[BACK]Return to base4.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari-2.2 / src / basemath

Annotation of OpenXM_contrib/pari-2.2/src/basemath/base4.c, Revision 1.1.1.1

1.1       noro        1: /* $Id: base4.c,v 1.70 2001/10/01 12:11:29 karim Exp $
                      2:
                      3: Copyright (C) 2000  The PARI group.
                      4:
                      5: This file is part of the PARI/GP package.
                      6:
                      7: PARI/GP is free software; you can redistribute it and/or modify it under the
                      8: terms of the GNU General Public License as published by the Free Software
                      9: Foundation. It is distributed in the hope that it will be useful, but WITHOUT
                     10: ANY WARRANTY WHATSOEVER.
                     11:
                     12: Check the License for details. You should have received a copy of it, along
                     13: with the package; see the file 'COPYING'. If not, write to the Free Software
                     14: Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
                     15:
                     16: /*******************************************************************/
                     17: /*                                                                 */
                     18: /*                       BASIC NF OPERATIONS                       */
                     19: /*                           (continued)                           */
                     20: /*                                                                 */
                     21: /*******************************************************************/
                     22: #include "pari.h"
                     23: #include "parinf.h"
                     24:
                     25: #define principalideal_aux(nf,x) (principalideal0((nf),(x),0))
                     26:
                     27: extern GEN element_muli(GEN nf, GEN x, GEN y);
                     28: extern GEN colreducemodmat(GEN x, GEN y, GEN *Q);
                     29:
                     30: static GEN nfbezout(GEN nf, GEN a, GEN b, GEN ida, GEN idb, GEN *u, GEN *v, GEN *w, GEN *di);
                     31:
                     32: /*******************************************************************/
                     33: /*                                                                 */
                     34: /*                     IDEAL OPERATIONS                            */
                     35: /*                                                                 */
                     36: /*******************************************************************/
                     37:
                     38: /* A valid ideal is either principal (valid nf_element), or prime, or a matrix
                     39:  * on the integer basis (preferably HNF).
                     40:  * A prime ideal is of the form [p,a,e,f,b], where the ideal is p.Z_K+a.Z_K,
                     41:  * p is a rational prime, a belongs to Z_K, e=e(P/p), f=f(P/p), and b
                     42:  * Lenstra constant (p.P^(-1)= p Z_K + b Z_K).
                     43:  *
                     44:  * An idele is a couple[I,V] where I is a valid ideal and V a row vector
                     45:  * with r1+r2 components (real or complex). For instance, if M=(a), V
                     46:  * contains the complex logarithms of the first r1+r2 conjugates of a
                     47:  * (depends on the chosen generator a). All subroutines work with either
                     48:  * ideles or ideals (an omitted V is assumed to be 0).
                     49:  *
                     50:  * All the output ideals will be in HNF form.
                     51:  */
                     52:
                     53: /* types and conversions */
                     54:
                     55: static long
                     56: idealtyp(GEN *ideal, GEN *arch)
                     57: {
                     58:   GEN x = *ideal;
                     59:   long t,lx,tx = typ(x);
                     60:
                     61:   if (tx==t_VEC && lg(x)==3)
                     62:   { *arch = (GEN)x[2]; x = (GEN)x[1]; tx = typ(x); }
                     63:   else
                     64:     *arch = NULL;
                     65:   switch(tx)
                     66:   {
                     67:     case t_MAT: lx = lg(x);
                     68:       if (lx>2) t = id_MAT;
                     69:       else
                     70:       {
                     71:         t = id_PRINCIPAL;
                     72:         x = (lx==2)? (GEN)x[1]: gzero;
                     73:       }
                     74:       break;
                     75:
                     76:     case t_VEC: if (lg(x)!=6) err(idealer2);
                     77:       t = id_PRIME; break;
                     78:
                     79:     case t_POL: case t_POLMOD: case t_COL:
                     80:       t = id_PRINCIPAL; break;
                     81:     default:
                     82:       if (tx!=t_INT && !is_frac_t(tx)) err(idealer2);
                     83:       t = id_PRINCIPAL;
                     84:   }
                     85:   *ideal = x; return t;
                     86: }
                     87:
                     88: /* Assume ideal in HNF form */
                     89: long
                     90: ideal_is_zk(GEN ideal,long N)
                     91: {
                     92:   long i,j, lx = lg(ideal);
                     93:
                     94:   if (typ(ideal) != t_MAT || lx==1) return 0;
                     95:   N++; if (lx != N || lg(ideal[1]) != N) return 0;
                     96:   for (i=1; i<N; i++)
                     97:   {
                     98:     if (!gcmp1(gcoeff(ideal,i,i))) return 0;
                     99:     for (j=i+1; j<N; j++)
                    100:       if (!gcmp0(gcoeff(ideal,i,j))) return 0;
                    101:   }
                    102:   return 1;
                    103: }
                    104:
                    105: static GEN
                    106: prime_to_ideal_aux(GEN nf, GEN vp)
                    107: {
                    108:   GEN m,el;
                    109:   long i, N = degpol(nf[1]);
                    110:
                    111:   m = cgetg(N+1,t_MAT); el = (GEN)vp[2];
                    112:   for (i=1; i<=N; i++) m[i] = (long) element_mulid(nf,el,i);
                    113:   return hnfmodid(m,(GEN)vp[1]);
                    114: }
                    115:
                    116: GEN
                    117: prime_to_ideal(GEN nf, GEN vp)
                    118: {
                    119:   long av=avma;
                    120:   if (typ(vp) == t_INT) return gscalmat(vp, degpol(nf[1]));
                    121:   return gerepileupto(av, prime_to_ideal_aux(nf,vp));
                    122: }
                    123:
                    124: /* x = ideal in matrix form. Put it in hnf. */
                    125: static GEN
                    126: idealmat_to_hnf(GEN nf, GEN x)
                    127: {
                    128:   long rx,i,j,N;
                    129:   GEN m,dx;
                    130:
                    131:   N=degpol(nf[1]); rx=lg(x)-1;
                    132:   if (!rx) return gscalmat(gzero,N);
                    133:
                    134:   dx=denom(x); if (gcmp1(dx)) dx = NULL; else x=gmul(dx,x);
                    135:   if (rx >= N) m = x;
                    136:   else
                    137:   {
                    138:     m=cgetg(rx*N + 1,t_MAT);
                    139:     for (i=1; i<=rx; i++)
                    140:       for (j=1; j<=N; j++)
                    141:         m[(i-1)*N + j] = (long) element_mulid(nf,(GEN)x[i],j);
                    142:   }
                    143:   x = hnfmod(m,detint(m));
                    144:   return dx? gdiv(x,dx): x;
                    145: }
                    146:
                    147: int
                    148: ishnfall(GEN x)
                    149: {
                    150:   long i,j, lx = lg(x);
                    151:   for (i=2; i<lx; i++)
                    152:   {
                    153:     if (gsigne(gcoeff(x,i,i)) <= 0) return 0;
                    154:     for (j=1; j<i; j++)
                    155:       if (!gcmp0(gcoeff(x,i,j))) return 0;
                    156:   }
                    157:   return (gsigne(gcoeff(x,1,1)) > 0);
                    158: }
                    159:
                    160: GEN
                    161: idealhermite_aux(GEN nf, GEN x)
                    162: {
                    163:   long N,tx,lx;
                    164:   GEN z;
                    165:
                    166:   tx = idealtyp(&x,&z);
                    167:   if (tx == id_PRIME) return prime_to_ideal_aux(nf,x);
                    168:   if (tx == id_PRINCIPAL)
                    169:   {
                    170:     x = principalideal(nf,x);
                    171:     return idealmat_to_hnf(nf,x);
                    172:   }
                    173:   N=degpol(nf[1]); lx = lg(x);
                    174:   if (lg(x[1]) != N+1) err(idealer2);
                    175:
                    176:   if (lx == N+1 && ishnfall(x)) return x;
                    177:   if (lx <= N) return idealmat_to_hnf(nf,x);
                    178:   z=denom(x); if (gcmp1(z)) z=NULL; else x = gmul(z,x);
                    179:   x = hnfmod(x,detint(x));
                    180:   return z? gdiv(x,z): x;
                    181: }
                    182:
                    183: GEN
                    184: idealhermite(GEN nf, GEN x)
                    185: {
                    186:   long av=avma;
                    187:   GEN p1;
                    188:   nf = checknf(nf); p1 = idealhermite_aux(nf,x);
                    189:   if (p1==x || p1==(GEN)x[1]) return gcopy(p1);
                    190:   return gerepileupto(av,p1);
                    191: }
                    192:
                    193: static GEN
                    194: principalideal0(GEN nf, GEN x, long copy)
                    195: {
                    196:   GEN z = cgetg(2,t_MAT);
                    197:   switch(typ(x))
                    198:   {
                    199:     case t_INT: case t_FRAC: case t_FRACN:
                    200:       if (copy) x = gcopy(x);
                    201:       x = gscalcol_i(x, degpol(nf[1])); break;
                    202:
                    203:     case t_POLMOD:
                    204:       x = checknfelt_mod(nf,x,"principalideal");
                    205:       /* fall through */
                    206:     case t_POL:
                    207:       x = copy? algtobasis(nf,x): algtobasis_intern(nf,x);
                    208:       break;
                    209:
                    210:     case t_MAT:
                    211:       if (lg(x)!=2) err(typeer,"principalideal");
                    212:       x = (GEN)x[1];
                    213:     case t_COL:
                    214:       if (lg(x)==lgef(nf[1])-2)
                    215:       {
                    216:         if (copy) x = gcopy(x);
                    217:         break;
                    218:       }
                    219:     default: err(typeer,"principalideal");
                    220:   }
                    221:   z[1]=(long)x; return z;
                    222: }
                    223:
                    224: GEN
                    225: principalideal(GEN nf, GEN x)
                    226: {
                    227:   nf = checknf(nf); return principalideal0(nf,x,1);
                    228: }
                    229:
                    230: static GEN
                    231: mylog(GEN x, long prec)
                    232: {
                    233:   if (gcmp0(x))
                    234:     err(precer,"get_arch");
                    235:   return glog(x,prec);
                    236: }
                    237:
                    238: /* for internal use */
                    239: GEN
                    240: get_arch(GEN nf,GEN x,long prec)
                    241: {
                    242:   long i,R1,RU;
                    243:   GEN v,p1,p2;
                    244:
                    245:   R1=itos(gmael(nf,2,1)); RU = R1+itos(gmael(nf,2,2));
                    246:   if (typ(x)!=t_COL) x = algtobasis_intern(nf,x);
                    247:   v = cgetg(RU+1,t_VEC);
                    248:   if (isnfscalar(x)) /* rational number */
                    249:   {
                    250:     p1 = glog((GEN)x[1],prec);
                    251:     p2 = (RU > R1)? gmul2n(p1,1): NULL;
                    252:     for (i=1; i<=R1; i++) v[i]=(long)p1;
                    253:     for (   ; i<=RU; i++) v[i]=(long)p2;
                    254:   }
                    255:   else
                    256:   {
                    257:     x = gmul(gmael(nf,5,1),x);
                    258:     for (i=1; i<=R1; i++) v[i] = (long)mylog((GEN)x[i],prec);
                    259:     for (   ; i<=RU; i++) v[i] = lmul2n(mylog((GEN)x[i],prec),1);
                    260:   }
                    261:   return v;
                    262: }
                    263:
                    264: /* as above but return NULL if precision problem, and set *emb to the
                    265:  * embeddings of x */
                    266: GEN
                    267: get_arch_real(GEN nf,GEN x,GEN *emb,long prec)
                    268: {
                    269:   long i,R1,RU;
                    270:   GEN v,p1,p2;
                    271:
                    272:   R1=itos(gmael(nf,2,1)); RU = R1+itos(gmael(nf,2,2));
                    273:   if (typ(x)!=t_COL) x = algtobasis_intern(nf,x);
                    274:   v = cgetg(RU+1,t_COL);
                    275:   if (isnfscalar(x)) /* rational number */
                    276:   {
                    277:     GEN u = (GEN)x[1];
                    278:     i = signe(u);
                    279:     if (!i) err(talker,"0 in get_arch_real");
                    280:     p1= (i > 0)? glog(u,prec): gzero;
                    281:     p2 = (RU > R1)? gmul2n(p1,1): NULL;
                    282:     for (i=1; i<=R1; i++) v[i]=(long)p1;
                    283:     for (   ; i<=RU; i++) v[i]=(long)p2;
                    284:   }
                    285:   else
                    286:   {
                    287:     GEN t;
                    288:     x = gmul(gmael(nf,5,1),x);
                    289:     for (i=1; i<=R1; i++)
                    290:     {
                    291:       t = gabs((GEN)x[i],prec); if (gcmp0(t)) return NULL;
                    292:       v[i] = llog(t,prec);
                    293:     }
                    294:     for (   ; i<=RU; i++)
                    295:     {
                    296:       t = gnorm((GEN)x[i]); if (gcmp0(t)) return NULL;
                    297:       v[i] = llog(t,prec);
                    298:     }
                    299:   }
                    300:   *emb = x; return v;
                    301: }
                    302:
                    303: GEN
                    304: principalidele(GEN nf, GEN x, long prec)
                    305: {
                    306:   GEN p1,y = cgetg(3,t_VEC);
                    307:   long av;
                    308:
                    309:   nf = checknf(nf);
                    310:   p1 = principalideal0(nf,x,1);
                    311:   y[1] = (long)p1;
                    312:   av =avma; p1 = get_arch(nf,(GEN)p1[1],prec);
                    313:   y[2] = lpileupto(av,p1); return y;
                    314: }
                    315:
                    316: /* GP functions */
                    317:
                    318: GEN
                    319: ideal_two_elt0(GEN nf, GEN x, GEN a)
                    320: {
                    321:   if (!a) return ideal_two_elt(nf,x);
                    322:   return ideal_two_elt2(nf,x,a);
                    323: }
                    324:
                    325: GEN
                    326: idealpow0(GEN nf, GEN x, GEN n, long flag, long prec)
                    327: {
                    328:   if (flag) return idealpowred(nf,x,n,prec);
                    329:   return idealpow(nf,x,n);
                    330: }
                    331:
                    332: GEN
                    333: idealmul0(GEN nf, GEN x, GEN y, long flag, long prec)
                    334: {
                    335:   if (flag) return idealmulred(nf,x,y,prec);
                    336:   return idealmul(nf,x,y);
                    337: }
                    338:
                    339: GEN
                    340: idealdiv0(GEN nf, GEN x, GEN y, long flag)
                    341: {
                    342:   switch(flag)
                    343:   {
                    344:     case 0: return idealdiv(nf,x,y);
                    345:     case 1: return idealdivexact(nf,x,y);
                    346:     default: err(flagerr,"idealdiv");
                    347:   }
                    348:   return NULL; /* not reached */
                    349: }
                    350:
                    351: GEN
                    352: idealaddtoone0(GEN nf, GEN arg1, GEN arg2)
                    353: {
                    354:   if (!arg2) return idealaddmultoone(nf,arg1);
                    355:   return idealaddtoone(nf,arg1,arg2);
                    356: }
                    357:
                    358: static GEN
                    359: two_to_hnf(GEN nf, GEN a, GEN b)
                    360: {
                    361:   a = principalideal_aux(nf,a);
                    362:   b = principalideal_aux(nf,b);
                    363:   a = concatsp(a,b);
                    364:   if (lgef(nf[1])==5) /* quadratic field: a has to be turned into idealmat */
                    365:     a = idealmul(nf,idmat(2),a);
                    366:   return idealmat_to_hnf(nf, a);
                    367: }
                    368:
                    369: GEN
                    370: idealhnf0(GEN nf, GEN a, GEN b)
                    371: {
                    372:   long av;
                    373:   if (!b) return idealhermite(nf,a);
                    374:
                    375:   /* HNF of aZ_K+bZ_K */
                    376:   av = avma; nf=checknf(nf);
                    377:   return gerepileupto(av, two_to_hnf(nf,a,b));
                    378: }
                    379:
                    380: GEN
                    381: idealhermite2(GEN nf, GEN a, GEN b)
                    382: {
                    383:   return idealhnf0(nf,a,b);
                    384: }
                    385:
                    386: static int
                    387: ok_elt(GEN x, GEN xZ, GEN y)
                    388: {
                    389:   ulong av = avma;
                    390:   int r = gegal(x, hnfmodid(y, xZ));
                    391:   avma = av; return r;
                    392: }
                    393:
                    394: static void
                    395: setprec(GEN x, long prec)
                    396: {
                    397:   long i,j, n=lg(x);
                    398:   for (i=1;i<n;i++)
                    399:   {
                    400:     GEN p2,p1 = (GEN)x[i];
                    401:     for (j=1;j<n;j++)
                    402:     {
                    403:       p2 = (GEN)p1[j];
                    404:       if (typ(p2) == t_REAL) setlg(p2, prec);
                    405:     }
                    406:   }
                    407: }
                    408:
                    409: /* find a basis of x whose elements have small norm
                    410:  * M a bound for the size of coeffs of x */
                    411: GEN
                    412: ideal_better_basis(GEN nf, GEN x, GEN M)
                    413: {
                    414:   GEN a,b;
                    415:   long nfprec = nfgetprec(nf);
                    416:   long prec = DEFAULTPREC + (expi(M) >> TWOPOTBITS_IN_LONG);
                    417:
                    418:   if (typ(nf[5]) != t_VEC) return x;
                    419:   if ((prec<<1) < nfprec) prec = (prec+nfprec) >> 1;
                    420:   a = qf_base_change(gmael(nf,5,3),x,1);
                    421:   setprec(a,prec);
                    422:   b = lllgramintern(a,4,1,prec);
                    423:   if (!b)
                    424:   {
                    425:     if (DEBUGLEVEL)
                    426:       err(warner, "precision too low in ideal_better_basis (1)");
                    427:     if (nfprec > prec)
                    428:     {
                    429:       setprec(a,nfprec);
                    430:       b = lllgramintern(a,4,1,nfprec);
                    431:     }
                    432:   }
                    433:   if (!b)
                    434:   {
                    435:     if (DEBUGLEVEL)
                    436:       err(warner, "precision too low in ideal_better_basis (2)");
                    437:     b = lllint(x); /* better than nothing */
                    438:   }
                    439:   return gmul(x, b);
                    440: }
                    441:
                    442: static GEN
                    443: addmul_col(GEN a, long s, GEN b)
                    444: {
                    445:   long i,l;
                    446:   if (!s) return a? dummycopy(a): a;
                    447:   if (!a) return gmulsg(s,b);
                    448:   l = lg(a);
                    449:   for (i=1; i<l; i++)
                    450:     if (signe(b[i])) a[i] = laddii((GEN)a[i], mulsi(s, (GEN)b[i]));
                    451:   return a;
                    452: }
                    453:
                    454: /* a <-- a + s * b, all coeffs integers */
                    455: static GEN
                    456: addmul_mat(GEN a, long s, GEN b)
                    457: {
                    458:   long j,l;
                    459:   if (!s) return a? dummycopy(a): a; /* copy otherwise next call corrupts a */
                    460:   if (!a) return gmulsg(s,b);
                    461:   l = lg(a);
                    462:   for (j=1; j<l; j++)
                    463:     (void)addmul_col((GEN)a[j], s, (GEN)b[j]);
                    464:   return a;
                    465: }
                    466:
                    467: /* if x square matrix, assume it is HNF */
                    468: static GEN
                    469: mat_ideal_two_elt(GEN nf, GEN x)
                    470: {
                    471:   GEN y,a,beta,cx,xZ,mul, pol = (GEN)nf[1];
                    472:   long i,j,lm, N = degpol(pol);
                    473:   ulong av,tetpil;
                    474:
                    475:   y=cgetg(3,t_VEC); av=avma;
                    476:   if (lg(x[1])!=N+1) err(typeer,"ideal_two_elt");
                    477:   if (N == 2)
                    478:   {
                    479:     y[1] = lcopy(gcoeff(x,1,1));
                    480:     y[2] = lcopy((GEN)x[2]); return y;
                    481:   }
                    482:
                    483:   cx = content(x); if (!gcmp1(cx)) x = gdiv(x,cx);
                    484:   if (lg(x) != N+1) x = idealhermite_aux(nf,x);
                    485:   xZ = gcoeff(x,1,1);
                    486:   if (gcmp1(xZ))
                    487:   {
                    488:     y[1] = lpilecopy(av,cx);
                    489:     y[2] = (long)gscalcol(cx,N); return y;
                    490:   }
                    491:   a = NULL; /* gcc -Wall */
                    492:   beta= cgetg(N+1, t_VEC);
                    493:   mul = cgetg(N+1, t_VEC); lm = 1; /* = lg(mul) */
                    494:   /* look for a in x such that a O/xZ = x O/xZ */
                    495:   for (i=2; i<=N; i++)
                    496:   {
                    497:     GEN t, y = cgetg(N+1,t_MAT);
                    498:     a = (GEN)x[i];
                    499:     for (j=1; j<=N; j++) y[j] = (long)element_mulid(nf,a,j);
                    500:     /* columns of mul[i] = canonical generators for x[i] O/xZ as Z-module */
                    501:     t = gmod(y, xZ);
                    502:     if (gcmp0(t)) continue;
                    503:     if (ok_elt(x,xZ, t)) break;
                    504:     beta[lm]= x[i];
                    505:     mul[lm] = (long)t; lm++;
                    506:   }
                    507:   if (i>N)
                    508:   {
                    509:     GEN z = cgetg(lm, t_VECSMALL);
                    510:     ulong av1, c = 0;
                    511:
                    512:     setlg(mul, lm);
                    513:     setlg(beta,lm);
                    514:     if (DEBUGLEVEL>3) fprintferr("ideal_two_elt, hard case: ");
                    515:     for(av1=avma;;avma=av1)
                    516:     {
                    517:       if (DEBUGLEVEL>3) fprintferr("%ld ", ++c);
                    518:       for (a=NULL,i=1; i<lm; i++)
                    519:       {
                    520:         long t = (mymyrand() >> (BITS_IN_RANDOM-5)) - 7; /* in [-7,8] */
                    521:         z[i] = t;
                    522:         a = addmul_mat(a, t, (GEN)mul[i]);
                    523:       }
                    524:       /* a = matrix (NOT HNF) of ideal generated by beta.z in O/xZ */
                    525:       if (a && ok_elt(x,xZ, a)) break;
                    526:     }
                    527:     for (a=NULL,i=1; i<lm; i++)
                    528:       a = addmul_col(a, z[i], (GEN)beta[i]);
                    529:     if (DEBUGLEVEL>3) fprintferr("\n");
                    530:   }
                    531:   a = centermod(a, xZ); tetpil=avma;
                    532:   y[1] = lmul(xZ,cx);
                    533:   y[2] = lmul(a, cx);
                    534:   gerepilemanyvec(av,tetpil,y+1,2); return y;
                    535: }
                    536:
                    537: /* Etant donne un ideal ix, ressort un vecteur [a,alpha] a deux composantes
                    538:  * tel que a soit rationnel et ix=aZ_K+alpha Z_K, alpha etant un vecteur
                    539:  * colonne sur la base d'entiers. On peut avoir a=0 ou alpha=0, mais on ne
                    540:  * cherche pas a determiner si ix est principal.
                    541:  */
                    542: GEN
                    543: ideal_two_elt(GEN nf, GEN x)
                    544: {
                    545:   GEN z;
                    546:   long N, tx = idealtyp(&x,&z);
                    547:
                    548:   nf=checknf(nf);
                    549:   if (tx==id_MAT) return mat_ideal_two_elt(nf,x);
                    550:
                    551:   N=degpol(nf[1]); z=cgetg(3,t_VEC);
                    552:   if (tx == id_PRINCIPAL)
                    553:   {
                    554:     switch(typ(x))
                    555:     {
                    556:       case t_INT: case t_FRAC: case t_FRACN:
                    557:         z[1]=lcopy(x);
                    558:        z[2]=(long)zerocol(N); return z;
                    559:
                    560:       case t_POLMOD:
                    561:         x = checknfelt_mod(nf, x, "ideal_two_elt");
                    562:         /* fall through */
                    563:       case t_POL:
                    564:         z[1]=zero; z[2]=(long)algtobasis(nf,x); return z;
                    565:       case t_COL:
                    566:         if (lg(x)==N+1) { z[1]=zero; z[2]=lcopy(x); return z; }
                    567:     }
                    568:   }
                    569:   else if (tx == id_PRIME)
                    570:   {
                    571:     z[1]=lcopy((GEN)x[1]);
                    572:     z[2]=lcopy((GEN)x[2]); return z;
                    573:   }
                    574:   err(typeer,"ideal_two_elt");
                    575:   return NULL; /* not reached */
                    576: }
                    577:
                    578: /* factorization */
                    579:
                    580: /* x integral ideal in HNF, return v_p(Nx), *vz = v_p(x \cap Z)
                    581:  * Use x[i,i] | x[1,1], i > 0 */
                    582: long
                    583: val_norm(GEN x, GEN p, long *vz)
                    584: {
                    585:   long i,l = lg(x), v;
                    586:   *vz = v = pvaluation(gcoeff(x,1,1), p, NULL);
                    587:   if (!v) return 0;
                    588:   for (i=2; i<l; i++)
                    589:     v += pvaluation(gcoeff(x,i,i), p, NULL);
                    590:   return v;
                    591: }
                    592:
                    593: /* return factorization of Nx */
                    594: GEN
                    595: factor_norm(GEN x)
                    596: {
                    597:   GEN f = factor(gcoeff(x,1,1)), p = (GEN)f[1], e = (GEN)f[2];
                    598:   long i,k, l = lg(p);
                    599:   for (i=1; i<l; i++)
                    600:     e[i] = (long)val_norm(x,(GEN)p[i], &k);
                    601:   settyp(e, t_VECSMALL); return f;
                    602: }
                    603:
                    604: GEN
                    605: idealfactor(GEN nf, GEN x)
                    606: {
                    607:   long av,tx, tetpil,i,j,k,lf,lc,N,l,v,vc,e;
                    608:   GEN f,f1,f2,c1,c2,y1,y2,y,p1,p2,cx,P;
                    609:
                    610:   tx = idealtyp(&x,&y);
                    611:   if (tx == id_PRIME)
                    612:   {
                    613:     y=cgetg(3,t_MAT);
                    614:     y[1]=lgetg(2,t_COL); mael(y,1,1)=lcopy(x);
                    615:     y[2]=lgetg(2,t_COL); mael(y,2,1)=un; return y;
                    616:   }
                    617:   nf=checknf(nf); av=avma;
                    618:   if (tx == id_PRINCIPAL) x = principalideal_aux(nf,x);
                    619:
                    620:   N=degpol(nf[1]); if (lg(x) != N+1) x = idealmat_to_hnf(nf,x);
                    621:   if (lg(x)==1) err(talker,"zero ideal in idealfactor");
                    622:   cx = content(x);
                    623:   if (gcmp1(cx))
                    624:   {
                    625:     c1 = c2 = NULL; /* gcc -Wall */
                    626:     lc=1;
                    627:   }
                    628:   else
                    629:   {
                    630:     f = factor(cx); x = gdiv(x,cx);
                    631:     c1 = (GEN)f[1];
                    632:     c2 = (GEN)f[2]; lc = lg(c1);
                    633:   }
                    634:   f = factor_norm(x);
                    635:   f1 = (GEN)f[1];
                    636:   f2 = (GEN)f[2]; lf = lg(f1);
                    637:   y1 = cgetg((lf+lc-2)*N+1,t_COL);
                    638:   y2 = cgetg((lf+lc-2)*N+1,t_VECSMALL);
                    639:   k = 1;
                    640:   for (i=1; i<lf; i++)
                    641:   {
                    642:     p1 = primedec(nf,(GEN)f1[i]);
                    643:     l = f2[i]; /* = v_p(Nx) */
                    644:     vc = ggval(cx,(GEN)f1[i]);
                    645:     for (j=1; j<lg(p1); j++)
                    646:     {
                    647:       P = (GEN)p1[j]; e = itos((GEN)P[3]);
                    648:       v = idealval(nf,x,P);
                    649:       l -= v*itos((GEN)P[4]);
                    650:       v += vc*e; if (!v) continue;
                    651:       y1[k] = (long)P;
                    652:       y2[k] = v; k++;
                    653:       if (l == 0) break; /* now only the content contributes */
                    654:     }
                    655:     if (vc == 0) continue;
                    656:     for (j++; j<lg(p1); j++)
                    657:     {
                    658:       P = (GEN)p1[j]; e = itos((GEN)P[3]);
                    659:       y1[k] = (long)P;
                    660:       y2[k] = vc*e; k++;
                    661:     }
                    662:   }
                    663:   for (i=1; i<lc; i++)
                    664:   {
                    665:     /* p | Nx already treated */
                    666:     if (divise(gcoeff(x,1,1),(GEN)c1[i])) continue;
                    667:     p1 = primedec(nf,(GEN)c1[i]);
                    668:     vc = itos((GEN)c2[i]);
                    669:     for (j=1; j<lg(p1); j++)
                    670:     {
                    671:       P = (GEN)p1[j]; e = itos((GEN)P[3]);
                    672:       y1[k] = (long)P;
                    673:       y2[k] = vc*e; k++;
                    674:     }
                    675:   }
                    676:   tetpil=avma; y=cgetg(3,t_MAT);
                    677:   p1=cgetg(k,t_COL); y[1]=(long)p1;
                    678:   p2=cgetg(k,t_COL); y[2]=(long)p2;
                    679:   for (i=1; i<k; i++) { p1[i]=lcopy((GEN)y1[i]); p2[i]=lstoi(y2[i]); }
                    680:   y = gerepile(av,tetpil,y);
                    681:   return sort_factor_gen(y, cmp_prime_ideal);
                    682: }
                    683:
                    684: /* P prime ideal in primedec format. Return valuation(ix) at P */
                    685: long
                    686: idealval(GEN nf, GEN ix, GEN P)
                    687: {
                    688:   long N,v,vd,w,av=avma,av1,lim,e,f,i,j,k, tx = typ(ix);
                    689:   GEN mul,mat,a,x,y,r,bp,p,pk,cx;
                    690:
                    691:   nf=checknf(nf); checkprimeid(P);
                    692:   if (is_extscalar_t(tx) || tx==t_COL) return element_val(nf,ix,P);
                    693:   p=(GEN)P[1]; N=degpol(nf[1]);
                    694:   tx = idealtyp(&ix,&a);
                    695:   cx = content(ix); if (!gcmp1(cx)) ix = gdiv(ix,cx);
                    696:   if (tx != id_MAT)
                    697:     ix = idealhermite_aux(nf,ix);
                    698:   else
                    699:   {
                    700:     checkid(ix,N);
                    701:     if (lg(ix) != N+1) ix=idealmat_to_hnf(nf,ix);
                    702:   }
                    703:   e = itos((GEN)P[3]);
                    704:   f = itos((GEN)P[4]);
                    705:   /* 0 <= v_P(ix) <= floor[v_p(Nix) / f] */
                    706:   i = val_norm(ix,p, &k) / f;
                    707:   /* 0 <= ceil[v_P(ix) / e] <= v_p(ix \cap Z) --> v_P <= e * v_p */
                    708:   j = k * e;
                    709:   v = min(i,j); /* v_P(ix) <= v */
                    710:   vd = ggval(cx,p) * e;
                    711:   if (!v) { avma = av; return vd; }
                    712:
                    713:   mul = cgetg(N+1,t_MAT); bp=(GEN)P[5];
                    714:   mat = cgetg(N+1,t_MAT);
                    715:   for (j=1; j<=N; j++)
                    716:   {
                    717:     mul[j] = (long)element_mulid(nf,bp,j);
                    718:     x = (GEN)ix[j];
                    719:     y = cgetg(N+1, t_COL); mat[j] = (long)y;
                    720:     for (i=1; i<=N; i++)
                    721:     { /* compute (x.b)_i, ix in HNF ==> x[j+1..N] = 0 */
                    722:       a = mulii((GEN)x[1], gcoeff(mul,i,1));
                    723:       for (k=2; k<=j; k++) a = addii(a, mulii((GEN)x[k], gcoeff(mul,i,k)));
                    724:       /* is it divisible by p ? */
                    725:       y[i] = ldvmdii(a,p,&r);
                    726:       if (signe(r)) { avma = av; return vd; }
                    727:     }
                    728:   }
                    729:   pk = gpowgs(p, v-1);
                    730:   av1 = avma; lim=stack_lim(av1,3);
                    731:   y = cgetg(N+1,t_COL);
                    732:   /* can compute mod p^(v-w) */
                    733:   for (w=1; w<v; w++)
                    734:   {
                    735:     for (j=1; j<=N; j++)
                    736:     {
                    737:       x = (GEN)mat[j];
                    738:       for (i=1; i<=N; i++)
                    739:       { /* compute (x.b)_i */
                    740:         a = mulii((GEN)x[1], gcoeff(mul,i,1));
                    741:         for (k=2; k<=N; k++) a = addii(a, mulii((GEN)x[k], gcoeff(mul,i,k)));
                    742:         /* is it divisible by p ? */
                    743:         y[i] = ldvmdii(a,p,&r);
                    744:         if (signe(r)) { avma = av; return w + vd; }
                    745:         if (lgefint(y[i]) > lgefint(pk)) y[i] = lresii((GEN)y[i], pk);
                    746:       }
                    747:       r=x; mat[j]=(long)y; y=r;
                    748:       if (low_stack(lim,stack_lim(av1,3)))
                    749:       {
                    750:         GEN *gptr[3]; gptr[0]=&y; gptr[1]=&mat; gptr[2]=&pk;
                    751:        if(DEBUGMEM>1) err(warnmem,"idealval");
                    752:         gerepilemany(av1,gptr,3);
                    753:       }
                    754:     }
                    755:     pk = gdivexact(pk,p);
                    756:   }
                    757:   avma = av; return w + vd;
                    758: }
                    759:
                    760: /* gcd and generalized Bezout */
                    761:
                    762: GEN
                    763: idealadd(GEN nf, GEN x, GEN y)
                    764: {
                    765:   long av=avma,N,tx,ty;
                    766:   GEN z,p1,dx,dy,dz;
                    767:   int modid;
                    768:
                    769:   tx = idealtyp(&x,&z);
                    770:   ty = idealtyp(&y,&z);
                    771:   nf=checknf(nf); N=degpol(nf[1]);
                    772:   z = cgetg(N+1, t_MAT);
                    773:   if (tx != id_MAT || lg(x)!=N+1) x = idealhermite_aux(nf,x);
                    774:   if (ty != id_MAT || lg(y)!=N+1) y = idealhermite_aux(nf,y);
                    775:   if (lg(x) == 1) return gerepileupto(av,y);
                    776:   if (lg(y) == 1) return gerepileupto(av,x); /* check for 0 ideal */
                    777:   dx=denom(x);
                    778:   dy=denom(y); dz=mulii(dx,dy);
                    779:   if (gcmp1(dz)) dz = NULL; else { x=gmul(x,dz); y=gmul(y,dz); }
                    780:   if (isnfscalar((GEN)x[1]) && isnfscalar((GEN)y[1]))
                    781:   {
                    782:     p1 = mppgcd(gcoeff(x,1,1),gcoeff(y,1,1));
                    783:     modid = 1;
                    784:   }
                    785:   else
                    786:   {
                    787:     p1 = mppgcd(detint(x),detint(y));
                    788:     modid = 0;
                    789:   }
                    790:   if (gcmp1(p1))
                    791:   {
                    792:     long i,j;
                    793:     if (!dz) { avma=av; return idmat(N); }
                    794:     avma = (long)dz; dz = gerepileupto((long)z, ginv(dz));
                    795:     for (i=1; i<=N; i++)
                    796:     {
                    797:       z[i]=lgetg(N+1,t_COL);
                    798:       for (j=1; j<=N; j++)
                    799:         coeff(z,j,i) = (i==j)? (long)dz: zero;
                    800:     }
                    801:     return z;
                    802:   }
                    803:   z = concatsp(x,y);
                    804:   z = modid? hnfmodid(z,p1): hnfmod(z, p1);
                    805:   if (dz) z=gdiv(z,dz);
                    806:   return gerepileupto(av,z);
                    807: }
                    808:
                    809: static GEN
                    810: get_p1(GEN nf, GEN x, GEN y,long fl)
                    811: {
                    812:   GEN u,v,v1,v2,v3,v4;
                    813:   long i,j,N;
                    814:
                    815:   switch(fl)
                    816:   {
                    817:     case 1:
                    818:       v1 = gcoeff(x,1,1);
                    819:       v2 = gcoeff(y,1,1);
                    820:       if (typ(v1)!=t_INT || typ(v2)!=t_INT)
                    821:         err(talker,"ideals don't sum to Z_K in idealaddtoone");
                    822:       if (gcmp1(bezout(v1,v2,&u,&v)))
                    823:         return gmul(u,(GEN)x[1]);
                    824:     default:
                    825:       v=hnfperm(concatsp(x,y));
                    826:       v1=(GEN)v[1]; v2=(GEN)v[2]; v3=(GEN)v[3];
                    827:       j=0; N = degpol(nf[1]);
                    828:       for (i=1; i<=N; i++)
                    829:       {
                    830:         if (!gcmp1(gcoeff(v1,i,i)))
                    831:           err(talker,"ideals don't sum to Z_K in idealaddtoone");
                    832:         if (gcmp1((GEN)v3[i])) j=i;
                    833:       }
                    834:       v4=(GEN)v2[N+j]; setlg(v4,N+1);
                    835:       return gmul(x,v4);
                    836:   }
                    837: }
                    838:
                    839: GEN
                    840: idealaddtoone_i(GEN nf, GEN x, GEN y)
                    841: {
                    842:   long t, fl = 1;
                    843:   GEN p1,xh,yh;
                    844:
                    845:   if (DEBUGLEVEL>4)
                    846:   {
                    847:     fprintferr(" entering idealaddtoone:\n");
                    848:     fprintferr(" x = %Z\n",x);
                    849:     fprintferr(" y = %Z\n",y);
                    850:   }
                    851:   t = idealtyp(&x,&p1);
                    852:   if (t != id_MAT || lg(x) > 1 || lg(x) != lg(x[1]))
                    853:     xh = idealhermite_aux(nf,x);
                    854:   else
                    855:     { xh=x; fl = isnfscalar((GEN)x[1]); }
                    856:   t = idealtyp(&y,&p1);
                    857:   if (t != id_MAT || lg(y) == 1 || lg(y) != lg(y[1]))
                    858:     yh = idealhermite_aux(nf,y);
                    859:   else
                    860:     { yh=y; if (fl) fl = isnfscalar((GEN)y[1]); }
                    861:   if (lg(xh) == 1)
                    862:   {
                    863:     if (lg(yh) == 1 || !gcmp1(gabs(gcoeff(yh,1,1),0)))
                    864:       err(talker,"ideals don't sum to Z_K in idealaddtoone");
                    865:     return algtobasis(nf, gzero);
                    866:   }
                    867:   if (lg(yh) == 1)
                    868:   {
                    869:     p1 = gcoeff(xh,1,1);
                    870:     if (!gcmp1(gabs(p1,0)))
                    871:       err(talker,"ideals don't sum to Z_K in idealaddtoone");
                    872:     return algtobasis(nf, gneg(p1));
                    873:   }
                    874:
                    875:   p1 = get_p1(nf,xh,yh,fl);
                    876:   p1 = element_reduce(nf,p1, idealmullll(nf,x,y));
                    877:   if (DEBUGLEVEL>4 && !gcmp0(p1))
                    878:     fprintferr(" leaving idealaddtoone: %Z\n",p1);
                    879:   return p1;
                    880: }
                    881:
                    882: /* ideal should be an idele (not mandatory). For internal use. */
                    883: GEN
                    884: ideleaddone_aux(GEN nf,GEN x,GEN ideal)
                    885: {
                    886:   long i,nba,R1;
                    887:   GEN p1,p2,p3,arch;
                    888:
                    889:   (void)idealtyp(&ideal,&arch);
                    890:   if (!arch) return idealaddtoone_i(nf,x,ideal);
                    891:
                    892:   R1=itos(gmael(nf,2,1));
                    893:   if (typ(arch)!=t_VEC && lg(arch)!=R1+1)
                    894:     err(talker,"incorrect idele in idealaddtoone");
                    895:   for (nba=0,i=1; i<lg(arch); i++)
                    896:     if (signe(arch[i])) nba++;
                    897:   if (!nba) return idealaddtoone_i(nf,x,ideal);
                    898:
                    899:   p3 = idealaddtoone_i(nf,x,ideal);
                    900:   if (gcmp0(p3)) p3=(GEN)idealhermite_aux(nf,x)[1];
                    901:   p1=idealmullll(nf,x,ideal);
                    902:
                    903:   p2=zarchstar(nf,p1,arch,nba);
                    904:   p1=lift_intern(gmul((GEN)p2[3],zsigne(nf,p3,arch)));
                    905:   p2=(GEN)p2[2]; nba=0;
                    906:   for (i=1; i<lg(p1); i++)
                    907:     if (signe(p1[i])) { nba=1; p3=element_mul(nf,p3,(GEN)p2[i]); }
                    908:   if (gcmp0(p3)) return gcopy((GEN)x[1]); /* can happen if ideal = Z_K */
                    909:   return nba? p3: gcopy(p3);
                    910: }
                    911:
                    912: static GEN
                    913: unnf_minus_x(GEN x)
                    914: {
                    915:   long i, N = lg(x);
                    916:   GEN y = cgetg(N,t_COL);
                    917:
                    918:   y[1] = lsub(gun,(GEN)x[1]);
                    919:   for (i=2;i<N; i++) y[i] = lneg((GEN)x[i]);
                    920:   return y;
                    921: }
                    922:
                    923: static GEN
                    924: addone(GEN f(GEN,GEN,GEN), GEN nf, GEN x, GEN y)
                    925: {
                    926:   GEN z = cgetg(3,t_VEC);
                    927:   long av=avma;
                    928:
                    929:   nf=checknf(nf); x = gerepileupto(av, f(nf,x,y));
                    930:   z[1]=(long)x; z[2]=(long)unnf_minus_x(x); return z;
                    931: }
                    932:
                    933: GEN
                    934: idealaddtoone(GEN nf, GEN x, GEN y)
                    935: {
                    936:   return addone(idealaddtoone_i,nf,x,y);
                    937: }
                    938:
                    939: GEN
                    940: ideleaddone(GEN nf,GEN x,GEN idele)
                    941: {
                    942:   return addone(ideleaddone_aux,nf,x,idele);
                    943: }
                    944:
                    945: /* return integral x = 0 mod p/pr^e, (x,pr) = 1.
                    946:  * Don't reduce mod p here: caller may need result mod pr^k */
                    947: GEN
                    948: special_anti_uniformizer(GEN nf, GEN pr)
                    949: {
                    950:   GEN p = (GEN)pr[1], e = (GEN)pr[3];
                    951:   return gdivexact(element_pow(nf,(GEN)pr[5],e), gpuigs(p,itos(e)-1));
                    952: }
                    953:
                    954: GEN
                    955: nfmodprinit(GEN nf, GEN pr)
                    956: {
                    957:   long av;
                    958:   GEN p,p1,prhall;
                    959:
                    960:   nf = checknf(nf); checkprimeid(pr);
                    961:   prhall = cgetg(3,t_VEC);
                    962:   prhall[1] = (long) prime_to_ideal(nf,pr);
                    963:
                    964:   av = avma; p = (GEN)pr[1];
                    965:   p1 = cgetg(2,t_MAT);
                    966:   p1[1] = (long)gmod(special_anti_uniformizer(nf, pr), p);
                    967:   p1 = hnfmodid(idealhermite_aux(nf,p1), p);
                    968:   p1 = idealaddtoone_i(nf,pr,p1);
                    969:
                    970:   /* p1 = 1 mod pr, p1 = 0 mod q^{e_q} for all other primes q | p */
                    971:   prhall[2] = lpileupto(av, unnf_minus_x(p1)); return prhall;
                    972: }
                    973:
                    974: /* given an element x in Z_K and an integral ideal y with x, y coprime,
                    975:    outputs an element inverse of x modulo y */
                    976: GEN
                    977: element_invmodideal(GEN nf, GEN x, GEN y)
                    978: {
                    979:   long av=avma,N,i, fl = 1;
                    980:   GEN v,p1,xh,yh;
                    981:
                    982:   nf=checknf(nf); N=degpol(nf[1]);
                    983:   if (ideal_is_zk(y,N)) return zerocol(N);
                    984:   if (DEBUGLEVEL>4)
                    985:   {
                    986:     fprintferr(" entree dans element_invmodideal() :\n");
                    987:     fprintferr(" x = "); outerr(x);
                    988:     fprintferr(" y = "); outerr(y);
                    989:   }
                    990:   i = lg(y);
                    991:   if (typ(y)!=t_MAT || i==1 || i != lg(y[1])) yh=idealhermite_aux(nf,y);
                    992:   else
                    993:     { yh=y; fl = isnfscalar((GEN)y[1]); }
                    994:   switch (typ(x))
                    995:   {
                    996:     case t_POL: case t_POLMOD: case t_COL:
                    997:       xh = idealhermite_aux(nf,x); break;
                    998:     default: err(typeer,"element_invmodideal");
                    999:       return NULL; /* not reached */
                   1000:   }
                   1001:   p1 = get_p1(nf,xh,yh,fl);
                   1002:   p1 = element_div(nf,p1,x);
                   1003:   v = gerepileupto(av, nfreducemodideal(nf,p1,y));
                   1004:   if (DEBUGLEVEL>2)
                   1005:     { fprintferr(" sortie de element_invmodideal : v = "); outerr(v); }
                   1006:   return v;
                   1007: }
                   1008:
                   1009: GEN
                   1010: idealaddmultoone(GEN nf, GEN list)
                   1011: {
                   1012:   long av=avma,tetpil,N,i,i1,j,k;
                   1013:   GEN z,v,v1,v2,v3,p1;
                   1014:
                   1015:   nf=checknf(nf); N=degpol(nf[1]);
                   1016:   if (DEBUGLEVEL>4)
                   1017:   {
                   1018:     fprintferr(" entree dans idealaddmultoone() :\n");
                   1019:     fprintferr(" list = "); outerr(list);
                   1020:   }
                   1021:   if (typ(list)!=t_VEC && typ(list)!=t_COL)
                   1022:     err(talker,"not a list in idealaddmultoone");
                   1023:   k=lg(list); z=cgetg(1,t_MAT); list = dummycopy(list);
                   1024:   if (k==1) err(talker,"ideals don't sum to Z_K in idealaddmultoone");
                   1025:   for (i=1; i<k; i++)
                   1026:   {
                   1027:     p1=(GEN)list[i];
                   1028:     if (typ(p1)!=t_MAT || lg(p1)!=lg(p1[1]))
                   1029:       list[i] = (long)idealhermite_aux(nf,p1);
                   1030:     z = concatsp(z,(GEN)list[i]);
                   1031:   }
                   1032:   v=hnfperm(z); v1=(GEN)v[1]; v2=(GEN)v[2]; v3=(GEN)v[3]; j=0;
                   1033:   for (i=1; i<=N; i++)
                   1034:   {
                   1035:     if (!gcmp1(gcoeff(v1,i,i)))
                   1036:       err(talker,"ideals don't sum to Z_K in idealaddmultoone");
                   1037:     if (gcmp1((GEN)v3[i])) j=i;
                   1038:   }
                   1039:
                   1040:   v=(GEN)v2[(k-2)*N+j]; z=cgetg(k,t_VEC);
                   1041:   for (i=1; i<k; i++)
                   1042:   {
                   1043:     p1=cgetg(N+1,t_COL); z[i]=(long)p1;
                   1044:     for (i1=1; i1<=N; i1++) p1[i1]=v[(i-1)*N+i1];
                   1045:   }
                   1046:   tetpil=avma; v=cgetg(k,typ(list));
                   1047:   for (i=1; i<k; i++) v[i]=lmul((GEN)list[i],(GEN)z[i]);
                   1048:   if (DEBUGLEVEL>2)
                   1049:     { fprintferr(" sortie de idealaddmultoone v = "); outerr(v); }
                   1050:   return gerepile(av,tetpil,v);
                   1051: }
                   1052:
                   1053: /* multiplication */
                   1054:
                   1055: /* x integral ideal (without archimedean component) in HNF form
                   1056:  * [a,alpha,n] corresponds to the ideal aZ_K+alpha Z_K (a is a
                   1057:  * rational integer). Multiply them
                   1058:  */
                   1059: static GEN
                   1060: idealmulspec(GEN nf, GEN x, GEN a, GEN alpha)
                   1061: {
                   1062:   long i, N=lg(x)-1;
                   1063:   GEN m, mod;
                   1064:
                   1065:   if (isnfscalar(alpha))
                   1066:     return gmul(mppgcd(a,(GEN)alpha[1]),x);
                   1067:   mod = mulii(a, gcoeff(x,1,1));
                   1068:   m = cgetg((N<<1)+1,t_MAT);
                   1069:   for (i=1; i<=N; i++) m[i]=(long)element_muli(nf,alpha,(GEN)x[i]);
                   1070:   for (i=1; i<=N; i++) m[i+N]=lmul(a,(GEN)x[i]);
                   1071:   return hnfmodid(m,mod);
                   1072: }
                   1073:
                   1074: /* x ideal (matrix form,maximal rank), vp prime ideal (primedec). Output the
                   1075:  * product. Can be used for arbitrary vp of the form [p,a,e,f,b], IF vp
                   1076:  * =pZ_K+aZ_K, p is an integer, and norm(vp) = p^f; e and b are not used.
                   1077:  * For internal use.
                   1078:  */
                   1079: GEN
                   1080: idealmulprime(GEN nf, GEN x, GEN vp)
                   1081: {
                   1082:   GEN denx = denom(x);
                   1083:
                   1084:   if (gcmp1(denx)) denx = NULL; else x = gmul(denx,x);
                   1085:   x = idealmulspec(nf,x, (GEN)vp[1], (GEN)vp[2]);
                   1086:   return denx? gdiv(x,denx): x;
                   1087: }
                   1088:
                   1089: /* Assume ix and iy are integral in HNF form (or ideles of the same form).
                   1090:  * HACK: ideal in iy can be of the form [a,b], a in Z, b in Z_K
                   1091:  * For internal use. */
                   1092: GEN
                   1093: idealmulh(GEN nf, GEN ix, GEN iy)
                   1094: {
                   1095:   long f = 0;
                   1096:   GEN res,x,y;
                   1097:
                   1098:   if (typ(ix)==t_VEC) {f=1;  x=(GEN)ix[1];} else x=ix;
                   1099:   if (typ(iy)==t_VEC && typ(iy[1]) != t_INT) {f+=2; y=(GEN)iy[1];} else y=iy;
                   1100:   res = f? cgetg(3,t_VEC): NULL;
                   1101:
                   1102:   if (typ(y) != t_VEC) y = ideal_two_elt(nf,y);
                   1103:   y = idealmulspec(nf,x,(GEN)y[1],(GEN)y[2]);
                   1104:   if (!f) return y;
                   1105:
                   1106:   res[1]=(long)y;
                   1107:   if (f==3) y = gadd((GEN)ix[2],(GEN)iy[2]);
                   1108:   else
                   1109:   {
                   1110:     y = (f==2)? (GEN)iy[2]: (GEN)ix[2];
                   1111:     y = gcopy(y);
                   1112:   }
                   1113:   res[2]=(long)y; return res;
                   1114: }
                   1115:
                   1116: /* x and y are ideals in matrix form */
                   1117: static GEN
                   1118: idealmat_mul(GEN nf, GEN x, GEN y)
                   1119: {
                   1120:   long i,j, rx=lg(x)-1, ry=lg(y)-1;
                   1121:   GEN dx,dy,m;
                   1122:
                   1123:   dx=denom(x); if (!gcmp1(dx)) x=gmul(dx,x);
                   1124:   dy=denom(y); if (!gcmp1(dy)) y=gmul(dy,y);
                   1125:   dx = mulii(dx,dy);
                   1126:   if (rx<=2 || ry<=2)
                   1127:   {
                   1128:     m=cgetg(rx*ry+1,t_MAT);
                   1129:     for (i=1; i<=rx; i++)
                   1130:       for (j=1; j<=ry; j++)
                   1131:         m[(i-1)*ry+j]=(long)element_muli(nf,(GEN)x[i],(GEN)y[j]);
                   1132:     if (isnfscalar((GEN)x[1]) && isnfscalar((GEN)y[1]))
                   1133:     {
                   1134:       GEN p1 = mulii(gcoeff(x,1,1),gcoeff(y,1,1));
                   1135:       y = hnfmodid(m, p1);
                   1136:     }
                   1137:     else
                   1138:       y=hnfmod(m, detint(m));
                   1139:   }
                   1140:   else
                   1141:   {
                   1142:     x=idealmat_to_hnf(nf,x);
                   1143:     y=idealmat_to_hnf(nf,y); y=idealmulh(nf,x,y);
                   1144:   }
                   1145:   return gcmp1(dx)? y: gdiv(y,dx);
                   1146: }
                   1147:
                   1148: #if 0
                   1149: /* y is principal */
                   1150: static GEN
                   1151: add_arch(GEN nf, GEN ax, GEN y)
                   1152: {
                   1153:   long tetpil, av=avma, prec=precision(ax);
                   1154:
                   1155:   y = get_arch(nf,y,prec); tetpil=avma;
                   1156:   return gerepile(av,tetpil,gadd(ax,y));
                   1157: }
                   1158: #endif
                   1159:
                   1160: /* add x^1 to factorisation f */
                   1161: static GEN
                   1162: famat_add(GEN f, GEN x)
                   1163: {
                   1164:   GEN t,h = cgetg(3,t_MAT);
                   1165:   if (lg(f) == 1)
                   1166:   {
                   1167:     t=cgetg(2,t_COL); h[1]=(long)t; t[1]=lcopy(x);
                   1168:     t=cgetg(2,t_COL); h[2]=(long)t; t[1]=un;
                   1169:   }
                   1170:   else
                   1171:   {
                   1172:     h[1] = (long)concat((GEN)f[1], x);
                   1173:     h[2] = (long)concat((GEN)f[2], gun);
                   1174:   }
                   1175:   return h;
                   1176: }
                   1177:
                   1178: /* cf merge_factor_i */
                   1179: static GEN
                   1180: famat_mul(GEN f, GEN g)
                   1181: {
                   1182:   GEN h;
                   1183:   if (typ(g) != t_MAT) return famat_add(f, g);
                   1184:   if (lg(f) == 1) return gcopy(g);
                   1185:   if (lg(g) == 1) return gcopy(f);
                   1186:   h = cgetg(3,t_MAT);
                   1187:   h[1] = (long)concat((GEN)f[1], (GEN)g[1]);
                   1188:   h[2] = (long)concat((GEN)f[2], (GEN)g[2]);
                   1189:   return h;
                   1190: }
                   1191:
                   1192: static GEN
                   1193: famat_sqr(GEN f)
                   1194: {
                   1195:   GEN h;
                   1196:   if (lg(f) == 1) return cgetg(1,t_MAT);
                   1197:   h = cgetg(3,t_MAT);
                   1198:   h[1] = lcopy((GEN)f[1]);
                   1199:   h[2] = lmul2n((GEN)f[2],1);
                   1200:   return h;
                   1201: }
                   1202: static GEN
                   1203: famat_inv(GEN f)
                   1204: {
                   1205:   GEN h;
                   1206:   if (lg(f) == 1) return cgetg(1,t_MAT);
                   1207:   h = cgetg(3,t_MAT);
                   1208:   h[1] = lcopy((GEN)f[1]);
                   1209:   h[2] = lneg((GEN)f[2]);
                   1210:   return h;
                   1211: }
                   1212: static GEN
                   1213: famat_pow(GEN f, GEN n)
                   1214: {
                   1215:   GEN h;
                   1216:   if (lg(f) == 1) return cgetg(1,t_MAT);
                   1217:   h = cgetg(3,t_MAT);
                   1218:   h[1] = lcopy((GEN)f[1]);
                   1219:   h[2] = lmul((GEN)f[2],n);
                   1220:   return h;
                   1221: }
                   1222:
                   1223: GEN
                   1224: famat_to_nf(GEN nf, GEN f)
                   1225: {
                   1226:   GEN t, *x, *e;
                   1227:   long i;
                   1228:   if (lg(f) == 1) return gun;
                   1229:
                   1230:   x = (GEN*)f[1];
                   1231:   e = (GEN*)f[2];
                   1232:   t = element_pow(nf, x[1], e[1]);
                   1233:   for (i=lg(x)-1; i>1; i--)
                   1234:     t = element_mul(nf, t, element_pow(nf, x[i], e[i]));
                   1235:   return t;
                   1236: }
                   1237:
                   1238: GEN
                   1239: to_famat(GEN g, GEN e)
                   1240: {
                   1241:   GEN h = cgetg(3,t_MAT);
                   1242:   h[1] = (long)g;
                   1243:   h[2] = (long)e; return h;
                   1244: }
                   1245:
                   1246: GEN
                   1247: to_famat_all(GEN x, GEN y) { return to_famat(_col(x), _col(y)); }
                   1248:
                   1249: /* assume (num(g[i]), id) = 1 and for all i. return prod g[i]^e[i] mod id */
                   1250: GEN
                   1251: famat_to_nf_modideal_coprime(GEN nf, GEN g, GEN e, GEN id)
                   1252: {
                   1253:   GEN t = NULL, ch,h,n,z,idZ = gcoeff(id,1,1);
                   1254:   long i, lx = lg(g);
                   1255:   if (is_pm1(idZ)) lx = 1; /* id = Z_K */
                   1256:   for (i=1; i<lx; i++)
                   1257:   {
                   1258:     n = (GEN)e[i]; if (!signe(n)) continue;
                   1259:     h = (GEN)g[i]; ch = denom(h);
                   1260:     if (!is_pm1(ch))
                   1261:     {
                   1262:       h = gmul(h,ch); ch = mpinvmod(ch,idZ);
                   1263:       h = gmod(gmul(h,ch), idZ);
                   1264:     }
                   1265:     z = element_powmodideal(nf, h, n, id);
                   1266:     t = (t == NULL)? z: element_mulmodideal(nf, t, z, id);
                   1267:   }
                   1268:   return t? t: gscalcol(gun, lg(id)-1);
                   1269: }
                   1270:
                   1271: /* assume prh has degree 1 and coprime to numerator(x) */
                   1272: GEN
                   1273: nf_to_Fp_simple(GEN x, GEN prh)
                   1274: {
                   1275:   GEN ch = denom(x), p = gcoeff(prh,1,1);
                   1276:   if (!is_pm1(ch))
                   1277:   {
                   1278:     x = gmul(gmul(x,ch), mpinvmod(ch,p));
                   1279:   }
                   1280:   ch = colreducemodmat(gmod(x, p), prh, NULL);
                   1281:   return (GEN)ch[1]; /* in Fp^* */
                   1282: }
                   1283:
                   1284: GEN
                   1285: famat_to_Fp_simple(GEN g, GEN e, GEN prh)
                   1286: {
                   1287:   GEN t = gun, h,n, p = gcoeff(prh,1,1), q = subis(p,1);
                   1288:   long i, lx = lg(g);
                   1289:   for (i=1; i<lx; i++)
                   1290:   {
                   1291:     n = (GEN)e[i]; n = modii(n,q);
                   1292:     if (!signe(n)) continue;
                   1293:     h = nf_to_Fp_simple((GEN)g[i], prh);
                   1294:     t = mulii(t, powmodulo(h, n, p)); /* not worth reducing */
                   1295:   }
                   1296:   return modii(t, p);
                   1297: }
                   1298:
                   1299: /* cf famat_to_nf_modideal_coprime, but id is a prime of degree 1 (=prh) */
                   1300: GEN
                   1301: to_Fp_simple(GEN x, GEN prh)
                   1302: {
                   1303:   switch(typ(x))
                   1304:   {
                   1305:     case t_COL: return nf_to_Fp_simple(x,prh);
                   1306:     case t_MAT: return famat_to_Fp_simple((GEN)x[1],(GEN)x[2],prh);
                   1307:     default: err(impl,"generic conversion to finite field");
                   1308:   }
                   1309:   return NULL;
                   1310: }
                   1311:
                   1312: extern GEN zinternallog_pk(GEN nf,GEN a0,GEN y,GEN pr,GEN prk,GEN list,GEN *psigne);
                   1313: extern GEN colreducemodmat(GEN x, GEN y, GEN *Q);
                   1314: extern GEN special_anti_uniformizer(GEN nf, GEN pr);
                   1315: extern GEN set_sign_mod_idele(GEN nf, GEN x, GEN y, GEN idele, GEN sarch);
                   1316: extern long int_elt_val(GEN nf, GEN x, GEN p, GEN b, GEN *newx, long v);
                   1317:
                   1318: /* Compute t = prod g[i]^e[i] mod pr^n, assuming (t, pr) = 1.
                   1319:  * Method: modify each g[i] so that it becomes coprime to pr :
                   1320:  *  x / (p^k u) --> x * (b/p)^v_pr(x) / z^k u, where z = b^e/p^(e-1)
                   1321:  * b/p = vp^(-1) times something prime to p; both numerator and denominator
                   1322:  * are integral and coprime to pr.  Globally, we multiply by (b/p)^v_pr(t) = 1.
                   1323:  *
                   1324:  * EX = exponent of (O_K / pr^k)^* used to reduce the product in case the
                   1325:  * e[i] are large */
                   1326: static GEN
                   1327: famat_makecoprime(GEN nf, GEN g, GEN e, GEN pr, GEN prn, GEN EX)
                   1328: {
                   1329:   long i,k, l = lg(g), N = degpol(nf[1]);
                   1330:   GEN prnZ,cx,x,u,z, zpow = gzero, p = (GEN)pr[1], b = (GEN)pr[5];
                   1331:   GEN mul = cgetg(N+1,t_MAT);
                   1332:   GEN newg = cgetg(l+1, t_VEC); /* room for z */
                   1333:
                   1334:   prnZ = gcoeff(prn, 1,1);
                   1335:   z = gmod(special_anti_uniformizer(nf, pr), prnZ);
                   1336:   for (i=1; i<=N; i++) mul[i] = (long)element_mulid(nf,b,i);
                   1337:   for (i=1; i < l; i++)
                   1338:   {
                   1339:     x = (GEN)g[i];
                   1340:     if (typ(x) != t_COL) x = algtobasis(nf, x);
                   1341:     cx = denom(x); x = gmul(x,cx);
                   1342:     k = pvaluation(cx, p, &u);
                   1343:     if (!gcmp1(u)) /* could avoid the inversion, but prnZ is small--> cheap */
                   1344:       x = gmul(x, mpinvmod(u, prnZ));
                   1345:     if (k)
                   1346:       zpow = addii(zpow, mulsi(k, (GEN)e[i]));
                   1347:     (void)int_elt_val(nf, x, p, mul, &x, VERYBIGINT);
                   1348:     newg[i] = (long)colreducemodmat(x, prn, NULL);
                   1349:   }
                   1350:   if (zpow == gzero) setlg(newg, l);
                   1351:   else
                   1352:   {
                   1353:     newg[i] = (long)z;
                   1354:     e = concatsp(e, negi(zpow));
                   1355:   }
                   1356:   e = gmod(e, EX);
                   1357:   return famat_to_nf_modideal_coprime(nf, newg, e, prn);
                   1358: }
                   1359:
                   1360: GEN
                   1361: famat_ideallog(GEN nf, GEN g, GEN e, GEN bid)
                   1362: {
                   1363:   ulong av = avma;
                   1364:   GEN vp = gmael(bid, 3,1), ep = gmael(bid, 3,2), arch = gmael(bid,1,2);
                   1365:   GEN cyc = gmael(bid,2,2), list_set = (GEN)bid[4], U = (GEN)bid[5];
                   1366:   GEN p1,y0,x,y, psigne;
                   1367:   long i;
                   1368:   if (lg(cyc) == 1) return cgetg(1,t_COL);
                   1369:   y0 = y = cgetg(lg(U), t_COL);
                   1370:   psigne = zsigne(nf, to_famat(g,e), arch);
                   1371:   for (i=1; i<lg(vp); i++)
                   1372:   {
                   1373:     GEN pr = (GEN)vp[i], prk;
                   1374:     prk = idealpow(nf, pr, (GEN)ep[i]);
                   1375:     /* TODO: FIX group exponent (should be mod prk, not f !) */
                   1376:     x = famat_makecoprime(nf, g, e, pr, prk, (GEN)cyc[1]);
                   1377:     y = zinternallog_pk(nf, x, y, pr, prk, (GEN)list_set[i], &psigne);
                   1378:   }
                   1379:   p1 = lift_intern(gmul(gmael(list_set,i,3), psigne));
                   1380:   for (i=1; i<lg(p1); i++) *++y = p1[i];
                   1381:   y = gmul(U,y0);
                   1382:   avma = av; x = cgetg(lg(y), t_COL);
                   1383:   for (i=1; i<lg(y); i++)
                   1384:     x[i] = lmodii((GEN)y[i], (GEN)cyc[i]);
                   1385:   return x;
                   1386: }
                   1387:
                   1388: /* prod g[i]^e[i] mod bid, assume (g[i], id) = 1 */
                   1389: GEN
                   1390: famat_to_nf_modidele(GEN nf, GEN g, GEN e, GEN bid)
                   1391: {
                   1392:   GEN t,sarch,module,cyc,fa2;
                   1393:   long lc;
                   1394:   if (lg(g) == 1) return gscalcol_i(gun, degpol(nf[1])); /* 1 */
                   1395:   module = (GEN)bid[1];
                   1396:   fa2 = (GEN)bid[4]; sarch = (GEN)fa2[lg(fa2)-1];
                   1397:   cyc = gmael(bid,2,2); lc = lg(cyc);
                   1398:   t = NULL;
                   1399:   if (lc != 1)
                   1400:   {
                   1401:     GEN EX = (GEN)cyc[1]; /* group exponent */
                   1402:     GEN id = (GEN)module[1];
                   1403:     t = famat_to_nf_modideal_coprime(nf,g, gmod(e,EX), id);
                   1404:   }
                   1405:   if (!t) t = gun;
                   1406:   return set_sign_mod_idele(nf, to_famat(g,e), t, module, sarch);
                   1407: }
                   1408:
                   1409: GEN
                   1410: vecmul(GEN x, GEN y)
                   1411: {
                   1412:   long i,lx, tx = typ(x);
                   1413:   GEN z;
                   1414:   if (is_scalar_t(tx)) return gmul(x,y);
                   1415:   lx = lg(x); z = cgetg(lx,tx);
                   1416:   for (i=1; i<lx; i++) z[i] = (long)vecmul((GEN)x[i], (GEN)y[i]);
                   1417:   return z;
                   1418: }
                   1419:
                   1420: GEN
                   1421: vecinv(GEN x)
                   1422: {
                   1423:   long i,lx, tx = typ(x);
                   1424:   GEN z;
                   1425:   if (is_scalar_t(tx)) return ginv(x);
                   1426:   lx = lg(x); z = cgetg(lx, tx);
                   1427:   for (i=1; i<lx; i++) z[i] = (long)vecinv((GEN)x[i]);
                   1428:   return z;
                   1429: }
                   1430:
                   1431: GEN
                   1432: vecdiv(GEN x, GEN y) { return vecmul(x, vecinv(y)); }
                   1433:
                   1434: /* x,y assumed to be of the same type, either
                   1435:  *     t_VEC: logarithmic distance components
                   1436:  *     t_COL: multiplicative distance components [FIXME: find decent type]
                   1437:  *     t_POLMOD: nf elt
                   1438:  *     t_MAT: factorisation of nf elt */
                   1439: GEN
                   1440: arch_mul(GEN x, GEN y) {
                   1441:   switch (typ(x)) {
                   1442:     case t_POLMOD: return gmul(x, y);
                   1443:     case t_COL: return vecmul(x, y);
                   1444:     case t_MAT:    return (x == y)? famat_sqr(x): famat_mul(x,y);
                   1445:     default:       return (x == y)? gmul2n(x,1): gadd(x,y); /* t_VEC */
                   1446:   }
                   1447: }
                   1448:
                   1449: GEN
                   1450: arch_inv(GEN x) {
                   1451:   switch (typ(x)) {
                   1452:     case t_POLMOD: return ginv(x);
                   1453:     case t_MAT:    return famat_inv(x);
                   1454:     default:       return gneg(x); /* t_COL, t_VEC */
                   1455:   }
                   1456: }
                   1457:
                   1458: GEN
                   1459: arch_pow(GEN x, GEN n) {
                   1460:   switch (typ(x)) {
                   1461:     case t_POLMOD: return powgi(x,n);
                   1462:     case t_MAT:    return famat_pow(x,n);
                   1463:     default:       return gmul(n,x);
                   1464:   }
                   1465: }
                   1466:
                   1467: /* output the ideal product ix.iy (don't reduce) */
                   1468: GEN
                   1469: idealmul(GEN nf, GEN x, GEN y)
                   1470: {
                   1471:   long tx,ty,av,f;
                   1472:   GEN res,ax,ay,p1;
                   1473:
                   1474:   tx = idealtyp(&x,&ax);
                   1475:   ty = idealtyp(&y,&ay);
                   1476:   if (tx>ty) {
                   1477:     res=ax; ax=ay; ay=res;
                   1478:     res=x; x=y; y=res;
                   1479:     f=tx; tx=ty; ty=f;
                   1480:   }
                   1481:   f = (ax||ay); res = f? cgetg(3,t_VEC): NULL; /* product is an idele */
                   1482:   nf=checknf(nf); av=avma;
                   1483:   switch(tx)
                   1484:   {
                   1485:     case id_PRINCIPAL:
                   1486:       switch(ty)
                   1487:       {
                   1488:         case id_PRINCIPAL:
                   1489:           p1 = idealhermite_aux(nf, element_mul(nf,x,y));
                   1490:           break;
                   1491:         case id_PRIME:
                   1492:           p1 = gmul((GEN)y[1],x);
                   1493:           p1 = two_to_hnf(nf,p1, element_mul(nf,(GEN)y[2],x));
                   1494:           break;
                   1495:         default: /* id_MAT */
                   1496:           p1 = idealmat_mul(nf,y, principalideal_aux(nf,x));
                   1497:       }break;
                   1498:
                   1499:     case id_PRIME:
                   1500:       p1 = (ty==id_PRIME)? prime_to_ideal_aux(nf,y)
                   1501:                          : idealmat_to_hnf(nf,y);
                   1502:       p1 = idealmulprime(nf,p1,x); break;
                   1503:
                   1504:     default: /* id_MAT */
                   1505:       p1 = idealmat_mul(nf,x,y);
                   1506:   }
                   1507:   p1 = gerepileupto(av,p1);
                   1508:   if (!f) return p1;
                   1509:
                   1510:   if (ax && ay)
                   1511:     ax = arch_mul(ax, ay);
                   1512:   else
                   1513:     ax = gcopy(ax? ax: ay);
                   1514:   res[1]=(long)p1; res[2]=(long)ax; return res;
                   1515: }
                   1516:
                   1517: /* norm of an ideal */
                   1518: GEN
                   1519: idealnorm(GEN nf, GEN x)
                   1520: {
                   1521:   long av = avma,tetpil;
                   1522:   GEN y;
                   1523:
                   1524:   nf = checknf(nf);
                   1525:   switch(idealtyp(&x,&y))
                   1526:   {
                   1527:     case id_PRIME:
                   1528:       return powgi((GEN)x[1],(GEN)x[4]);
                   1529:     case id_PRINCIPAL:
                   1530:       x = gnorm(basistoalg(nf,x)); break;
                   1531:     default:
                   1532:       if (lg(x) != lgef(nf[1])-2) x = idealhermite_aux(nf,x);
                   1533:       x = dethnf(x);
                   1534:   }
                   1535:   tetpil=avma; return gerepile(av,tetpil,gabs(x,0));
                   1536: }
                   1537:
                   1538: /* inverse */
                   1539: extern GEN gauss_triangle_i(GEN A, GEN B,GEN t);
                   1540:
                   1541: /* rewritten from original code by P.M & M.H.
                   1542:  *
                   1543:  * I^(-1) = { x \in K, Tr(x D^(-1) I) \in Z }, D different of K/Q
                   1544:  *
                   1545:  * nf[5][6] = d_K * D^(-1) is integral = d_K T^(-1), T = (Tr(wi wj))
                   1546:  * nf[5][7] = same in 2-elt form */
                   1547: static GEN
                   1548: hnfideal_inv(GEN nf, GEN I)
                   1549: {
                   1550:   GEN J, dI = denom(I), IZ,dual;
                   1551:
                   1552:   if (gcmp1(dI)) dI = NULL; else I = gmul(I,dI);
                   1553:   if (lg(I)==1) err(talker, "cannot invert zero ideal");
                   1554:   IZ = gcoeff(I,1,1); /* I \cap Z */
                   1555:   if (!signe(IZ)) err(talker, "cannot invert zero ideal");
                   1556:   J = idealmulh(nf,I, gmael(nf,5,7));
                   1557:  /* I in HNF, hence easily inverted; multiply by IZ to get integer coeffs
                   1558:   * d_K cancels while solving the linear equations. */
                   1559:   dual = gtrans( gauss_triangle_i(J, gmael(nf,5,6), IZ) );
                   1560:   dual = hnfmodid(dual, IZ);
                   1561:   if (dI) IZ = gdiv(IZ,dI);
                   1562:   return gdiv(dual,IZ);
                   1563: }
                   1564:
                   1565: /* return p * P^(-1)  [integral] */
                   1566: GEN
                   1567: pidealprimeinv(GEN nf, GEN x)
                   1568: {
                   1569:   GEN y=cgetg(6,t_VEC); y[1]=x[1]; y[2]=x[5];
                   1570:   y[3]=y[5]=zero; y[4]=lsubsi(degpol(nf[1]), (GEN)x[4]);
                   1571:   return prime_to_ideal_aux(nf,y);
                   1572: }
                   1573:
                   1574: /* Calcule le dual de mat_id pour la forme trace */
                   1575: GEN
                   1576: idealinv(GEN nf, GEN x)
                   1577: {
                   1578:   GEN res,ax;
                   1579:   long av=avma, tx = idealtyp(&x,&ax);
                   1580:
                   1581:   res = ax? cgetg(3,t_VEC): NULL;
                   1582:   nf=checknf(nf); av=avma;
                   1583:   switch (tx)
                   1584:   {
                   1585:     case id_MAT:
                   1586:       if (lg(x) != lg(x[1])) x = idealmat_to_hnf(nf,x);
                   1587:       if (lg(x)-1 != degpol(nf[1])) err(consister,"idealinv");
                   1588:       x = hnfideal_inv(nf,x); break;
                   1589:     case id_PRINCIPAL: tx = typ(x);
                   1590:       if (is_const_t(tx)) x = ginv(x);
                   1591:       else
                   1592:       {
                   1593:         switch(tx)
                   1594:         {
                   1595:           case t_COL: x = gmul((GEN)nf[7],x); break;
                   1596:           case t_POLMOD: x = (GEN)x[2]; break;
                   1597:         }
                   1598:         x = ginvmod(x,(GEN)nf[1]);
                   1599:       }
                   1600:       x = idealhermite_aux(nf,x); break;
                   1601:     case id_PRIME:
                   1602:       x = gdiv(pidealprimeinv(nf,x), (GEN)x[1]);
                   1603:   }
                   1604:   x = gerepileupto(av,x); if (!ax) return x;
                   1605:   res[1]=(long)x;
                   1606:   res[2]=(long)arch_inv(ax); return res;
                   1607: }
                   1608:
                   1609: /* return x such that vp^n = x/d */
                   1610: static GEN
                   1611: idealpowprime_spec(GEN nf, GEN vp, GEN n, GEN *d)
                   1612: {
                   1613:   GEN n1, x, r;
                   1614:   long s = signe(n);
                   1615:
                   1616:   if (s == 0) err(talker, "0th power in idealpowprime_spec");
                   1617:   if (s < 0) n = negi(n);
                   1618:   /* now n > 0 */
                   1619:   x = dummycopy(vp);
                   1620:   n1 = dvmdii(n, (GEN)x[3], &r);
                   1621:   if (signe(r)) n1 = addis(n1,1); /* n1 = ceil(n/e) */
                   1622:   x[1] = (long)powgi((GEN)x[1],n1);
                   1623:   if (s < 0)
                   1624:   {
                   1625:     x[2] = ldiv(element_pow(nf,(GEN)x[5],n), powgi((GEN)vp[1],subii(n,n1)));
                   1626:     *d = (GEN)x[1];
                   1627:   }
                   1628:   else
                   1629:   {
                   1630:     x[2] = (long)element_pow(nf,(GEN)x[2],n);
                   1631:     *d = NULL;
                   1632:   }
                   1633:   return x;
                   1634: }
                   1635:
                   1636: static GEN
                   1637: idealpowprime(GEN nf, GEN vp, GEN n)
                   1638: {
                   1639:   GEN x, d;
                   1640:   long s = signe(n);
                   1641:
                   1642:   nf = checknf(nf);
                   1643:   if (s == 0) return idmat(degpol(nf[1]));
                   1644:   x = idealpowprime_spec(nf, vp, n, &d);
                   1645:   x = prime_to_ideal_aux(nf,x);
                   1646:   if (d) x = gdiv(x, d);
                   1647:   return x;
                   1648: }
                   1649:
                   1650: /* x * vp^n */
                   1651: GEN
                   1652: idealmulpowprime(GEN nf, GEN x, GEN vp, GEN n)
                   1653: {
                   1654:   GEN denx,y,d;
                   1655:
                   1656:   if (!signe(n)) return x;
                   1657:   nf = checknf(nf);
                   1658:   y = idealpowprime_spec(nf, vp, n, &d);
                   1659:   denx = denom(x);
                   1660:   if (gcmp1(denx)) denx = d; else
                   1661:   {
                   1662:     x = gmul(denx,x);
                   1663:     if (d) denx = mulii(d,denx);
                   1664:   }
                   1665:   x = idealmulspec(nf,x, (GEN)y[1], (GEN)y[2]);
                   1666:   return denx? gdiv(x,denx): x;
                   1667: }
                   1668:
                   1669: /* raise the ideal x to the power n (in Z) */
                   1670: GEN
                   1671: idealpow(GEN nf, GEN x, GEN n)
                   1672: {
                   1673:   long tx,N,av,s,i;
                   1674:   GEN res,ax,m,cx,n1,a,alpha;
                   1675:
                   1676:   if (typ(n) != t_INT) err(talker,"non-integral exponent in idealpow");
                   1677:   tx = idealtyp(&x,&ax);
                   1678:   res = ax? cgetg(3,t_VEC): NULL;
                   1679:   nf = checknf(nf);
                   1680:   av=avma; N=degpol(nf[1]); s=signe(n);
                   1681:   if (!s) x = idmat(N);
                   1682:   else
                   1683:     switch(tx)
                   1684:     {
                   1685:       case id_PRINCIPAL: tx = typ(x);
                   1686:         if (!is_const_t(tx))
                   1687:           switch(tx)
                   1688:           {
                   1689:             case t_COL: x = gmul((GEN)nf[7],x);
                   1690:             case t_POL: x = gmodulcp(x,(GEN)nf[1]);
                   1691:           }
                   1692:         x = powgi(x,n);
                   1693:         x = idealhermite_aux(nf,x); break;
                   1694:       case id_PRIME:
                   1695:         x = idealpowprime(nf,x,n); break;
                   1696:       default:
                   1697:         n1 = (s<0)? negi(n): n;
                   1698:
                   1699:         cx = content(x); if (gcmp1(cx)) cx = NULL; else x = gdiv(x,cx);
                   1700:         a=ideal_two_elt(nf,x); alpha=(GEN)a[2]; a=(GEN)a[1];
                   1701:         m = cgetg(N+1,t_MAT); a = powgi(a,n1);
                   1702:         alpha = element_pow(nf,alpha,n1);
                   1703:         for (i=1; i<=N; i++) m[i]=(long)element_mulid(nf,alpha,i);
                   1704:         x = hnfmodid(m, a);
                   1705:         if (s<0) x = hnfideal_inv(nf,x);
                   1706:         if (cx) x = gmul(x, powgi(cx,n));
                   1707:     }
                   1708:   x = gerepileupto(av, x);
                   1709:   if (!ax) return x;
                   1710:   ax = arch_pow(ax, n);
                   1711:   res[1]=(long)x;
                   1712:   res[2]=(long)ax;
                   1713:   return res;
                   1714: }
                   1715:
                   1716: /* Return ideal^e in number field nf. e is a C integer. */
                   1717: GEN
                   1718: idealpows(GEN nf, GEN ideal, long e)
                   1719: {
                   1720:   long court[] = {evaltyp(t_INT) | m_evallg(3),0,0};
                   1721:   affsi(e,court); return idealpow(nf,ideal,court);
                   1722: }
                   1723:
                   1724: GEN
                   1725: init_idele(GEN nf)
                   1726: {
                   1727:   GEN x = cgetg(3,t_VEC);
                   1728:   long RU;
                   1729:   nf = checknf(nf); RU = lg(nf[6])-1;
                   1730:   x[2] = (long)zerovec(RU); return x;
                   1731: }
                   1732:
                   1733: /* compute x^n (x ideal, n integer), reducing along the way */
                   1734: GEN
                   1735: idealpowred(GEN nf, GEN x, GEN n, long prec)
                   1736: {
                   1737:   long i,j,m,av=avma, s = signe(n);
                   1738:   GEN y, p1;
                   1739:
                   1740:   if (typ(n) != t_INT) err(talker,"non-integral exponent in idealpowred");
                   1741:   if (signe(n) == 0) return idealpow(nf,x,n);
                   1742:   p1 = n+2; m = *p1;
                   1743:   y = x; j=1+bfffo(m); m<<=j; j = BITS_IN_LONG-j;
                   1744:   for (i=lgefint(n)-2;;)
                   1745:   {
                   1746:     for (; j; m<<=1,j--)
                   1747:     {
                   1748:       y = idealmul(nf,y,y);
                   1749:       if (m < 0) y = idealmul(nf,y,x);
                   1750:       y = ideallllred(nf,y,NULL,prec);
                   1751:     }
                   1752:     if (--i == 0) break;
                   1753:     m = *++p1; j = BITS_IN_LONG;
                   1754:   }
                   1755:   if (s < 0) y = idealinv(nf,y);
                   1756:   if (y == x) y = ideallllred(nf,x,NULL,prec);
                   1757:   return gerepileupto(av,y);
                   1758: }
                   1759:
                   1760: GEN
                   1761: idealmulred(GEN nf, GEN x, GEN y, long prec)
                   1762: {
                   1763:   long av=avma;
                   1764:   x = idealmul(nf,x,y);
                   1765:   return gerepileupto(av, ideallllred(nf,x,NULL,prec));
                   1766: }
                   1767:
                   1768: long
                   1769: isideal(GEN nf,GEN x)
                   1770: {
                   1771:   long N,av,i,j,k,tx=typ(x),lx;
                   1772:   GEN p1,minv;
                   1773:
                   1774:   nf=checknf(nf); lx=lg(x);
                   1775:   if (tx==t_VEC && lx==3) { x=(GEN)x[1]; tx=typ(x); lx=lg(x); }
                   1776:   if (is_scalar_t(tx))
                   1777:     return (tx==t_INT || tx==t_FRAC || tx==t_FRACN || tx==t_POL ||
                   1778:                      (tx==t_POLMOD && gegal((GEN)nf[1],(GEN)x[1])));
                   1779:   if (typ(x)==t_VEC) return (lx==6);
                   1780:   if (typ(x)!=t_MAT) return 0;
                   1781:   if (lx == 1) return 1;
                   1782:   N=lgef(nf[1])-2; if (lg(x[1]) != N) return 0;
                   1783:
                   1784:   av=avma;
                   1785:   if (lx != N) x = idealmat_to_hnf(nf,x);
                   1786:   x = gdiv(x,content(x)); minv=ginv(x);
                   1787:
                   1788:   for (i=1; i<N; i++)
                   1789:     for (j=1; j<N; j++)
                   1790:     {
                   1791:       p1=gmul(minv, element_mulid(nf,(GEN)x[i],j));
                   1792:       for (k=1; k<N; k++)
                   1793:        if (typ(p1[k])!=t_INT) { avma=av; return 0; }
                   1794:     }
                   1795:   avma=av; return 1;
                   1796: }
                   1797:
                   1798: GEN
                   1799: idealdiv(GEN nf, GEN x, GEN y)
                   1800: {
                   1801:   long av=avma,tetpil;
                   1802:   GEN z=idealinv(nf,y);
                   1803:
                   1804:   tetpil=avma; return gerepile(av,tetpil,idealmul(nf,x,z));
                   1805: }
                   1806:
                   1807: /* This routine computes the quotient x/y of two ideals in the number field nf.
                   1808:  * It assumes that the quotient is an integral ideal.  The idea is to find an
                   1809:  * ideal z dividing y such that gcd(Nx/Nz, Nz) = 1.  Then
                   1810:  *
                   1811:  *   x + (Nx/Nz)    x
                   1812:  *   ----------- = ---
                   1813:  *   y + (Ny/Nz)    y
                   1814:  *
                   1815:  * Proof: we can assume x and y are integral. Let p be any prime ideal
                   1816:  *
                   1817:  * If p | Nz, then it divides neither Nx/Nz nor Ny/Nz (since Nx/Nz is the
                   1818:  * product of the integers N(x/y) and N(y/z)).  Both the numerator and the
                   1819:  * denominator on the left will be coprime to p.  So will x/y, since x/y is
                   1820:  * assumed integral and its norm N(x/y) is coprime to p.
                   1821:  *
                   1822:  * If instead p does not divide Nz, then v_p (Nx/Nz) = v_p (Nx) >= v_p(x).
                   1823:  * Hence v_p (x + Nx/Nz) = v_p(x).  Likewise for the denominators.  QED.
                   1824:  *
                   1825:  *             Peter Montgomery.  July, 1994. */
                   1826: GEN
                   1827: idealdivexact(GEN nf, GEN x0, GEN y0)
                   1828: {
                   1829:   ulong av = avma;
                   1830:   GEN x,y,Nx,Ny,Nz, cy = content(y0);
                   1831:
                   1832:   nf = checknf(nf);
                   1833:   if (gcmp0(cy)) err(talker, "cannot invert zero ideal");
                   1834:
                   1835:   x = gdiv(x0,cy); Nx = idealnorm(nf,x);
                   1836:   if (gcmp0(Nx)) { avma = av; return gcopy(x0); } /* numerator is zero */
                   1837:
                   1838:   y = gdiv(y0,cy); Ny = idealnorm(nf,y);
                   1839:   if (!gcmp1(denom(x)) || !divise(Nx,Ny))
                   1840:     err(talker, "quotient not integral in idealdivexact");
                   1841:   /* Find a norm Nz | Ny such that gcd(Nx/Nz, Nz) = 1 */
                   1842:   for (Nz = Ny;;)
                   1843:   {
                   1844:     GEN p1 = mppgcd(Nz, divii(Nx,Nz));
                   1845:     if (is_pm1(p1)) break;
                   1846:     Nz = divii(Nz,p1);
                   1847:   }
                   1848:   /* Replace x/y  by  x+(Nx/Nz) / y+(Ny/Nz) */
                   1849:   x = idealhermite_aux(nf, x);
                   1850:   x = hnfmodid(x, divii(Nx,Nz));
                   1851:   /* y reduced to unit ideal ? */
                   1852:   if (Nz == Ny) return gerepileupto(av, x);
                   1853:
                   1854:   y = idealhermite_aux(nf, y);
                   1855:   y = hnfmodid(y, divii(Ny,Nz));
                   1856:   y = hnfideal_inv(nf,y);
                   1857:   return gerepileupto(av, idealmat_mul(nf,x,y));
                   1858: }
                   1859:
                   1860: GEN
                   1861: idealintersect(GEN nf, GEN x, GEN y)
                   1862: {
                   1863:   long av=avma,lz,i,N;
                   1864:   GEN z,dx,dy;
                   1865:
                   1866:   nf=checknf(nf); N=degpol(nf[1]);
                   1867:   if (idealtyp(&x,&z)!=t_MAT || lg(x)!=N+1) x=idealhermite_aux(nf,x);
                   1868:   if (idealtyp(&y,&z)!=t_MAT || lg(y)!=N+1) y=idealhermite_aux(nf,y);
                   1869:   if (lg(x) == 1 || lg(y) == 1) { avma = av; return cgetg(1, t_MAT); }
                   1870:   dx=denom(x); if (!gcmp1(dx))   y = gmul(y,dx);
                   1871:   dy=denom(y); if (!gcmp1(dy)) { x = gmul(x,dy); dx = mulii(dx,dy); }
                   1872:   z = kerint(concatsp(x,y)); lz=lg(z);
                   1873:   for (i=1; i<lz; i++) setlg(z[i], N+1);
                   1874:   z = gmul(x,z);
                   1875:   z = hnfmodid(z, glcm(gcoeff(x,1,1), gcoeff(y,1,1)));
                   1876:   if (!gcmp1(dx)) z = gdiv(z,dx);
                   1877:   return gerepileupto(av,z);
                   1878: }
                   1879:
                   1880: static GEN
                   1881: computet2twist(GEN nf, GEN vdir)
                   1882: {
                   1883:   long j, ru = lg(nf[6]);
                   1884:   GEN p1,MC, mat = (GEN)nf[5];
                   1885:
                   1886:   if (!vdir) return (GEN)mat[3];
                   1887:   MC=(GEN)mat[2]; p1=cgetg(ru,t_MAT);
                   1888:   for (j=1; j<ru; j++)
                   1889:   {
                   1890:     GEN v = (GEN)vdir[j];
                   1891:     if (gcmp0(v))
                   1892:       p1[j] = MC[j];
                   1893:     else if (typ(v) == t_INT)
                   1894:       p1[j] = lmul2n((GEN)MC[j],itos(v)<<1);
                   1895:     else
                   1896:       p1[j] = lmul((GEN)MC[j],gpui(stoi(4),v,0));
                   1897:   }
                   1898:   return mulmat_real(p1,(GEN)mat[1]);
                   1899: }
                   1900:
                   1901: static GEN
                   1902: chk_vdir(GEN nf, GEN vdir)
                   1903: {
                   1904:   if (!vdir || gcmp0(vdir)) return NULL;
                   1905:   if (typ(vdir)!=t_VEC || lg(vdir) != lg(nf[6])) err(idealer5);
                   1906:   return vdir;
                   1907: }
                   1908:
                   1909: /* assume I in NxN matrix form (not necessarily HNF) */
                   1910: static GEN
                   1911: ideallllred_elt_i(GEN *ptnf, GEN I, GEN vdir, long *ptprec)
                   1912: {
                   1913:   GEN T2, u, y, nf = *ptnf;
                   1914:   long i, e, prec = *ptprec;
                   1915:
                   1916:   for (i=1; ; i++)
                   1917:   {
                   1918:     T2 = computet2twist(nf,vdir);
                   1919:     y = qf_base_change(T2,I,1);
                   1920:     e = 1 + (gexpo(y)>>TWOPOTBITS_IN_LONG);
                   1921:     if (e < 0) e = 0;
                   1922:     u = lllgramintern(y,100,1, e + prec);
                   1923:     if (u) break;
                   1924:
                   1925:     if (i == MAXITERPOL) err(accurer,"ideallllred");
                   1926:     prec = (prec<<1)-2;
                   1927:     if (DEBUGLEVEL) err(warnprec,"ideallllred",prec);
                   1928:     nf = nfnewprec(nf, (e>>1)+prec);
                   1929:   }
                   1930:   *ptprec = prec;
                   1931:   *ptnf = nf;
                   1932:   return gmul(I, (GEN)u[1]); /* small elt in I */
                   1933: }
                   1934:
                   1935: GEN
                   1936: ideallllred_elt(GEN nf, GEN I)
                   1937: {
                   1938:   long prec = DEFAULTPREC;
                   1939:   return ideallllred_elt_i(&nf, I, NULL, &prec);
                   1940: }
                   1941:
                   1942: GEN
                   1943: ideallllred(GEN nf, GEN I, GEN vdir, long prec)
                   1944: {
                   1945:   ulong av = avma;
                   1946:   long N,i,nfprec;
                   1947:   GEN J,I0,Ired,res,aI,y,x,Nx,b,c1,c,pol;
                   1948:
                   1949:   nf = checknf(nf); nfprec = nfgetprec(nf);
                   1950:   if (prec <= 0) prec = nfprec;
                   1951:   pol = (GEN)nf[1]; N = degpol(pol);
                   1952:   Nx = x = c = c1 = NULL;
                   1953:   if (idealtyp(&I,&aI) == id_PRINCIPAL)
                   1954:   {
                   1955:     if (gcmp0(I)) { y=gun; I=cgetg(1,t_MAT); } else { y=I; I=idmat(N); }
                   1956:     goto END;
                   1957:   }
                   1958:
                   1959:   if (DEBUGLEVEL>5) msgtimer("entering idealllred");
                   1960:   I0 = I;
                   1961:   if (typ(I) != id_MAT || lg(I) != N+1) I = idealhermite_aux(nf,I);
                   1962:   c1 = content(I); if (gcmp1(c1)) c1 = NULL; else I = gdiv(I,c1);
                   1963:   if (2 * expi(gcoeff(I,1,1)) >= bit_accuracy(nfprec))
                   1964:     Ired = gmul(I, lllintpartial(I));
                   1965:   else
                   1966:     Ired = I;
                   1967:   y = ideallllred_elt_i(&nf, Ired, chk_vdir(nf,vdir), &prec);
                   1968:
                   1969:   if (isnfscalar(y))
                   1970:   { /* already reduced */
                   1971:     if (!aI) I = gcopy(I);
                   1972:     y = NULL; goto END;
                   1973:   }
                   1974:   if (DEBUGLEVEL>5) msgtimer("LLL reduction");
                   1975:
                   1976:   x = gmul((GEN)nf[7], y); Nx = subres(pol,x);
                   1977:   b = gmul(Nx, ginvmod(x,pol));
                   1978:   b = algtobasis_intern(nf,b);
                   1979:   J = cgetg(N+1,t_MAT); /* = I Nx / x integral */
                   1980:   for (i=1; i<=N; i++)
                   1981:     J[i] = (long)element_muli(nf,b,(GEN)Ired[i]);
                   1982:   c = content(J); if (!gcmp1(c)) J = gdiv(J,c);
                   1983:  /* c = content (I Nx / x) = Nx / den(I/x) --> d = den(I/x) = Nx / c
                   1984:   * J = (d I / x); I[1,1] = I \cap Z --> d I[1,1] belongs to J and Z */
                   1985:   if (isnfscalar((GEN)I[1]))
                   1986:     b = mulii(gcoeff(I,1,1), divii(Nx, c));
                   1987:   else
                   1988:     b = detint(J);
                   1989:   I = hnfmodid(J,b);
                   1990:   if (DEBUGLEVEL>5) msgtimer("new ideal");
                   1991:
                   1992: END:
                   1993:   if (!aI) return gerepileupto(av, I);
                   1994:
                   1995:   switch(typ(aI))
                   1996:   {
                   1997:     case t_POLMOD: case t_MAT: /* compute y, I0 = J y */
                   1998:       if (!Nx) y = c1;
                   1999:       else
                   2000:       {
                   2001:         if (c1) c = gmul(c,c1);
                   2002:         y = gmul(x, gdiv(c,Nx));
                   2003:       }
                   2004:       break;
                   2005:
                   2006:     case t_COL:
                   2007:       if (y) y = vecinv(gmul(gmael(nf,5,1), y));
                   2008:       break;
                   2009:
                   2010:     default:
                   2011:       if (y) y = gneg_i(get_arch(nf,y,prec));
                   2012:       break;
                   2013:   }
                   2014:   if (y) aI = arch_mul(aI,y);
                   2015:   res = cgetg(3,t_VEC);
                   2016:   res[1] = (long)I;
                   2017:   res[2] = (long)aI; return gerepilecopy(av, res);
                   2018: }
                   2019:
                   2020: GEN
                   2021: minideal(GEN nf, GEN x, GEN vdir, long prec)
                   2022: {
                   2023:   long av = avma, N, tx;
                   2024:   GEN p1,y;
                   2025:
                   2026:   nf = checknf(nf);
                   2027:   vdir = chk_vdir(nf,vdir);
                   2028:   N = degpol(nf[1]);
                   2029:   tx = idealtyp(&x,&y);
                   2030:   if (tx == id_PRINCIPAL) return gcopy(x);
                   2031:   if (tx != id_MAT || lg(x) != N+1) x = idealhermite_aux(nf,x);
                   2032:
                   2033:   p1 = computet2twist(nf,vdir);
                   2034:   y = qf_base_change(p1,x,0);
                   2035:   y = gmul(x, (GEN)lllgram(y,prec)[1]);
                   2036:   return gerepileupto(av, principalidele(nf,y,prec));
                   2037: }
                   2038: static GEN
                   2039: appr_reduce(GEN s, GEN y, long N)
                   2040: {
                   2041:   GEN p1,u,z = cgetg(N+2,t_MAT);
                   2042:   long i;
                   2043:
                   2044:   s=gmod(s,gcoeff(y,1,1)); y=gmul(y,lllint(y));
                   2045:   for (i=1; i<=N; i++) z[i]=y[i]; z[N+1]=(long)s;
                   2046:   u=(GEN)ker(z)[1]; p1 = denom(u);
                   2047:   if (!gcmp1(p1)) u=gmul(u,p1);
                   2048:   p1=(GEN)u[N+1]; setlg(u,N+1);
                   2049:   for (i=1; i<=N; i++) u[i]=lround(gdiv((GEN)u[i],p1));
                   2050:   return gadd(s, gmul(y,u));
                   2051: }
                   2052:
                   2053: /* Given a fractional ideal x (if fl=0) or a prime ideal factorization
                   2054:  * with possibly zero or negative exponents (if fl=1), gives a b such that
                   2055:  * v_p(b)=v_p(x) for all prime ideals p dividing x (or in the factorization)
                   2056:  * and v_p(b)>=0 for all other p, using the (standard) proof given in GTM 138.
                   2057:  * Certainly not the most efficient, but sure.
                   2058:  */
                   2059: GEN
                   2060: idealappr0(GEN nf, GEN x, long fl)
                   2061: {
                   2062:   long av=avma,tetpil,i,j,k,l,N,r,r2;
                   2063:   GEN fact,fact2,list,ep,ep1,ep2,y,z,v,p1,p2,p3,p4,s,pr,alpha,beta,den;
                   2064:
                   2065:   if (DEBUGLEVEL>4)
                   2066:   {
                   2067:     fprintferr(" entree dans idealappr0() :\n");
                   2068:     fprintferr(" x = "); outerr(x);
                   2069:   }
                   2070:   nf=checknf(nf); N=degpol(nf[1]);
                   2071:   if (fl)
                   2072:   {
                   2073:     if (typ(x)!=t_MAT || lg(x)!=3)
                   2074:       err(talker,"not a prime ideal factorization in idealappr0");
                   2075:     fact=x; list=(GEN)fact[1]; ep=(GEN)fact[2]; r=lg(list);
                   2076:     if (r==1) return gscalcol_i(gun,N);
                   2077:     for (i=1; i<r; i++)
                   2078:       if (signe(ep[i]) < 0) break;
                   2079:     if (i < r)
                   2080:     {
                   2081:       ep1=cgetg(r,t_COL);
                   2082:       for (i=1; i<r; i++)
                   2083:         ep1[i] = (signe(ep[i])>=0)? zero: lnegi((GEN)ep[i]);
                   2084:       fact[2]=(long)ep1; beta=idealappr0(nf,fact,1);
                   2085:       fact2=idealfactor(nf,beta);
                   2086:       p1=(GEN)fact2[1]; r2=lg(p1);
                   2087:       ep2=(GEN)fact2[2]; l=r+r2-1;
                   2088:       z=cgetg(l,t_VEC); for (i=1; i<r; i++) z[i]=list[i];
                   2089:       ep1=cgetg(l,t_VEC);
                   2090:       for (i=1; i<r; i++)
                   2091:         ep1[i] = (signe(ep[i])<=0)? zero: licopy((GEN)ep[i]);
                   2092:       j=r-1;
                   2093:       for (i=1; i<r2; i++)
                   2094:       {
                   2095:         p3=(GEN)p1[i]; k=1;
                   2096:         while (k<r &&
                   2097:           (    !gegal((GEN)p3[1],gmael(list,k,1))
                   2098:             || !element_val(nf,(GEN)p3[2],(GEN)list[k]) )) k++;
                   2099:         if (k==r) { j++; z[j]=(long)p3; ep1[j]=ep2[i]; }
                   2100:       }
                   2101:       fact=cgetg(3,t_MAT);
                   2102:       fact[1]=(long)z; setlg(z,j+1);
                   2103:       fact[2]=(long)ep1; setlg(ep1,j+1);
                   2104:       alpha=idealappr0(nf,fact,1); tetpil=avma;
                   2105:       if (DEBUGLEVEL>2)
                   2106:       {
                   2107:         fprintferr(" alpha = "); outerr(alpha);
                   2108:         fprintferr(" beta = "); outerr(beta);
                   2109:       }
                   2110:       return gerepile(av,tetpil,element_div(nf,alpha,beta));
                   2111:     }
                   2112:     y=idmat(N);
                   2113:     for (i=1; i<r; i++)
                   2114:     {
                   2115:       pr=(GEN)list[i];
                   2116:       if (signe(ep[i]))
                   2117:       {
                   2118:         p4=addsi(1,(GEN)ep[i]); p1=powgi((GEN)pr[1],p4);
                   2119:        if (cmpis((GEN)pr[4],N))
                   2120:        {
                   2121:          p2=cgetg(3,t_MAT);
                   2122:           p2[1]=(long)gscalcol_i(p1, N);
                   2123:          p2[2]=(long)element_pow(nf,(GEN)pr[2],p4);
                   2124:           y=idealmat_mul(nf,y,p2);
                   2125:        }
                   2126:        else y=gmul(p1,y);
                   2127:       }
                   2128:       else y=idealmulprime(nf,y,pr);
                   2129:     }
                   2130:   }
                   2131:   else
                   2132:   {
                   2133:     den=denom(x); if (gcmp1(den)) den=NULL; else x=gmul(den,x);
                   2134:     x=idealhermite_aux(nf,x);
                   2135:     fact=idealfactor(nf,x);
                   2136:     list=(GEN)fact[1]; ep=(GEN)fact[2]; r=lg(list);
                   2137:     if (r==1) { avma=av; return gscalcol_i(gun,N); }
                   2138:     if (den)
                   2139:     {
                   2140:       fact2=idealfactor(nf,den);
                   2141:       p1=(GEN)fact2[1]; r2=lg(p1);
                   2142:       l=r+r2-1;
                   2143:       z=cgetg(l,t_COL);   for (i=1; i<r; i++) z[i]=list[i];
                   2144:       ep1=cgetg(l,t_COL); for (i=1; i<r; i++) ep1[i]=ep[i];
                   2145:       j=r-1;
                   2146:       for (i=1; i<r2; i++)
                   2147:       {
                   2148:        p3=(GEN)p1[i]; k=1;
                   2149:        while (k<r && !gegal((GEN)list[k],p3)) k++;
                   2150:        if (k==r){ j++; z[j]=(long)p3; ep1[j]=zero; }
                   2151:       }
                   2152:       fact=cgetg(3,t_MAT);
                   2153:       fact[1]=(long)z; setlg(z,j+1);
                   2154:       fact[2]=(long)ep1; setlg(ep1,j+1);
                   2155:       alpha=idealappr0(nf,fact,1);
                   2156:       if (DEBUGLEVEL>2) { fprintferr(" alpha = "); outerr(alpha); }
                   2157:       tetpil=avma; return gerepile(av,tetpil,gdiv(alpha,den));
                   2158:     }
                   2159:     y=x; for (i=1; i<r; i++) y=idealmulprime(nf,y,(GEN)list[i]);
                   2160:   }
                   2161:
                   2162:   z=cgetg(r,t_VEC);
                   2163:   for (i=1; i<r; i++)
                   2164:   {
                   2165:     pr=(GEN)list[i]; p4=addsi(1, (GEN)ep[i]); p1=powgi((GEN)pr[1],p4);
                   2166:     if (cmpis((GEN)pr[4],N))
                   2167:     {
                   2168:       p2=cgetg(3,t_MAT);
                   2169:       p2[1]=(long)gscalcol_i(p1,N);
                   2170:       p2[2]=(long)element_pow(nf,(GEN)pr[5],p4);
                   2171:       z[i]=ldiv(idealmat_mul(nf,y,p2),p1);
                   2172:     }
                   2173:     else z[i]=ldiv(y,p1);
                   2174:   }
                   2175:   v=idealaddmultoone(nf,z);
                   2176:   s=cgetg(N+1,t_COL); for (i=1; i<=N; i++) s[i]=zero;
                   2177:   for (i=1; i<r; i++)
                   2178:   {
                   2179:     pr=(GEN)list[i];
                   2180:     if (signe(ep[i]))
                   2181:       s=gadd(s,element_mul(nf,(GEN)v[i],element_pow(nf,(GEN)pr[2],(GEN)ep[i])));
                   2182:     else s=gadd(s,(GEN)v[i]);
                   2183:   }
                   2184:   p3 = appr_reduce(s,y,N);
                   2185:   if (DEBUGLEVEL>2)
                   2186:     { fprintferr(" sortie de idealappr0 p3 = "); outerr(p3); }
                   2187:   return gerepileupto(av,p3);
                   2188: }
                   2189:
                   2190: /* Given a prime ideal factorization x with possibly zero or negative exponents,
                   2191:  * and a vector y of elements of nf, gives a b such that
                   2192:  * v_p(b-y_p)>=v_p(x) for all prime ideals p in the ideal factorization
                   2193:  * and v_p(b)>=0 for all other p, using the (standard) proof given in GTM 138.
                   2194:  * Certainly not the most efficient, but sure.
                   2195:  */
                   2196: GEN
                   2197: idealchinese(GEN nf, GEN x, GEN y)
                   2198: {
                   2199:   long ty=typ(y),av=avma,i,j,k,l,N,r,r2;
                   2200:   GEN fact,fact2,list,ep,ep1,ep2,z,t,v,p1,p2,p3,p4,s,pr,den;
                   2201:
                   2202:   if (DEBUGLEVEL>4)
                   2203:   {
                   2204:     fprintferr(" entree dans idealchinese() :\n");
                   2205:     fprintferr(" x = "); outerr(x);
                   2206:     fprintferr(" y = "); outerr(y);
                   2207:   }
                   2208:   nf=checknf(nf); N=degpol(nf[1]);
                   2209:   if (typ(x)!=t_MAT ||(lg(x)!=3))
                   2210:     err(talker,"not a prime ideal factorization in idealchinese");
                   2211:   fact=x; list=(GEN)fact[1]; ep=(GEN)fact[2]; r=lg(list);
                   2212:   if (!is_vec_t(ty) || lg(y)!=r)
                   2213:     err(talker,"not a suitable vector of elements in idealchinese");
                   2214:   if (r==1) return gscalcol_i(gun,N);
                   2215:
                   2216:   den=denom(y);
                   2217:   if (!gcmp1(den))
                   2218:   {
                   2219:     fact2=idealfactor(nf,den);
                   2220:     p1=(GEN)fact2[1]; r2=lg(p1);
                   2221:     ep2=(GEN)fact2[2]; l=r+r2-1;
                   2222:     z=cgetg(l,t_VEC); for (i=1; i<r; i++) z[i]=list[i];
                   2223:     ep1=cgetg(l,t_VEC); for (i=1; i<r; i++) ep1[i]=ep[i];
                   2224:     j=r-1;
                   2225:     for (i=1; i<r2; i++)
                   2226:     {
                   2227:       p3=(GEN)p1[i]; k=1;
                   2228:       while (k<r && !gegal((GEN)list[k],p3)) k++;
                   2229:       if (k==r) { j++; z[j]=(long)p3; ep1[j]=ep2[i]; }
                   2230:       else ep1[k]=ladd((GEN)ep1[k],(GEN)ep2[i]);
                   2231:     }
                   2232:     r=j+1; setlg(z,r); setlg(ep1,r); list=z; ep=ep1;
                   2233:   }
                   2234:   for (i=1; i<r; i++)
                   2235:     if (signe(ep[i])<0) ep[i] = zero;
                   2236:   t=idmat(N);
                   2237:   for (i=1; i<r; i++)
                   2238:   {
                   2239:     pr=(GEN)list[i]; p4=(GEN)ep[i];
                   2240:     if (signe(p4))
                   2241:     {
                   2242:       if (cmpis((GEN)pr[4],N))
                   2243:       {
                   2244:        p2=cgetg(3,t_MAT);
                   2245:         p2[1]=(long)gscalcol_i(powgi((GEN)pr[1],p4), N);
                   2246:        p2[2]=(long)element_pow(nf,(GEN)pr[2],p4);
                   2247:         t=idealmat_mul(nf,t,p2);
                   2248:       }
                   2249:       else t=gmul(powgi((GEN)pr[1],p4),t);
                   2250:     }
                   2251:   }
                   2252:   z=cgetg(r,t_VEC);
                   2253:   for (i=1; i<r; i++)
                   2254:   {
                   2255:     pr=(GEN)list[i]; p4=(GEN)ep[i];
                   2256:     if (cmpis((GEN)pr[4],N))
                   2257:     {
                   2258:       p2=cgetg(3,t_MAT); p1=powgi((GEN)pr[1],p4);
                   2259:       p2[1]=(long)gscalcol_i(p1,N);
                   2260:       p2[2]=(long)element_pow(nf,(GEN)pr[5],p4);
                   2261:       z[i]=ldiv(idealmat_mul(nf,t,p2),p1);
                   2262:     }
                   2263:     else z[i]=ldiv(t,powgi((GEN)pr[1],p4));
                   2264:   }
                   2265:   v=idealaddmultoone(nf,z);
                   2266:   s=cgetg(N+1,t_COL); for (i=1; i<=N; i++) s[i]=zero;
                   2267:   for (i=1; i<r; i++)
                   2268:     s = gadd(s,element_mul(nf,(GEN)v[i],(GEN)y[i]));
                   2269:
                   2270:   p3 = appr_reduce(s,t,N);
                   2271:   if (DEBUGLEVEL>2)
                   2272:     { fprintferr(" sortie de idealchinese() : p3 = "); outerr(p3); }
                   2273:   return gerepileupto(av,p3);
                   2274: }
                   2275:
                   2276: GEN
                   2277: idealappr(GEN nf, GEN x) { return idealappr0(nf,x,0); }
                   2278:
                   2279: GEN
                   2280: idealapprfact(GEN nf, GEN x) { return idealappr0(nf,x,1); }
                   2281:
                   2282: /* Given an integral ideal x and a in x, gives a b such that
                   2283:  * x=aZ_K+bZ_K using a different algorithm than ideal_two_elt
                   2284:  */
                   2285: GEN
                   2286: ideal_two_elt2(GEN nf, GEN x, GEN a)
                   2287: {
                   2288:   long ta=typ(a), av=avma,tetpil,i,r;
                   2289:   GEN con,ep,b,list,fact;
                   2290:
                   2291:   nf = checknf(nf);
                   2292:   if (!is_extscalar_t(ta) && typ(a)!=t_COL)
                   2293:     err(typeer,"ideal_two_elt2");
                   2294:   x = idealhermite_aux(nf,x);
                   2295:   if (gcmp0(x))
                   2296:   {
                   2297:     if (!gcmp0(a)) err(talker,"element not in ideal in ideal_two_elt2");
                   2298:     avma=av; return gcopy(a);
                   2299:   }
                   2300:   con = content(x);
                   2301:   if (gcmp1(con)) con = NULL; else { x = gdiv(x,con); a = gdiv(a,con); }
                   2302:   a = principalideal(nf,a);
                   2303:   if (!gcmp1(denom(gauss(x,a))))
                   2304:     err(talker,"element does not belong to ideal in ideal_two_elt2");
                   2305:
                   2306:   fact=idealfactor(nf,a); list=(GEN)fact[1];
                   2307:   r=lg(list); ep = (GEN)fact[2];
                   2308:   for (i=1; i<r; i++) ep[i]=lstoi(idealval(nf,x,(GEN)list[i]));
                   2309:   b = centermod(idealappr0(nf,fact,1), gcoeff(x,1,1));
                   2310:   tetpil=avma; b = con? gmul(b,con): gcopy(b);
                   2311:   return gerepile(av,tetpil,b);
                   2312: }
                   2313:
                   2314: /* Given 2 integral ideals x and y in a number field nf gives a beta
                   2315:  * belonging to nf such that beta.x is an integral ideal coprime to y
                   2316:  */
                   2317: GEN
                   2318: idealcoprime(GEN nf, GEN x, GEN y)
                   2319: {
                   2320:   long av=avma,tetpil,i,r;
                   2321:   GEN fact,list,p2,ep;
                   2322:
                   2323:   if (DEBUGLEVEL>4)
                   2324:   {
                   2325:     fprintferr(" entree dans idealcoprime() :\n");
                   2326:     fprintferr(" x = "); outerr(x);
                   2327:     fprintferr(" y = "); outerr(y);
                   2328:   }
                   2329:   fact=idealfactor(nf,y); list=(GEN)fact[1];
                   2330:   r=lg(list); ep = (GEN)fact[2];
                   2331:   for (i=1; i<r; i++) ep[i]=lstoi(-idealval(nf,x,(GEN)list[i]));
                   2332:   tetpil=avma; p2=idealappr0(nf,fact,1);
                   2333:   if (DEBUGLEVEL>4)
                   2334:     { fprintferr(" sortie de idealcoprime() : p2 = "); outerr(p2); }
                   2335:   return gerepile(av,tetpil,p2);
                   2336: }
                   2337:
                   2338: /* returns the first index i<=n such that x=v[i] if it exits, 0 otherwise */
                   2339: long
                   2340: isinvector(GEN v, GEN x, long n)
                   2341: {
                   2342:   long i;
                   2343:
                   2344:   for (i=1; i<=n; i++)
                   2345:     if (gegal((GEN)v[i],x)) return i;
                   2346:   return 0;
                   2347: }
                   2348:
                   2349: GEN
                   2350: elt_mul_get_table(GEN nf, GEN x)
                   2351: {
                   2352:   long i,lx = lg(x);
                   2353:   GEN mul=cgetg(lx,t_MAT);
                   2354:
                   2355:   /* assume w_1 = 1 */
                   2356:   mul[1]=(long)x;
                   2357:   for (i=2; i<lx; i++) mul[i] = (long)element_mulid(nf,x,i);
                   2358:   return mul;
                   2359: }
                   2360:
                   2361: GEN
                   2362: elt_mul_table(GEN mul, GEN z)
                   2363: {
                   2364:   long av = avma, i, lx = lg(mul);
                   2365:   GEN p1 = gmul((GEN)z[1], (GEN)mul[1]);
                   2366:
                   2367:   for (i=2; i<lx; i++)
                   2368:     if (!gcmp0((GEN)z[i])) p1 = gadd(p1, gmul((GEN)z[i], (GEN)mul[i]));
                   2369:   return gerepileupto(av, p1);
                   2370: }
                   2371:
                   2372: GEN
                   2373: element_mulvec(GEN nf, GEN x, GEN v)
                   2374: {
                   2375:   long lv=lg(v),i;
                   2376:   GEN y = cgetg(lv,t_COL);
                   2377:
                   2378:   if (typ(x) == t_COL)
                   2379:   {
                   2380:     GEN mul = elt_mul_get_table(nf,x);
                   2381:     for (i=1; i<lv; i++)
                   2382:       y[i] = (long)elt_mul_table(mul,(GEN)v[i]);
                   2383:   }
                   2384:   else
                   2385:   { /* scalar */
                   2386:     for (i=1; i<lv; i++)
                   2387:       y[i] = lmul(x, (GEN)v[i]);
                   2388:   }
                   2389:   return y;
                   2390: }
                   2391:
                   2392: static GEN
                   2393: element_mulvecrow(GEN nf, GEN x, GEN m, long i, long lim)
                   2394: {
                   2395:   long lv,j;
                   2396:   GEN y, mul = elt_mul_get_table(nf,x);
                   2397:
                   2398:   lv=min(lg(m),lim+1); y=cgetg(lv,t_VEC);
                   2399:   for (j=1; j<lv; j++)
                   2400:     y[j] = (long)elt_mul_table(mul,gcoeff(m,i,j));
                   2401:   return y;
                   2402: }
                   2403:
                   2404: /* Given an element x and an ideal in matrix form (not necessarily HNF),
                   2405:  * gives an r such that x-r is in ideal and r is small. No checks
                   2406:  */
                   2407: GEN
                   2408: element_reduce(GEN nf, GEN x, GEN ideal)
                   2409: {
                   2410:   long tx=typ(x),av=avma,tetpil,N,i;
                   2411:   GEN p1,u;
                   2412:
                   2413:   if (is_extscalar_t(tx))
                   2414:     x = algtobasis_intern(checknf(nf), x);
                   2415:   N = lg(x);
                   2416:   if (typ(ideal) != t_MAT || lg(ideal) != N) err(typeer,"element_reduce");
                   2417:   p1=cgetg(N+1,t_MAT);
                   2418:   for (i=1; i<N; i++) p1[i]=ideal[i];
                   2419:   p1[N]=(long)x; u=(GEN)ker(p1)[1];
                   2420:   p1=(GEN)u[N]; setlg(u,N);
                   2421:   for (i=1; i<N; i++) u[i]=lround(gdiv((GEN)u[i],p1));
                   2422:   u=gmul(ideal,u); tetpil=avma;
                   2423:   return gerepile(av,tetpil,gadd(u,x));
                   2424: }
                   2425:
                   2426: /* A torsion-free module M over Z_K will be given by a row vector [A,I] with
                   2427:  * two components. I=[\a_1,...,\a_k] is a row vector of k fractional ideals
                   2428:  * given in HNF. A is an nxk matrix (same k and n the rank of the module)
                   2429:  * such that if A_j is the j-th column of A then M=\a_1A_1+...\a_kA_k. We say
                   2430:  * that [A,I] is a pseudo-basis if k=n
                   2431:  */
                   2432:
                   2433: /* Given a torsion-free module x as above outputs a pseudo-basis for x in
                   2434:  * Hermite Normal Form
                   2435:  */
                   2436: GEN
                   2437: nfhermite(GEN nf, GEN x)
                   2438: {
                   2439:   long av0 = avma, av,lim,i,j,def,k,m;
                   2440:   GEN p1,p2,y,A,I,J;
                   2441:
                   2442:   nf=checknf(nf);
                   2443:   if (typ(x)!=t_VEC || lg(x)!=3) err(talker,"not a module in nfhermite");
                   2444:   A=(GEN)x[1]; I=(GEN)x[2]; k=lg(A)-1;
                   2445:   if (typ(A)!=t_MAT) err(talker,"not a matrix in nfhermite");
                   2446:   if (typ(I)!=t_VEC || lg(I)!=k+1)
                   2447:     err(talker,"not a correct ideal list in nfhermite");
                   2448:   if (!k) err(talker,"not a matrix of maximal rank in nfhermite");
                   2449:   m=lg(A[1])-1;
                   2450:   if (k<m) err(talker,"not a matrix of maximal rank in nfhermite");
                   2451:
                   2452:   av = avma; lim = stack_lim(av, 1);
                   2453:   p1 = cgetg(k+1,t_MAT); for (j=1; j<=k; j++) p1[j]=A[j];
                   2454:   A = p1; I = dummycopy(I);
                   2455:   J = cgetg(k+1,t_VEC);
                   2456:   for (j=1; j<=k; j++)
                   2457:   {
                   2458:     if (typ(I[j])!=t_MAT) I[j]=(long)idealhermite_aux(nf,(GEN)I[j]);
                   2459:     J[j] = zero;
                   2460:   }
                   2461:
                   2462:   def = k+1;
                   2463:   for (i=m; i>=1; i--)
                   2464:   {
                   2465:     GEN den,p4,p5,p6,u,v,newid, invnewid = NULL;
                   2466:
                   2467:     def--; j=def; while (j>=1 && gcmp0(gcoeff(A,i,j))) j--;
                   2468:     if (!j) err(talker,"not a matrix of maximal rank in nfhermite");
                   2469:     if (j==def) j--;
                   2470:     else
                   2471:     {
                   2472:       p1=(GEN)A[j]; A[j]=A[def]; A[def]=(long)p1;
                   2473:       p1=(GEN)I[j]; I[j]=I[def]; I[def]=(long)p1;
                   2474:     }
                   2475:     p1=gcoeff(A,i,def); p2=element_inv(nf,p1);
                   2476:     A[def]=(long)element_mulvec(nf,p2,(GEN)A[def]);
                   2477:     I[def]=(long)idealmul(nf,p1,(GEN)I[def]);
                   2478:     for (  ; j; j--)
                   2479:     {
                   2480:       p1=gcoeff(A,i,j);
                   2481:       if (gcmp0(p1)) continue;
                   2482:
                   2483:       p2=idealmul(nf,p1,(GEN)I[j]);
                   2484:       newid = idealadd(nf,p2,(GEN)I[def]);
                   2485:       invnewid = hnfideal_inv(nf,newid);
                   2486:       p4 = idealmul(nf, p2,        invnewid);
                   2487:       p5 = idealmul(nf,(GEN)I[def],invnewid);
                   2488:       y = idealaddtoone(nf,p4,p5);
                   2489:       u=element_div(nf,(GEN)y[1],p1); v=(GEN)y[2];
                   2490:       p6=gsub((GEN)A[j],element_mulvec(nf,p1,(GEN)A[def]));
                   2491:       A[def]=ladd(element_mulvec(nf,u,(GEN)A[j]),
                   2492:                   element_mulvec(nf,v,(GEN)A[def]));
                   2493:       A[j]=(long)p6;
                   2494:       I[j]=(long)idealmul(nf,idealmul(nf,(GEN)I[j],(GEN)I[def]),invnewid);
                   2495:       I[def]=(long)newid; den=denom((GEN)I[j]);
                   2496:       if (!gcmp1(den))
                   2497:       {
                   2498:         I[j]=lmul(den,(GEN)I[j]);
                   2499:         A[j]=ldiv((GEN)A[j],den);
                   2500:       }
                   2501:     }
                   2502:     if (!invnewid) invnewid = hnfideal_inv(nf,(GEN)I[def]);
                   2503:     p1=(GEN)I[def]; J[def]=(long)invnewid;
                   2504:     for (j=def+1; j<=k; j++)
                   2505:     {
                   2506:       p2 = gsub(element_reduce(nf,gcoeff(A,i,j),idealmul(nf,p1,(GEN)J[j])),
                   2507:                 gcoeff(A,i,j));
                   2508:       A[j] = ladd((GEN)A[j],element_mulvec(nf,p2,(GEN)A[def]));
                   2509:     }
                   2510:     if (low_stack(lim, stack_lim(av1,1)))
                   2511:     {
                   2512:       GEN *gptr[3];
                   2513:       if(DEBUGMEM>1) err(warnmem,"nfhermite, i = %ld", i);
                   2514:       gptr[0]=&A; gptr[1]=&I; gptr[2]=&J; gerepilemany(av,gptr,3);
                   2515:     }
                   2516:   }
                   2517:   y = cgetg(3,t_VEC);
                   2518:   p1 = cgetg(m+1,t_MAT); y[1] = (long)p1;
                   2519:   p2 = cgetg(m+1,t_VEC); y[2] = (long)p2;
                   2520:   for (j=1; j<=m; j++) p1[j] = lcopy((GEN)A[j+k-m]);
                   2521:   for (j=1; j<=m; j++) p2[j] = lcopy((GEN)I[j+k-m]);
                   2522:   return gerepileupto(av0, y);
                   2523: }
                   2524:
                   2525: /* A torsion module M over Z_K will be given by a row vector [A,I,J] with
                   2526:  * three components. I=[b_1,...,b_n] is a row vector of k fractional ideals
                   2527:  * given in HNF, J=[a_1,...,a_n] is a row vector of n fractional ideals in
                   2528:  * HNF. A is an nxn matrix (same n) such that if A_j is the j-th column of A
                   2529:  * and e_n is the canonical basis of K^n, then
                   2530:  * M=(b_1e_1+...+b_ne_n)/(a_1A_1+...a_nA_n)
                   2531:  */
                   2532:
                   2533: /* We input a torsion module x=[A,I,J] as above, and output the
                   2534:  * smith normal form as K=[\c_1,...,\c_n] such that x=Z_K/\c_1+...+Z_K/\c_n.
                   2535:  */
                   2536: GEN
                   2537: nfsmith(GEN nf, GEN x)
                   2538: {
                   2539:   long av,tetpil,i,j,k,l,lim,c,n,m,N;
                   2540:   GEN p1,p2,p3,p4,z,b,u,v,w,d,dinv,unnf,A,I,J;
                   2541:
                   2542:   nf=checknf(nf); N=degpol(nf[1]);
                   2543:   if (typ(x)!=t_VEC || lg(x)!=4) err(talker,"not a module in nfsmith");
                   2544:   A=(GEN)x[1]; I=(GEN)x[2]; J=(GEN)x[3];
                   2545:   if (typ(A)!=t_MAT) err(talker,"not a matrix in nfsmith");
                   2546:   n=lg(A)-1;
                   2547:   if (typ(I)!=t_VEC || lg(I)!=n+1 || typ(J)!=t_VEC || lg(J)!=n+1)
                   2548:     err(talker,"not a correct ideal list in nfsmith");
                   2549:   if (!n) err(talker,"not a matrix of maximal rank in nfsmith");
                   2550:   m=lg(A[1])-1;
                   2551:   if (n<m) err(talker,"not a matrix of maximal rank in nfsmith");
                   2552:   if (n>m) err(impl,"nfsmith for non square matrices");
                   2553:
                   2554:   av=avma; lim=stack_lim(av,1);
                   2555:   p1 = cgetg(n+1,t_MAT); for (j=1; j<=n; j++) p1[j]=A[j];
                   2556:   A = p1; I = dummycopy(I); J=dummycopy(J);
                   2557:   for (j=1; j<=n; j++)
                   2558:     if (typ(I[j])!=t_MAT) I[j]=(long)idealhermite_aux(nf,(GEN)I[j]);
                   2559:   for (j=1; j<=n; j++)
                   2560:     if (typ(J[j])!=t_MAT) J[j]=(long)idealhermite_aux(nf,(GEN)J[j]);
                   2561:   for (i=n; i>=2; i--)
                   2562:   {
                   2563:     do
                   2564:     {
                   2565:       c=0;
                   2566:       for (j=i-1; j>=1; j--)
                   2567:       {
                   2568:        p1=gcoeff(A,i,j);
                   2569:        if (!gcmp0(p1))
                   2570:        {
                   2571:          p2=gcoeff(A,i,i);
                   2572:          d=nfbezout(nf,p2,p1,(GEN)J[i],(GEN)J[j],&u,&v,&w,&dinv);
                   2573:          if (!gcmp0(u))
                   2574:          {
                   2575:            if (!gcmp0(v))
                   2576:              b=gadd(element_mulvec(nf,u,(GEN)A[i]),
                   2577:                     element_mulvec(nf,v,(GEN)A[j]));
                   2578:            else b=element_mulvec(nf,u,(GEN)A[i]);
                   2579:          }
                   2580:          else b=element_mulvec(nf,v,(GEN)A[j]);
                   2581:          A[j]=lsub(element_mulvec(nf,p2,(GEN)A[j]),
                   2582:                    element_mulvec(nf,p1,(GEN)A[i]));
                   2583:          A[i]=(long)b; J[j]=(long)w; J[i]=(long)d;
                   2584:        }
                   2585:       }
                   2586:       for (j=i-1; j>=1; j--)
                   2587:       {
                   2588:        p1=gcoeff(A,j,i);
                   2589:        if (!gcmp0(p1))
                   2590:        {
                   2591:          p2=gcoeff(A,i,i);
                   2592:          d=nfbezout(nf,p2,p1,(GEN)I[i],(GEN)I[j],&u,&v,&w,&dinv);
                   2593:          if (gcmp0(u))
                   2594:            b=element_mulvecrow(nf,v,A,j,i);
                   2595:          else
                   2596:          {
                   2597:            if (gcmp0(v))
                   2598:              b=element_mulvecrow(nf,u,A,i,i);
                   2599:            else
                   2600:              b=gadd(element_mulvecrow(nf,u,A,i,i),
                   2601:                     element_mulvecrow(nf,v,A,j,i));
                   2602:          }
                   2603:          p3=gsub(element_mulvecrow(nf,p2,A,j,i),
                   2604:                  element_mulvecrow(nf,p1,A,i,i));
                   2605:          for (k=1; k<=i; k++) { coeff(A,j,k)=p3[k]; coeff(A,i,k)=b[k]; }
                   2606:          I[j]=(long)w; I[i]=(long)d; c++;
                   2607:        }
                   2608:       }
                   2609:       if (!c)
                   2610:       {
                   2611:        b=gcoeff(A,i,i); if (gcmp0(b)) break;
                   2612:
                   2613:        b=idealmul(nf,b,idealmul(nf,(GEN)J[i],(GEN)I[i]));
                   2614:        for (k=1; k<i; k++)
                   2615:          for (l=1; l<i; l++)
                   2616:          {
                   2617:            p3 = gcoeff(A,k,l);
                   2618:            if (!gcmp0(p3))
                   2619:             {
                   2620:               p4 = idealmul(nf,p3,idealmul(nf,(GEN)J[l],(GEN)I[k]));
                   2621:              if (!gegal(idealadd(nf,b,p4), b))
                   2622:               {
                   2623:                 b=idealdiv(nf,(GEN)I[k],(GEN)I[i]);
                   2624:                 p4=gauss(idealdiv(nf,(GEN)J[i],idealmul(nf,p3,(GEN)J[l])),b);
                   2625:                 l=1; while (l<=N && gcmp1(denom((GEN)p4[l]))) l++;
                   2626:                 if (l>N) err(talker,"bug2 in nfsmith");
                   2627:                 p3=element_mulvecrow(nf,(GEN)b[l],A,k,i);
                   2628:                 for (l=1; l<=i; l++)
                   2629:                   coeff(A,i,l) = ladd(gcoeff(A,i,l),(GEN)p3[l]);
                   2630:
                   2631:                 k = l = i; c = 1;
                   2632:               }
                   2633:             }
                   2634:          }
                   2635:       }
                   2636:       if (low_stack(lim, stack_lim(av,1)))
                   2637:       {
                   2638:         GEN *gptr[3];
                   2639:        if(DEBUGMEM>1) err(warnmem,"nfsmith");
                   2640:         gptr[0]=&A; gptr[1]=&I; gptr[2]=&J; gerepilemany(av,gptr,3);
                   2641:       }
                   2642:     }
                   2643:     while (c);
                   2644:   }
                   2645:   unnf=gscalcol_i(gun,N);
                   2646:   p1=gcoeff(A,1,1); coeff(A,1,1)=(long)unnf;
                   2647:   J[1]=(long)idealmul(nf,p1,(GEN)J[1]);
                   2648:   for (i=2; i<=n; i++)
                   2649:     if (!gegal(gcoeff(A,i,i),unnf)) err(talker,"bug in nfsmith");
                   2650:   tetpil=avma; z=cgetg(n+1,t_VEC);
                   2651:   for (i=1; i<=n; i++) z[i]=(long)idealmul(nf,(GEN)I[i],(GEN)J[i]);
                   2652:   return gerepile(av,tetpil,z);
                   2653: }
                   2654:
                   2655: /*******************************************************************/
                   2656: /*                                                                 */
                   2657: /*          ALGEBRE LINEAIRE DANS LES CORPS DE NOMBRES             */
                   2658: /*                                                                 */
                   2659: /*******************************************************************/
                   2660:
                   2661: #define trivlift(x) ((typ(x)==t_POLMOD)? (GEN)x[2]: lift_intern(x))
                   2662:
                   2663: GEN
                   2664: element_mulmodpr2(GEN nf, GEN x, GEN y, GEN prhall)
                   2665: {
                   2666:   long av=avma;
                   2667:   GEN p1;
                   2668:
                   2669:   nf=checknf(nf); checkprhall(prhall);
                   2670:   p1 = element_mul(nf,x,y);
                   2671:   return gerepileupto(av,nfreducemodpr(nf,p1,prhall));
                   2672: }
                   2673:
                   2674: /* On ne peut PAS definir ca comme les autres par
                   2675:  * #define element_divmodpr() nfreducemodpr(element_div())
                   2676:  * car le element_div ne marche pas en general
                   2677:  */
                   2678: GEN
                   2679: element_divmodpr(GEN nf, GEN x, GEN y, GEN prhall)
                   2680: {
                   2681:   long av=avma;
                   2682:   GEN p1;
                   2683:
                   2684:   nf=checknf(nf); checkprhall(prhall);
                   2685:   p1=lift_intern(gdiv(gmodulcp(gmul((GEN)nf[7],trivlift(x)), (GEN)nf[1]),
                   2686:                       gmodulcp(gmul((GEN)nf[7],trivlift(y)), (GEN)nf[1])));
                   2687:   p1=algtobasis_intern(nf,p1);
                   2688:   return gerepileupto(av,nfreducemodpr(nf,p1,prhall));
                   2689: }
                   2690:
                   2691: GEN
                   2692: element_invmodpr(GEN nf, GEN y, GEN prhall)
                   2693: {
                   2694:   long av=avma;
                   2695:   GEN p1;
                   2696:
                   2697:   p1=ginvmod(gmul((GEN)nf[7],trivlift(y)), (GEN)nf[1]);
                   2698:   p1=algtobasis_intern(nf,p1);
                   2699:   return gerepileupto(av,nfreducemodpr(nf,p1,prhall));
                   2700: }
                   2701:
                   2702: GEN
                   2703: element_powmodpr(GEN nf,GEN x,GEN k,GEN prhall)
                   2704: {
                   2705:   long av=avma,N,s;
                   2706:   GEN y,z;
                   2707:
                   2708:   nf=checknf(nf); checkprhall(prhall);
                   2709:   N=degpol(nf[1]);
                   2710:   s=signe(k); k=(s>=0)?k:negi(k);
                   2711:   z=x; y = gscalcol_i(gun,N);
                   2712:   for(;;)
                   2713:   {
                   2714:     if (mpodd(k)) y=element_mulmodpr(nf,z,y,prhall);
                   2715:     k=shifti(k,-1);
                   2716:     if (signe(k)) z=element_sqrmodpr(nf,z,prhall);
                   2717:     else
                   2718:     {
                   2719:       cgiv(k); if (s<0) y = element_invmodpr(nf,y,prhall);
                   2720:       return gerepileupto(av,y);
                   2721:     }
                   2722:   }
                   2723: }
                   2724:
                   2725: /* x est une matrice dont les coefficients sont des vecteurs dans la base
                   2726:  * d'entiers modulo un ideal premier prhall, sous forme reduite modulo prhall.
                   2727:  */
                   2728: GEN
                   2729: nfkermodpr(GEN nf, GEN x, GEN prhall)
                   2730: {
                   2731:   ulong av0,av,av1,lim;
                   2732:   long i,j,k,r,t,n,m,N;
                   2733:   GEN c,d,y,unnf,munnf,zeromodp,zeronf,p,pp,prh;
                   2734:
                   2735:   nf=checknf(nf); checkprhall(prhall);
                   2736:   if (typ(x)!=t_MAT) err(typeer,"nfkermodpr");
                   2737:   n=lg(x)-1; if (!n) return cgetg(1,t_MAT);
                   2738:   prh=(GEN)prhall[1]; av0=avma;
                   2739:   N=degpol(nf[1]); pp=gcoeff(prh,1,1);
                   2740:
                   2741:   zeromodp=gmodulsg(0,pp);
                   2742:   unnf=cgetg(N+1,t_COL); unnf[1]=(long)gmodulsg(1,pp);
                   2743:   zeronf=cgetg(N+1,t_COL); zeronf[1]=(long)zeromodp;
                   2744:
                   2745:   av=avma; munnf=cgetg(N+1,t_COL); munnf[1]=(long)gmodulsg(-1,pp);
                   2746:   for (i=2; i<=N; i++)
                   2747:     zeronf[i] = munnf[i] = unnf[i] = (long)zeromodp;
                   2748:
                   2749:   m=lg(x[1])-1; x=dummycopy(x); r=0;
                   2750:   c=new_chunk(m+1); for (k=1; k<=m; k++) c[k]=0;
                   2751:   d=new_chunk(n+1); av1=avma; lim=stack_lim(av1,1);
                   2752:   for (k=1; k<=n; k++)
                   2753:   {
                   2754:     j=1;
                   2755:     while (j<=m && (c[j] || gcmp0(gcoeff(x,j,k)))) j++;
                   2756:     if (j > m) { r++; d[k]=0; continue; }
                   2757:
                   2758:       p=element_divmodpr(nf,munnf,gcoeff(x,j,k),prhall);
                   2759:       c[j]=k; d[k]=j; coeff(x,j,k)=(long)munnf;
                   2760:       for (i=k+1; i<=n; i++)
                   2761:        coeff(x,j,i)=(long)element_mulmodpr(nf,p,gcoeff(x,j,i),prhall);
                   2762:       for (t=1; t<=m; t++)
                   2763:        if (t!=j)
                   2764:        {
                   2765:         p = gcoeff(x,t,k); if (gcmp0(p)) continue;
                   2766:         coeff(x,t,k) = (long)zeronf;
                   2767:          for (i=k+1; i<=n; i++)
                   2768:             coeff(x,t,i)=ladd(gcoeff(x,t,i),
                   2769:                              element_mulmodpr(nf,p,gcoeff(x,j,i),prhall));
                   2770:           if (low_stack(lim, stack_lim(av1,1)))
                   2771:           {
                   2772:             if (DEBUGMEM>1) err(warnmem,"nfkermodpr, k = %ld / %ld",k,n);
                   2773:             x=gerepilecopy(av1,x);
                   2774:           }
                   2775:        }
                   2776:   }
                   2777:   if (!r) { avma=av0; return cgetg(1,t_MAT); }
                   2778:   av1=avma; y=cgetg(r+1,t_MAT);
                   2779:   for (j=k=1; j<=r; j++,k++)
                   2780:   {
                   2781:     p=cgetg(n+1,t_COL); y[j]=(long)p; while (d[k]) k++;
                   2782:     for (i=1; i<k; i++) p[i]=d[i]? lcopy(gcoeff(x,d[i],k)): (long)zeronf;
                   2783:     p[k]=(long)unnf; for (i=k+1; i<=n; i++) p[i]=(long)zeronf;
                   2784:   }
                   2785:   return gerepile(av,av1,y);
                   2786: }
                   2787:
                   2788: /* a.x=b ou b est un vecteur */
                   2789: GEN
                   2790: nfsolvemodpr(GEN nf, GEN a, GEN b, GEN prhall)
                   2791: {
                   2792:   ulong av = avma;
                   2793:   long nbli,nbco,i,j,k;
                   2794:   GEN aa,x,p,m,u;
                   2795:
                   2796:   nf=checknf(nf); checkprhall(prhall);
                   2797:   if (typ(a)!=t_MAT) err(typeer,"nfsolvemodpr");
                   2798:   nbco=lg(a)-1; nbli=lg(a[1])-1;
                   2799:   if (typ(b)!=t_COL) err(typeer,"nfsolvemodpr");
                   2800:   if (lg(b)!=nbco+1) err(mattype1,"nfsolvemodpr");
                   2801:   x=cgetg(nbli+1,t_COL);
                   2802:   for (j=1; j<=nbco; j++) x[j]=b[j];
                   2803:   aa=cgetg(nbco+1,t_MAT);
                   2804:   for (j=1; j<=nbco; j++)
                   2805:   {
                   2806:     aa[j]=lgetg(nbli+1,t_COL);
                   2807:     for (i=1; i<=nbli; i++) coeff(aa,i,j)=coeff(a,i,j);
                   2808:   }
                   2809:   for (i=1; i<nbli; i++)
                   2810:   {
                   2811:     p=gcoeff(aa,i,i); k=i;
                   2812:     if (gcmp0(p))
                   2813:     {
                   2814:       k=i+1; while (k<=nbli && gcmp0(gcoeff(aa,k,i))) k++;
                   2815:       if (k>nbco) err(matinv1);
                   2816:       for (j=i; j<=nbco; j++)
                   2817:       {
                   2818:        u=gcoeff(aa,i,j); coeff(aa,i,j)=coeff(aa,k,j);
                   2819:        coeff(aa,k,j)=(long)u;
                   2820:       }
                   2821:       u=(GEN)x[i]; x[i]=x[k]; x[k]=(long)u;
                   2822:       p=gcoeff(aa,i,i);
                   2823:     }
                   2824:     for (k=i+1; k<=nbli; k++)
                   2825:     {
                   2826:       m=gcoeff(aa,k,i);
                   2827:       if (!gcmp0(m))
                   2828:       {
                   2829:        m=element_divmodpr(nf,m,p,prhall);
                   2830:        for (j=i+1; j<=nbco; j++)
                   2831:          coeff(aa,k,j)=lsub(gcoeff(aa,k,j),
                   2832:                             element_mulmodpr(nf,m,gcoeff(aa,i,j),prhall));
                   2833:        x[k]=lsub((GEN)x[k],element_mulmodpr(nf,m,(GEN)x[i],prhall));
                   2834:       }
                   2835:     }
                   2836:   }
                   2837:   /* Resolution systeme triangularise */
                   2838:   p=gcoeff(aa,nbli,nbco); if (gcmp0(p)) err(matinv1);
                   2839:
                   2840:   x[nbli]=(long)element_divmodpr(nf,(GEN)x[nbli],p,prhall);
                   2841:   for (i=nbli-1; i>0; i--)
                   2842:   {
                   2843:     m=(GEN)x[i];
                   2844:     for (j=i+1; j<=nbco; j++)
                   2845:       m=gsub(m,element_mulmodpr(nf,gcoeff(aa,i,j),(GEN)x[j],prhall));
                   2846:     x[i]=(long)element_divmodpr(nf,m,gcoeff(aa,i,i),prhall);
                   2847:   }
                   2848:   return gerepilecopy(av,x);
                   2849: }
                   2850:
                   2851: GEN
                   2852: nfsuppl(GEN nf, GEN x, long n, GEN prhall)
                   2853: {
                   2854:   long av=avma,av2,k,s,t,N,lx=lg(x);
                   2855:   GEN y,p1,p2,p,unmodp,zeromodp,unnf,zeronf,prh;
                   2856:   stackzone *zone;
                   2857:
                   2858:   k=lx-1; if (k>n) err(suppler2);
                   2859:   if (k && lg(x[1])!=n+1) err(talker,"incorrect dimension in nfsupl");
                   2860:   N=degpol(nf[1]); prh=(GEN)prhall[1]; p=gcoeff(prh,1,1);
                   2861:
                   2862:   zone  = switch_stack(NULL, 2*(3 + 2*lg(p) + N+1) + (n+3)*(n+1));
                   2863:   switch_stack(zone,1);
                   2864:   unmodp=gmodulsg(1,p); zeromodp=gmodulsg(0,p);
                   2865:   unnf=gscalcol_proto(unmodp,zeromodp,N);
                   2866:   zeronf=gscalcol_proto(zeromodp,zeromodp,N);
                   2867:   y = idmat_intern(n,unnf,zeronf);
                   2868:   switch_stack(zone,0); av2=avma;
                   2869:
                   2870:   for (s=1; s<=k; s++)
                   2871:   {
                   2872:     p1=nfsolvemodpr(nf,y,(GEN)x[s],prhall); t=s;
                   2873:     while (t<=n && gcmp0((GEN)p1[t])) t++;
                   2874:     avma=av2; if (t>n) err(suppler2);
                   2875:     p2=(GEN)y[s]; y[s]=x[s]; if (s!=t) y[t]=(long)p2;
                   2876:   }
                   2877:   avma=av; y=gcopy(y);
                   2878:   free(zone); return y;
                   2879: }
                   2880:
                   2881: /* Given two fractional ideals a and b, gives x in a, y in b, z in b^-1,
                   2882:    t in a^-1 such that xt-yz=1. In the present version, z is in Z. */
                   2883: GEN
                   2884: nfidealdet1(GEN nf, GEN a, GEN b)
                   2885: {
                   2886:   long av=avma;
                   2887:   GEN x,p1,res,da,db;
                   2888:
                   2889:   a = idealinv(nf,a);
                   2890:   da = denom(a); if (!gcmp1(da)) a = gmul(da,a);
                   2891:   db = denom(b); if (!gcmp1(db)) b = gmul(db,b);
                   2892:   x = idealcoprime(nf,a,b);
                   2893:   p1 = idealaddtoone(nf, idealmul(nf,x,a), b);
                   2894:
                   2895:   res = cgetg(5,t_VEC);
                   2896:   res[1] = lmul(x,da);
                   2897:   res[2] = ldiv((GEN)p1[2],db);
                   2898:   res[3] = lnegi(db);
                   2899:   res[4] = (long) element_div(nf,(GEN)p1[1],(GEN)res[1]);
                   2900:   return gerepileupto(av,res);
                   2901: }
                   2902:
                   2903: /* Given a pseudo-basis pseudo, outputs a multiple of its ideal determinant */
                   2904: GEN
                   2905: nfdetint(GEN nf,GEN pseudo)
                   2906: {
                   2907:   GEN pass,c,v,det1,piv,pivprec,vi,p1,x,I,unnf,zeronf,id,idprod;
                   2908:   long i,j,k,rg,n,n1,m,m1,av=avma,av1,tetpil,lim,cm=0,N;
                   2909:
                   2910:   nf=checknf(nf); N=degpol(nf[1]);
                   2911:   if (typ(pseudo)!=t_VEC || lg(pseudo)!=3)
                   2912:     err(talker,"not a module in nfdetint");
                   2913:   x=(GEN)pseudo[1]; I=(GEN)pseudo[2];
                   2914:   if (typ(x)!=t_MAT) err(talker,"not a matrix in nfdetint");
                   2915:   n1=lg(x); n=n1-1; if (!n) return gun;
                   2916:
                   2917:   m1=lg(x[1]); m=m1-1;
                   2918:   if (typ(I)!=t_VEC || lg(I)!=n1)
                   2919:     err(talker,"not a correct ideal list in nfdetint");
                   2920:
                   2921:   unnf=gscalcol_i(gun,N); zeronf=zerocol(N);
                   2922:   id=idmat(N); c=new_chunk(m1); for (k=1; k<=m; k++) c[k]=0;
                   2923:   piv = pivprec = unnf;
                   2924:
                   2925:   av1=avma; lim=stack_lim(av1,1);
                   2926:   det1=idprod=gzero; /* dummy for gerepilemany */
                   2927:   pass=cgetg(m1,t_MAT); v=cgetg(m1,t_COL);
                   2928:   for (j=1; j<=m; j++)
                   2929:   {
                   2930:     v[j] = zero; /* dummy */
                   2931:     p1=cgetg(m1,t_COL); pass[j]=(long)p1;
                   2932:     for (i=1; i<=m; i++) p1[i]=(long)zeronf;
                   2933:   }
                   2934:   for (rg=0,k=1; k<=n; k++)
                   2935:   {
                   2936:     long t = 0;
                   2937:     for (i=1; i<=m; i++)
                   2938:       if (!c[i])
                   2939:       {
                   2940:        vi=element_mul(nf,piv,gcoeff(x,i,k));
                   2941:        for (j=1; j<=m; j++)
                   2942:          if (c[j]) vi=gadd(vi,element_mul(nf,gcoeff(pass,i,j),gcoeff(x,j,k)));
                   2943:        v[i]=(long)vi; if (!t && !gcmp0(vi)) t=i;
                   2944:       }
                   2945:     if (t)
                   2946:     {
                   2947:       pivprec = piv;
                   2948:       if (rg == m-1)
                   2949:       {
                   2950:         if (!cm)
                   2951:         {
                   2952:           cm=1; idprod = id;
                   2953:           for (i=1; i<=m; i++)
                   2954:             if (i!=t)
                   2955:               idprod = (idprod==id)? (GEN)I[c[i]]
                   2956:                                    : idealmul(nf,idprod,(GEN)I[c[i]]);
                   2957:         }
                   2958:         p1 = idealmul(nf,(GEN)v[t],(GEN)I[k]); c[t]=0;
                   2959:         det1 = (typ(det1)==t_INT)? p1: idealadd(nf,p1,det1);
                   2960:       }
                   2961:       else
                   2962:       {
                   2963:         rg++; piv=(GEN)v[t]; c[t]=k;
                   2964:        for (i=1; i<=m; i++)
                   2965:          if (!c[i])
                   2966:           {
                   2967:            for (j=1; j<=m; j++)
                   2968:              if (c[j] && j!=t)
                   2969:              {
                   2970:                p1=gsub(element_mul(nf,piv,gcoeff(pass,i,j)),
                   2971:                        element_mul(nf,(GEN)v[i],gcoeff(pass,t,j)));
                   2972:                coeff(pass,i,j) = rg>1? (long) element_div(nf,p1,pivprec)
                   2973:                                      : (long) p1;
                   2974:              }
                   2975:             coeff(pass,i,t)=lneg((GEN)v[i]);
                   2976:           }
                   2977:       }
                   2978:     }
                   2979:     if (low_stack(lim, stack_lim(av1,1)))
                   2980:     {
                   2981:       GEN *gptr[6];
                   2982:       if(DEBUGMEM>1) err(warnmem,"nfdetint");
                   2983:       gptr[0]=&det1; gptr[1]=&piv; gptr[2]=&pivprec; gptr[3]=&pass;
                   2984:       gptr[4]=&v; gptr[5]=&idprod; gerepilemany(av1,gptr,6);
                   2985:     }
                   2986:   }
                   2987:   if (!cm) { avma=av; return gscalmat(gzero,N); }
                   2988:   tetpil=avma; return gerepile(av,tetpil,idealmul(nf,idprod,det1));
                   2989: }
                   2990:
                   2991: /* clean in place (destroy x) */
                   2992: static void
                   2993: nfcleanmod(GEN nf, GEN x, long lim, GEN detmat)
                   2994: {
                   2995:   long lx=lg(x),i;
                   2996:
                   2997:   if (lim<=0 || lim>=lx) lim=lx-1;
                   2998:   for (i=1; i<=lim; i++)
                   2999:     x[i]=(long)element_reduce(nf,(GEN)x[i],detmat);
                   3000: }
                   3001:
                   3002: static GEN
                   3003: zero_nfbezout(GEN nf,GEN b, GEN A,GEN B,GEN *u,GEN *v,GEN *w,GEN *di)
                   3004: {
                   3005:   long av, tetpil;
                   3006:   GEN pab,d;
                   3007:
                   3008:   d=idealmulelt(nf,b,B); *di=idealinv(nf,idealmat_to_hnf(nf,d));
                   3009:   av=avma; pab=idealmul(nf,A,B); tetpil=avma;
                   3010:   *w=gerepile(av,tetpil, idealmul(nf,pab,*di));
                   3011:   *v=element_inv(nf,b);
                   3012:   *u=gzero; return d;
                   3013: }
                   3014:
                   3015: /* Given elements a,b and ideals A, B, outputs d = a.A+b.B and gives
                   3016:  * di=d^-1, w=A.B.di, u, v such that au+bv=1 and u in A.di, v in
                   3017:  * B.di. Assume A, B non-zero, but a or b can be zero (not both)
                   3018:  */
                   3019: static GEN
                   3020: nfbezout(GEN nf,GEN a,GEN b, GEN A,GEN B, GEN *u,GEN *v,GEN *w,GEN *di)
                   3021: {
                   3022:   GEN pab,pu,pv,pw,uv,d,dinv,pa,pb,pa1,pb1, *gptr[5];
                   3023:   long av,tetpil;
                   3024:
                   3025:   if (gcmp0(a))
                   3026:   {
                   3027:     if (gcmp0(b)) err(talker,"both elements zero in nfbezout");
                   3028:     return zero_nfbezout(nf,b,A,B,u,v,w,di);
                   3029:   }
                   3030:   if (gcmp0(b))
                   3031:     return zero_nfbezout(nf,a,B,A,v,u,w,di);
                   3032:
                   3033:   av = avma;
                   3034:   pa=idealmulelt(nf,a,A);
                   3035:   pb=idealmulelt(nf,b,B);
                   3036:
                   3037:   d=idealadd(nf,pa,pb); dinv=idealinv(nf,d);
                   3038:   pa1=idealmullll(nf,pa,dinv);
                   3039:   pb1=idealmullll(nf,pb,dinv);
                   3040:   uv=idealaddtoone(nf,pa1,pb1);
                   3041:   pab=idealmul(nf,A,B); tetpil=avma;
                   3042:
                   3043:   pu=element_div(nf,(GEN)uv[1],a);
                   3044:   pv=element_div(nf,(GEN)uv[2],b);
                   3045:   d=gcopy(d); dinv=gcopy(dinv);
                   3046:   pw=idealmul(nf,pab,dinv);
                   3047:
                   3048:   *u=pu; *v=pv; *w=pw; *di=dinv;
                   3049:   gptr[0]=u; gptr[1]=v; gptr[2]=w; gptr[3]=di;
                   3050:   gptr[4]=&d; gerepilemanysp(av,tetpil,gptr,5);
                   3051:   return d;
                   3052: }
                   3053:
                   3054: /* A usage interne. Pas de verifs ni gestion de pile */
                   3055: GEN
                   3056: idealoplll(GEN op(GEN,GEN,GEN), GEN nf, GEN x, GEN y)
                   3057: {
                   3058:   GEN z = op(nf,x,y), den = denom(z);
                   3059:
                   3060:   if (gcmp1(den)) den = NULL; else z=gmul(den,z);
                   3061:   z=gmul(z,lllintpartial(z));
                   3062:   return den? gdiv(z,den): z;
                   3063: }
                   3064:
                   3065: /* A usage interne. Pas de verifs ni gestion de pile */
                   3066: GEN
                   3067: idealmulelt(GEN nf, GEN elt, GEN x)
                   3068: {
                   3069:   long t = typ(elt);
                   3070:   GEN z;
                   3071:   if (t == t_POL || t == t_POLMOD) elt = algtobasis(nf,elt);
                   3072:   if (isnfscalar(elt)) elt = (GEN)elt[1];
                   3073:   z = element_mulvec(nf, elt, x);
                   3074:   settyp(z, t_MAT); return z;
                   3075: }
                   3076:
                   3077: GEN
                   3078: nfhermitemod(GEN nf, GEN pseudo, GEN detmat)
                   3079: {
                   3080:   long av0=avma,li,co,av,tetpil,i,j,jm1,def,ldef,lim,N;
                   3081:   GEN b,q,w,p1,p2,d,u,v,den,x,I,J,dinv,unnf,wh;
                   3082:
                   3083:   nf=checknf(nf); N=degpol(nf[1]);
                   3084:   if (typ(pseudo)!=t_VEC || lg(pseudo)!=3)
                   3085:     err(talker,"not a module in nfhermitemod");
                   3086:   x=(GEN)pseudo[1]; I=(GEN)pseudo[2];
                   3087:   if (typ(x)!=t_MAT) err(talker,"not a matrix in nfhermitemod");
                   3088:   co=lg(x);
                   3089:   if (typ(I)!=t_VEC || lg(I)!=co)
                   3090:     err(talker,"not a correct ideal list in nfhermitemod");
                   3091:   if (co==1) return cgetg(1,t_MAT);
                   3092:
                   3093:   li=lg(x[1]); x=dummycopy(x); I=dummycopy(I);
                   3094:   unnf=gscalcol_i(gun,N);
                   3095:   for (j=1; j<co; j++)
                   3096:     if (typ(I[j])!=t_MAT) I[j]=(long)idealhermite_aux(nf,(GEN)I[j]);
                   3097:
                   3098:   den=denom(detmat); if (!gcmp1(den)) detmat=gmul(den,detmat);
                   3099:   detmat=gmul(detmat,lllintpartial(detmat));
                   3100:
                   3101:   av=avma; lim=stack_lim(av,1);
                   3102:   def=co; ldef=(li>co)?li-co+1:1;
                   3103:   for (i=li-1; i>=ldef; i--)
                   3104:   {
                   3105:     def--; j=def-1; while (j && gcmp0(gcoeff(x,i,j))) j--;
                   3106:     while (j)
                   3107:     {
                   3108:       jm1=j-1; if (!jm1) jm1=def;
                   3109:       d=nfbezout(nf,gcoeff(x,i,j),gcoeff(x,i,jm1),(GEN)I[j],(GEN)I[jm1],
                   3110:                  &u,&v,&w,&dinv);
                   3111:       if (gcmp0(u))
                   3112:         p1 = element_mulvec(nf,v,(GEN)x[jm1]);
                   3113:       else
                   3114:       {
                   3115:        p1 = element_mulvec(nf,u,(GEN)x[j]);
                   3116:        if (!gcmp0(v)) p1=gadd(p1, element_mulvec(nf,v,(GEN)x[jm1]));
                   3117:       }
                   3118:       x[j]=lsub(element_mulvec(nf,gcoeff(x,i,j),(GEN)x[jm1]),
                   3119:                 element_mulvec(nf,gcoeff(x,i,jm1),(GEN)x[j]));
                   3120:       nfcleanmod(nf,(GEN)x[j],i,idealdivlll(nf,detmat,w));
                   3121:       nfcleanmod(nf,p1,i,idealmullll(nf,detmat,dinv));
                   3122:       x[jm1]=(long)p1; I[j]=(long)w; I[jm1]=(long)d;
                   3123:       j--; while (j && gcmp0(gcoeff(x,i,j))) j--;
                   3124:     }
                   3125:     if (low_stack(lim, stack_lim(av,1)))
                   3126:     {
                   3127:       GEN *gptr[2];
                   3128:       if(DEBUGMEM>1) err(warnmem,"[1]: nfhermitemod");
                   3129:       gptr[0]=&x; gptr[1]=&I; gerepilemany(av,gptr,2);
                   3130:     }
                   3131:   }
                   3132:   b=detmat; wh=cgetg(li,t_MAT); def--;
                   3133:   for (i=li-1; i>=1; i--)
                   3134:   {
                   3135:     d = nfbezout(nf,gcoeff(x,i,i+def),unnf,(GEN)I[i+def],b,&u,&v,&w,&dinv);
                   3136:     p1 = element_mulvec(nf,u,(GEN)x[i+def]);
                   3137:     nfcleanmod(nf,p1,i,idealmullll(nf,b,dinv));
                   3138:     wh[i]=(long)p1; coeff(wh,i,i)=(long)unnf; I[i+def]=(long)d;
                   3139:     if (i>1) b=idealmul(nf,b,dinv);
                   3140:   }
                   3141:   J=cgetg(li,t_VEC); J[1]=zero;
                   3142:   for (j=2; j<li; j++) J[j]=(long)idealinv(nf,(GEN)I[j+def]);
                   3143:   for (i=li-2; i>=1; i--)
                   3144:   {
                   3145:     for (j=i+1; j<li; j++)
                   3146:     {
                   3147:       q=idealmul(nf,(GEN)I[i+def],(GEN)J[j]);
                   3148:       p1=gsub(element_reduce(nf,gcoeff(wh,i,j),q),gcoeff(wh,i,j));
                   3149:       wh[j]=(long)gadd((GEN)wh[j],element_mulvec(nf,p1,(GEN)wh[i]));
                   3150:     }
                   3151:     if (low_stack(lim, stack_lim(av,1)))
                   3152:     {
                   3153:       GEN *gptr[3];
                   3154:       if(DEBUGMEM>1) err(warnmem,"[2]: nfhermitemod");
                   3155:       gptr[0]=&wh; gptr[1]=&I; gptr[2]=&J; gerepilemany(av,gptr,3);
                   3156:     }
                   3157:   }
                   3158:   tetpil=avma; p1=cgetg(3,t_VEC); p1[1]=lcopy(wh);
                   3159:   p2=cgetg(li,t_VEC); p1[2]=(long)p2;
                   3160:   for (j=1; j<li; j++) p2[j]=lcopy((GEN)I[j+def]);
                   3161:   return gerepile(av0,tetpil,p1);
                   3162: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>