buchgenfu(P)=bnfclassunit(P);
45: buchimag(D,c1,c2,g)=quadclassunit(D,,[c1,c2,g]);
46: buchinit(P)=bnfinit(P,2);
47: buchinitforcefu(P)=bnfinit(P,1);
48: buchinitfu(P)=bnfinit(P);
49: buchnarrow(bnf)=bnfnarrow(bnf);
50: buchray(bnf,ideal)=bnrclass(bnf,ideal);
51: buchrayinit(bnf,ideal)=bnrclass(bnf,ideal,1);
52: buchrayinitgen(bnf,ideal)=bnrclass(bnf,ideal,2);
53: buchreal(D)=quadclassunit(D);
54: bytesize(x)=sizebyte(x);
55: ceil
56: centerlift
57: cf(x)=contfrac(x);
58: cf2(b,x)=contfrac(x,b);
59: changevar
60: char(x,y)=charpoly(x,y);
61: char1(x,y)=charpoly(x,y,1);
62: char2(x,y)=charpoly(x,y,2);
63: chell(x,y)=ellchangecurve(x,y);
64: chinese
65: chptell(x,y)=ellchangepoint(x,y);
66: classno(x)=qfbclassno(x);
67: classno2(x)=qfbclassno(x,1);
68: coeff(x,s)=polcoeff(x,s);
69: color(w,c)=plotcolor(w,c);
70: compimag(x,y)=x*y;
71: compo(x,s)=component(x,s);
72: compositum(pol1,pol2)=polcompositum(pol1,pol2);
73: compositum2(pol1,pol2)=polcompositum(pol1,pol2,1);
74: comprealraw(x,y)=qfbcompraw(x,y);
75: concat
76: conductor(a1)=bnrconductor(a1);
77: conductorofchar(bnr,chi)=bnrconductorofchar(bnr,chi);
78: conj
79: conjvec
80: content
81: convol(x,y)=serconvol(x,y);
82: core
83: core2(x)=core(x,1);
84: coredisc
85: coredisc2(x)=coredisc(x,1);
86: cos
87: cosh
88: cursor(w)=plotcursor(w);
89: cvtoi(x)=truncate(x,&e);
90: cyclo(n)=polcyclo(n);
91: decodefactor(fa)=factorback(fa);
92: decodemodule(nf,fa)=bnfdecodemodule(nf,fa);
93: default
94: degree(x)=poldegree(x);
95: denom(x)=denominator(x);
96: deplin(x)=lindep(x,-1);
97: deriv
98: det(x)=matdet(x);
99: det2(x)=matdet(x,1);
100: detint(x)=matdetint(x);
101: diagonal(x)=matdiagonal(x);
102: dilog
103: dirdiv
104: direuler
105: dirmul
106: dirzetak
107: disc(x)=poldisc(x);
108: discf(x)=nfdisc(x);
109: discf2(x)=nfdisc(x,2);
110: discrayabs(bnr,subgroup)=bnrdisc(bnr,subgroup);
111: discrayabscond(bnr)=bnrdisc(bnr,,,2);
112: discrayabslist(bnf,list)=bnrdisclist(bnf,list);
113: discrayabslistarch(bnf,arch,bound)=bnrdisclist(bnf,bound,arch);
114: discrayabslistarchall(bnf,bound)=bnrdisclist(bnf,bound,,1);
115: discrayabslistlong(bnf,bound)=bnrdisclist(bnf,bound);
116: discrayrel(bnr,subgroup)=bnrdisc(bnr,subgroup,,1);
117: discrayrelcond(bnr,subgroup)=bnrdisc(bnr,subgroup,,3);
118: divisors
119: divres(x,y)=divrem(x,y);
120: divsum(n,X,expr)=sumdiv(n,X,expr);
121: draw(list)=plotdraw(list);
122: eigen(x)=mateigen(x);
123: eint1
124: erfc
125: eta
126: euler=Euler;
127: eval
128: exp
129: extract(x,y)=vecextract(x,y);
130: fact(x)=factorial(x);
131: factcantor(x,p)=factorcantor(x,p);
132: factfq(x,p,a)=factorff(x,p,a);
133: factmod(x,p)=factormod(x,p);
134: factor
135: factoredbasis(x,p)=nfbasis(x,,p);
136: factoreddiscf(x,p)=nfdisc(x,,p);
137: factoredpolred(x,p)=polred(x,,p);
138: factoredpolred2(x,p)=polred(x,2,p);
139: factornf
140: factorpadic
141: factorpadic2(x,p,r)=factorpadic(x,p,r,1);
142: factpol(x,l,hint)=factor(x);
143: factpol2(x,l,hint)=factor(x);
144: fibo(x)=fibonacci(x);
145: floor
146: for
147: fordiv
148: forprime
149: forstep
150: forvec
151: fpn(p,n)=ffinit(p,n);
152: frac
153: galois(x)=polgalois(x);
154: galoisapply(nf,aut,x)=nfgaloisapply(nf,aut,x);
155: galoisconj(nf)=nfgaloisconj(nf);
156: galoisconj1(nf)=nfgaloisconj(nf,2);
157: galoisconjforce=nfgaloisconj(nf,1);
158: gamh(x)=gammah(x);
159: gamma
160: gauss(a,b)=matsolve(a,b);
161: gaussmodulo(M,D,Y)=matsolvemod(M,D,Y);
162: gaussmodulo2(M,D,Y)=matsolvemod(M,D,Y,1);
163: gcd
164: getheap
165: getrand
166: getstack
167: gettime
168: globalred(x,y)=ellglobalred(x,y);
169: goto=;
170: hclassno(x)=qfbhclassno(x);
171: hell(e,x)=ellheight(e,x);
172: hell2(e,x)=ellheight(e,x,1);
173: hermite(x)=mathnf(x);
174: hermite2(x)=mathnf(x,1);
175: hermitehavas(x)=mathnf(x,2);
176: hermitemod(x,d)=mathnfmod(x,d);
177: hermitemodid(x,d)=mathnfmodid(x,d);
178: hermiteperm(x)=mathnf(x,3);
179: hess(x)=mathess(x);
180: hilb(x,y)=hilbert(x,y);
181: hilbert(n)=mathilbert(n);
182: hilbp(x,y,p)=hilbert(x,y,p);
183: hvector(n,X,expr)=vector(n,X,expr);
184: hyperu
185: i=I;
186: idealadd
187: idealaddmultone(nf,list)=idealaddtoone(nf,list);
188: idealaddone(nf,x,y)=idealaddtoone(nf,x,y);
189: idealappr
190: idealapprfact(nf,x)=idealappr(nf,x,1);
191: idealchinese
192: idealcoprime
193: idealdiv
194: idealdivexact(nf,x,y)=idealdiv(nf,x,y,1);
195: idealfactor
196: idealhermite(nf,x)=idealhnf(nf,x);
197: idealhermite2(nf,x)=idealhnf(nf,x);
198: idealintersect
199: idealinv
200: idealinv2(nf,x)=idealinv(nf,x,1);
201: ideallist
202: ideallistarch
203: ideallistarchgen(nf,list,arch)=ideallistarch(nf,list,arch,1);
204: ideallistunit(nf,list)=ideallist(nf,list,2);
205: ideallistunitarch=ideallistarch(nf,list,arch,2);
206: ideallistunitarchgen=ideallistarch(nf,list,arch,3);
207: ideallistunitgen=ideallist(nf,list,3);
208: ideallistzstar(nf,bound)=ideallist(nf,bound);
209: ideallistzstargen(nf,bound)=ideallist(nf,bound,1);
210: ideallllred(nf,x,vdir)=idealred(nf,x,vdir);
211: idealmul
212: idealmulred(nf,x,y)=idealmul(nf,x,y,1);
213: idealnorm
214: idealpow
215: idealpowred(nf,x,y)=idealpow(nf,x,y,1);
216: idealtwoelt
217: idealtwoelt2(nf,x,a)=idealtwoelt(nf,x,a);
218: idealval
219: idmat(n)=matid(n);
220: if
221: imag
222: image(x)=matimage(x);
223: image2(x)=matimage(x,1);
224: imagecompl(x)=matimagecompl(x);
225: incgam
226: incgam1(s,x)=;
227: incgam2(s,x)=;
228: incgam3(s,x)=;
229: incgam4(s,x,y)=incgam(s,x,y);
230: indexrank(x)=matindexrank(x);
231: indsort(x)=vecsort(x,,1);
232: initalg(pol)=nfinit(pol);
233: initalgred(x)=nfinit(x,2);
234: initalgred2(x)=nfinit(x,3);
235: initell(x)=ellinit(x);
236: initrect(w,x,y)=plotinit(w,x,y);
237: initzeta(x)=zetakinit(x);
238: integ(x,y)=intformal(x,y);
239: intersect(x,y)=matintersect(x,y);
240: intgen(x=a,b,s)=intnum(x=a,b,s,1);
241: intinf(x=a,b,s)=intnum(x=a,b,s,2);
242: intnum
243: intopen(x=a,b,s)=intnum(x=a,b,s,3);
244: inverseimage(x,y)=matinverseimage(x,y);
245: isdiagonal(x)=matisdiagonal(x);
246: isfund(x)=isfundamental(x);
247: isideal(nf,x)=nfisideal(nf,x);
248: isincl(x,y)=nfisincl(x,y);
249: isinclfast(nf1,nf2)=nfisincl(nf1,nf2,1);
250: isirreducible(x)=polisirreducible(x);
251: isisom(x,y)=nfisisom(x,y);
252: isisomfast(x,y)=nfisisom(x,y);
253: isoncurve(e,x)=ellisoncurve(e,x);
254: isprime
255: isprincipal(bnf,x)=bnfisprincipal(bnf,x,0);
256: isprincipalforce(bnf,x)=bnfisprincipal(bnf,x,2);
257: isprincipalgen(bnf,x)=bnfisprincipal(bnf,x);
258: isprincipalgenforce(bnf,x)=bnfisprincipal(bnf,x,3);
259: isprincipalray(bnf,x)=bnrisprincipal(bnf,x);
260: isprincipalraygen
261: ispsp(x)=ispseudoprime(x);
262: isqrt(x)=sqrtint(x);
263: isset(x)=setisset(x);
264: issqfree(x)=issquarefree(x);
265: issquare
266: isunit(bnf,x)=bnfisunit(bnf,x);
267: jacobi(x)=qfjacobi(x);
268: jbesselh(n,x)=besseljh(n,x);
269: jell(x)=ellj(x);
270: karamul(x,y,k)=;
271: kbessel(nu,x)=besselk(nu,x);
272: kbessel2(nu,x)=besselk(nu,x,1);
273: ker(x)=matker(x);
274: keri(x)=matker(x,1);
275: kerint(x)=matkerint(x);
276: kerint1(x)=matkerint(x,1);
277: kerint2(x)=matkerint(x,2);
278: kill
279: killrect(w)=plotkill(w);
280: kro(x,y)=kronecker(x,y);
281: label=;
282: lambdak(nfz,s)=zetak(nfz,s,1);
283: laplace(x)=serlaplace(x);
284: lcm
285: legendre(n)=pollegendre(n);
286: length
287: lex
288: lexsort(x)=vecsort(x,,2);
289: lift
290: lindep
291: lindep2(x)=lindep(x,1);
292: line(w,x2,y2)=plotlines(w,x2,y2);
293: lines(w,x2,y2)=plotlines(w,x2,y2);
294: lll(x)=qflll(x);
295: lll1(x)=qflll(x,7);
296: lllgen(x)=qflll(x,8);
297: lllgram(x)=qflllgram(x);
298: lllgram1(x)=qflllgram(x,7);
299: lllgramgen(x)=qflllgram(x,8);
300: lllgramint(x)=qflllgram(x,1);
301: lllgramkerim(x)=qflllgram(x,4);
302: lllgramkerimgen(x)=qflllgram(x,5);
303: lllint(x)=qflll(x,1);
304: lllintpartial(x)=qflll(x,2);
305: lllkerim(x)=qflll(x,4);
306: lllkerimgen(x)=qflll(x,5);
307: lllrat(x)=qflll(x,3);
308: ln(x)=log(x);
309: lngamma
310: localred(e)=elllocalred(e);
311: log
312: logagm(x)=log(x,1);
313: lseriesell(e,s,N,A)=elllseries(e,s,A);
314: makebigbnf(sbnf)=bnfmake(sbnf);
315: mat(x)=Mat(x);
316: matextract(x,y,z)=vecextract(x,y,z);
317: mathell(e,x)=ellheightmatrix(e,x);
318: matrix
319: matrixqz
320: matrixqz2(x,p)=matrixqz(x,-1);
321: matrixqz3(x,p)=matrixqz(x,-2);
322: matsize
323: max
324: min
325: minideal(nf,ix,vdir)=idealmin(nf,ix,vdir);
326: minim(x,bound,maxnum)=qfminim(x,bound,maxnum);
327: minim2(x,bound)=qfminim(x,bound,,1);
328: mod(x,y)=Mod(x,y);
329: modp(x,y,p)=Mod(x,y,1);
330: modreverse
331: modulargcd(x,y)=gcd(x,y,1);
332: move(w,x,y)=plotmove(w,x,y);
333: mu(n)=moebius(n);
334: newtonpoly
335: nextprime
336: nfdetint
337: nfdiv(nf,a,b)=nfeltdiv(nf,a,b);
338: nfdiveuc(nf,a,b)=nfeltdiveuc(nf,a,b);
339: nfdivres(nf,a,b)=nfeltdivrem(nf,a,b);
340: nfhermite(nf,x)=nfhnf(nf,x);
341: nfhermitemod(nf,x,detx)=nfhnfmod(nf,x,detx);
342: nfmod(nf,a,b)=nfeltmod(nf,a,b);
343: nfmul(nf,a,b)=nfeltmul(nf,a,b);
344: nfpow(nf,a,k)=nfeltpow(nf,a,k);
345: nfreduce(nf,a,id)=nfeltreduce(nf,a,id);
346: nfsmith(nf,x)=nfsnf(nf,x);
347: nfval(nf,a,pr)=nfeltval(nf,a,pr);
348: norm
349: norml2
350: nucomp(x,y,l)=qfbnucomp(x,y,l);
351: numdiv
352: numer(x)=numerator(x);
353: nupow(x,n)=qfbnupow(x,n);
354: o(x)=O(x);
355: omega
356: ordell(e,x)=ellordinate(e,x);
357: order(x)=znorder(x);
358: orderell(e,x)=ellorder(e,x);
359: ordred(x)=polredord(x);
360: padicprec
361: pascal(n)=matpascal(n);
362: perf(a)=qfperfection(a);
363: permutation(n,k)=numtoperm(n,k);
364: permutation2num(vect)=permtonum(vect);
365: pf(x,p)=qfbprimeform(x,p);
366: phi(x)=eulerphi(x);
367: pi=Pi;
368: plot
369: ploth
370: ploth2(X=a,b,expr)=ploth(X=a,b,expr,1);
371: plothmult(X=a,b,expr)=ploth(X=a,b,expr);
372: plothraw
373: pnqn(x)=contfracpnqn(x);
374: point(w,x,y)=plotpoints(w,x,y);
375: pointell(e,z)=ellztopoint(e,z);
376: points(w,x,y)=plotpoints(w,x,y);
377: polint(xa,ya,x)=polinterpolate(xa,ya,p);
378: polred
379: polred2(x)=polred(x,2);
380: polredabs
381: polredabs2(x)=polredabs(x,1);
382: polredabsall(x)=polredabs(x,4);
383: polredabsfast(x)=polredabs(x,8);
384: polredabsnored(x)=polredabs(x,2);
385: polsym
386: polvar(x)=variable(x);
387: poly(x,v)=Pol(x,v);
388: polylog
389: polylogd(m,x)=polylog(m,x,1);
390: polylogdold(m,x)=polylog(m,x,2);
391: polylogp(m,x)=polylog(m,x,3);
392: polyrev(x,v)=Polrev(x,v);
393: polzag(n,m)=polzagier(n,m);
394: postdraw(list)=psdraw(list);
395: postploth(X=a,b,expr)=psploth(X=a,b,expr);
396: postploth2(X=a,b,expr)=psploth(X=a,b,expr,1);
397: postplothraw(listx,listy)=psplothraw(listx,listy);
398: powell(e,x,n)=ellpow(e,x,n);
399: powrealraw(x,n)=qfbpowraw(x,n);
400: pprint(x)=printp(x);
401: pprint1(x)=printp1(x);
402: prec(x,n)=precision(x,n);
403: precision
404: prime
405: primedec(nf,p)=idealprimedec(nf,p);
406: primes
407: primroot(n)=znprimroot(n);
408: principalideal(nf,x)=idealprincipal(nf,x);
409: principalidele(nf,x)=ideleprincipal(nf,x);
410: print
411: print1
412: prod(x,X=a,b,expr)=prod(X=a,b,expr,x);
413: prodeuler
414: prodinf
415: prodinf1(X=a,expr)=prodinf(X=a,expr,1);
416: psi
417: qfi(a,b,c)=Qfb(a,b,c);
418: qfr(a,b,c,d)=Qfb(a,b,c,d);
419: quaddisc
420: quadgen
421: quadpoly
422: random
423: rank(x)=matrank(x);
424: rayclassno(bnf,x)=bnrclassno(bnf,x);
425: rayclassnolist(bnf,liste)=bnrclassnolist(bnf,liste);
426: rbox(w,dx,dy)=plotrbox(w,dx,dy);
427: read(x)=input(x);
428: real
429: recip(x)=polrecip(x);
430: redimag(x)=qfbred(x);
431: redreal(x)=qfbred(x);
432: redrealnod(x,d)=qfbred(x,2,,d);
433: reduceddisc(f)=poldiscreduced(f);
434: regula(x)=quadregulator(x);
435: reorder
436: resultant(x,y)=polresultant(x,y);
437: resultant2(x,y)=polresultant(x,y,1);
438: reverse(x)=serreverse(x);
439: rhoreal(x)=qfbred(x,1);
440: rhorealnod(x,d)=qfbred(x,3,,d);
441: rline(w,dx,dy)=plotrline(w,dx,dy);
442: rlines(w,dx,dy)=plotrlines(w,dx,dy,1);
443: rmove(w,dx,dy)=plotrmove(w,dx,dy);
444: rndtoi(x)=round(x,&e);
445: rnfbasis
446: rnfdiscf(nf,pol)=rnfdisc(nf,pol);
447: rnfequation
448: rnfequation2(nf,pol)=rnfequation(nf,pol,1);
449: rnfhermitebasis(bnf,order)=rnfhnfbasis(bnf,order);
450: rnfisfree
451: rnflllgram
452: rnfpolred
453: rnfpseudobasis
454: rnfsteinitz
455: rootmod(x,p)=polrootsmod(x,p);
456: rootmod2(x,p)=polrootsmod(x,p,1);
457: rootpadic(x,p,r)=polrootspadic(x,p,r);
458: roots(x)=polroots(x);
459: rootsof1(nf)=nfrootsof1(nf);
460: rootsold(x)=polroots(x,1);
461: round
462: rounderror(x)=round(x,&e);
463: rpoint(w,dx,dy)=plotrpoint(w,dx,dy);
464: rpoints(w,dx,dy)=plotrpoints(w,dx,dy);
465: scale(w,x1,x2,y1,y2)=plotscale(w,x1,x2,y1,y2);
466: series(x,v)=Ser(x,v);
467: set(x)=Set(x);
468: setintersect
469: setminus
470: setprecision(n)=default(realprecision,n);
471: setrand
472: setsearch
473: setserieslength(n)=default(seriesprecision,n);
474: settype(x,t)=type(x,t);
475: setunion
476: shift
477: shiftmul
478: sigma
479: sigmak(x,k)=sigma(x,k);
480: sign
481: signat(x)=qfsign(x);
482: signunit(bnf)=bnfsignunit(bnf);
483: simplefactmod(x,p)=factormod(x,p,1);
484: simplify
485: sin
486: sinh
487: size(x)=sizedigit(x);
488: smallbasis(x)=nfbasis(x,1);
489: smallbuchinit(x)=bnfinit(x,3);
490: smalldiscf(x)=nfdisc(x,1);
491: smallfact(x)=factor(x,0);
492: smallinitell(x)=ellinit(x,1);
493: smallpolred(x)=polred(x,1);
494: smallpolred2(x)=polred(x,3);
495: smith(x)=matsnf(x);
496: smith2(x)=matsnf(x,1);
497: smithclean(x)=matsnf(x,4);
498: smithpol(x)=matsnf(x,2);
499: solve
500: sort(x)=vecsort(x);
501: sqr
502: sqred(x)=qfgaussred(x);
503: sqrt
504: srgcd(x,y)=gcd(x,y,2);
505: string(w,x)=plotstring(w,x);
506: sturm(x)=polsturm(x);
507: sturmpart(x,a,b)=polsturm(x,a,b);
508: subcyclo(p,d)=polsubcyclo(p,d);
509: subell(e,a,b)=ellsub(e,a,b);
510: subst
511: sum(x,X=a,b,expr)=sum(X=a,b,expr,x);
512: sumalt
513: sumalt2(X=a,expr)=sumalt(X=a,expr,1);
514: suminf
515: sumpos
516: sumpos2(X=a,expr)=sumpos(X=a,expr,1);
517: supplement(x)=matsupplement(x);
518: sylvestermatrix(x,y)=polsylvestermatrix(x,y);
519: system
520: tan
521: tanh
522: taniyama(e)=elltaniyama(e);
523: taylor
524: tchebi(n)=poltchebi(n);
525: teich(x)=teichmuller(x);
526: texprint(x)=printtex(x);
527: theta
528: thetanullk
529: threetotwo=;
530: threetotwo2=;
531: torsell(e)=elltors(e);
532: trace
533: trans(x)=mattranspose(x);
534: trunc(x)=truncate(x);
535: tschirnhaus(x)=poltschirnhaus(x);
536: twototwo(nf,a,b)=;
537: type
538: unit(x)=quadunit(x);
539: until
540: valuation
541: vec(x)=Vec(x);
542: vecindexsort(x)=vecsort(x,,1);
543: veclexsort(x)=vecsort(x,,2);
544: vecmax
545: vecmin
546: vecsort
547: vector
548: vvector(n,X,expr)=vectorv(n,X,expr);
549: weipell(e)=ellwp(e);
550: wf(x)=weber(x);
551: wf2(x)=weber(x,2);
552: while
553: zell(e,P)=ellpointtoz(e,P);
554: zeta
555: zetak
556: zideallog(nf,x,bid)=ideallog(nf,x,bid);
557: zidealstar(nf,I)=idealstar(nf,I);
558: zidealstarinit(nf,id)=idealstar(nf,id,1);
559: zidealstarinitgen(nf,id)=idealstar(nf,id,2);
560: znstar
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>