Annotation of OpenXM_contrib/pari-2.2/src/gp/whatnow.c, Revision 1.1
1.1 ! noro 1: /* $Id: whatnow.c,v 1.6 2001/09/30 23:29:00 karim Exp $
! 2:
! 3: Copyright (C) 2000 The PARI group.
! 4:
! 5: This file is part of the PARI/GP package.
! 6:
! 7: PARI/GP is free software; you can redistribute it and/or modify it under the
! 8: terms of the GNU General Public License as published by the Free Software
! 9: Foundation. It is distributed in the hope that it will be useful, but WITHOUT
! 10: ANY WARRANTY WHATSOEVER.
! 11:
! 12: Check the License for details. You should have received a copy of it, along
! 13: with the package; see the file 'COPYING'. If not, write to the Free Software
! 14: Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
! 15:
! 16: #include "pari.h"
! 17: #include "../language/anal.h"
! 18:
! 19: typedef struct whatnow_t
! 20: {
! 21: char *name, *oldarg, *newarg;
! 22: } whatnow_t;
! 23:
! 24: #define SAME NULL
! 25: #define REMOV (char *)1L
! 26: #define _REMOV {REMOV,NULL,NULL}
! 27: #define _SAME {SAME,NULL,NULL}
! 28:
! 29: /* generated by PERL script ../util/dico */
! 30: static const whatnow_t whatnowlist[]={
! 31: _SAME,
! 32: _SAME,
! 33: _SAME,
! 34: _SAME,
! 35: {"elladd","(e,z1,z2)","(e,z1,z2)"},
! 36: _SAME,
! 37: {"matadjoint","(x)","(x)"},
! 38: _SAME,
! 39: {"ellak","(e,n)","(e,n)"},
! 40: _SAME,
! 41: {"algdep","(x,n,dec)","(x,n,dec)"},
! 42: {"nfalgtobasis","(nf,x)","(nf,x)"},
! 43: {"ellan","(e,n)","(e,n)"},
! 44: {"ellap","(e,n)","(e,n)"},
! 45: {"ellap","(e,n)","(e,n,1)"},
! 46: {"padicappr","(x,a)","(x,a)"},
! 47: _SAME,
! 48: _SAME,
! 49: _SAME,
! 50: {"matcompanion","(x)","(x)"},
! 51: _SAME,
! 52: _SAME,
! 53: {"nfbasis","(x)","(x)"},
! 54: {"nfbasis","(x)","(x,2)"},
! 55: {"nfbasistoalg","(nf,x)","(nf,x)"},
! 56: _SAME,
! 57: _SAME,
! 58: _SAME,
! 59: _SAME,
! 60: _SAME,
! 61: _SAME,
! 62: {"ellbil","(e,z1,z2)","(e,z1,z2)"},
! 63: {"binomial","(x,y)","(x,y)"},
! 64: _SAME,
! 65: _SAME,
! 66: {"contfrac","(x,lmax)","(x,,lmax)"},
! 67: {"factor","(x,lim)","(x,lim)"},
! 68: {"bnfcertify","(bnf)","(bnf)"},
! 69: {"bnfunit","(bnf)","(bnf)"},
! 70: {"bnfclassunit","(P)","(P,2)"},
! 71: {"bnfclassunit","(P)","(P,1)"},
! 72: {"bnfclassunit","(P)","(P)"},
! 73: {"quadclassunit","(D,c1,c2,g)","(D,,[c1,c2,g])"},
! 74: {"bnfinit","(P)","(P,2)"},
! 75: {"bnfinit","(P)","(P,1)"},
! 76: {"bnfinit","(P)","(P)"},
! 77: {"bnfnarrow","(bnf)","(bnf)"},
! 78: {"bnrclass","(bnf,ideal)","(bnf,ideal)"},
! 79: {"bnrclass","(bnf,ideal)","(bnf,ideal,1)"},
! 80: {"bnrclass","(bnf,ideal)","(bnf,ideal,2)"},
! 81: {"quadclassunit","(D)","(D)"},
! 82: {"sizebyte","(x)","(x)"},
! 83: _SAME,
! 84: _SAME,
! 85: {"contfrac","(x)","(x)"},
! 86: {"contfrac","(b,x)","(x,b)"},
! 87: _SAME,
! 88: {"charpoly","(x,y)","(x,y)"},
! 89: {"charpoly","(x,y)","(x,y,1)"},
! 90: {"charpoly","(x,y)","(x,y,2)"},
! 91: {"ellchangecurve","(x,y)","(x,y)"},
! 92: _SAME,
! 93: {"ellchangepoint","(x,y)","(x,y)"},
! 94: {"qfbclassno","(x)","(x)"},
! 95: {"qfbclassno","(x)","(x,1)"},
! 96: {"polcoeff","(x,s)","(x,s)"},
! 97: {"x*y","(x,y)",""},
! 98: {"component","(x,s)","(x,s)"},
! 99: {"polcompositum","(pol1,pol2)","(pol1,pol2)"},
! 100: {"polcompositum","(pol1,pol2)","(pol1,pol2,1)"},
! 101: {"qfbcompraw","(x,y)","(x,y)"},
! 102: _SAME,
! 103: {"bnrconductor","(a1)","(a1)"},
! 104: {"bnrconductorofchar","(bnr,chi)","(bnr,chi)"},
! 105: _SAME,
! 106: _SAME,
! 107: _SAME,
! 108: {"serconvol","(x,y)","(x,y)"},
! 109: _SAME,
! 110: {"core","(x)","(x,1)"},
! 111: _SAME,
! 112: {"coredisc","(x)","(x,1)"},
! 113: _SAME,
! 114: _SAME,
! 115: {"truncate","(x)","(x,&e)"},
! 116: {"polcyclo","(n)","(n)"},
! 117: {"factorback","(fa)","(fa)"},
! 118: {"bnfdecodemodule","(nf,fa)","(nf,fa)"},
! 119: {"poldegree","(x)","(x)"},
! 120: {"denominator","(x)","(x)"},
! 121: {"lindep","(x)","(x,-1)"},
! 122: _SAME,
! 123: {"matdet","(x)","(x)"},
! 124: {"matdet","(x)","(x,1)"},
! 125: {"matdetint","(x)","(x)"},
! 126: {"matdiagonal","(x)","(x)"},
! 127: _SAME,
! 128: _SAME,
! 129: _SAME,
! 130: _SAME,
! 131: _SAME,
! 132: {"poldisc","(x)","(x)"},
! 133: {"nfdisc","(x)","(x)"},
! 134: {"nfdisc","(x)","(x,2)"},
! 135: {"bnrdisc","(bnr,subgroup)","(bnr,subgroup)"},
! 136: {"bnrdisc","(bnr)","(bnr,,,2)"},
! 137: {"bnrdisclist","(bnf,list)","(bnf,list)"},
! 138: {"bnrdisclist","(bnf,arch,bound)","(bnf,bound,arch)"},
! 139: {"bnrdisclist","(bnf,bound)","(bnf,bound,,1)"},
! 140: {"bnrdisclist","(bnf,bound)","(bnf,bound)"},
! 141: {"bnrdisc","(bnr,subgroup)","(bnr,subgroup,,1)"},
! 142: {"bnrdisc","(bnr,subgroup)","(bnr,subgroup,,3)"},
! 143: _SAME,
! 144: {"divrem","(x,y)","(x,y)"},
! 145: {"sumdiv","(n,X,expr)","(n,X,expr)"},
! 146: {"mateigen","(x)","(x)"},
! 147: _SAME,
! 148: _SAME,
! 149: _SAME,
! 150: {"Euler","",""},
! 151: _SAME,
! 152: _SAME,
! 153: {"vecextract","(x,y)","(x,y)"},
! 154: {"factorial","(x)","(x)"},
! 155: {"factorcantor","(x,p)","(x,p)"},
! 156: {"factorff","(x,p,a)","(x,p,a)"},
! 157: {"factormod","(x,p)","(x,p)"},
! 158: _SAME,
! 159: {"nfbasis","(x,p)","(x,,p)"},
! 160: {"nfdisc","(x,p)","(x,,p)"},
! 161: {"polred","(x,p)","(x,,p)"},
! 162: {"polred","(x,p)","(x,2,p)"},
! 163: _SAME,
! 164: _SAME,
! 165: {"factorpadic","(x,p,r)","(x,p,r,1)"},
! 166: {"factor","(x,l,hint)","(x)"},
! 167: {"factor","(x,l,hint)","(x)"},
! 168: {"fibonacci","(x)","(x)"},
! 169: _SAME,
! 170: _SAME,
! 171: _SAME,
! 172: _SAME,
! 173: _SAME,
! 174: _SAME,
! 175: {"ffinit","(p,n)","(p,n)"},
! 176: _SAME,
! 177: {"polgalois","(x)","(x)"},
! 178: {"nfgaloisapply","(nf,aut,x)","(nf,aut,x)"},
! 179: {"nfgaloisconj","(nf)","(nf)"},
! 180: {"nfgaloisconj","(nf)","(nf,2)"},
! 181: {"nfgaloisconj","","(nf,1)"},
! 182: {"gammah","(x)","(x)"},
! 183: _SAME,
! 184: {"matsolve","(a,b)","(a,b)"},
! 185: {"matsolvemod","(M,D,Y)","(M,D,Y)"},
! 186: {"matsolvemod","(M,D,Y)","(M,D,Y,1)"},
! 187: _SAME,
! 188: _SAME,
! 189: _SAME,
! 190: _SAME,
! 191: _SAME,
! 192: {"ellglobalred","(x,y)","(x,y)"},
! 193: _REMOV,
! 194: {"qfbhclassno","(x)","(x)"},
! 195: {"ellheight","(e,x)","(e,x)"},
! 196: {"ellheight","(e,x)","(e,x,1)"},
! 197: {"mathnf","(x)","(x)"},
! 198: {"mathnf","(x)","(x,1)"},
! 199: _REMOV,
! 200: {"mathnfmod","(x,d)","(x,d)"},
! 201: {"mathnfmodid","(x,d)","(x,d)"},
! 202: {"mathnf","(x)","(x,3)"},
! 203: {"mathess","(x)","(x)"},
! 204: {"hilbert","(x,y)","(x,y)"},
! 205: {"mathilbert","(n)","(n)"},
! 206: {"hilbert","(x,y,p)","(x,y,p)"},
! 207: {"vector","(n,X,expr)","(n,X,expr)"},
! 208: _SAME,
! 209: {"I","",""},
! 210: _SAME,
! 211: {"idealaddtoone","(nf,list)","(nf,list)"},
! 212: {"idealaddtoone","(nf,x,y)","(nf,x,y)"},
! 213: _SAME,
! 214: {"idealappr","(nf,x)","(nf,x,1)"},
! 215: _SAME,
! 216: _SAME,
! 217: _SAME,
! 218: {"idealdiv","(nf,x,y)","(nf,x,y,1)"},
! 219: _SAME,
! 220: {"idealhnf","(nf,x)","(nf,x)"},
! 221: {"idealhnf","(nf,x)","(nf,x)"},
! 222: _SAME,
! 223: _SAME,
! 224: {"idealinv","(nf,x)","(nf,x,1)"},
! 225: _SAME,
! 226: _SAME,
! 227: {"ideallistarch","(nf,list,arch)","(nf,list,arch,1)"},
! 228: {"ideallist","(nf,list)","(nf,list,2)"},
! 229: {"ideallistarch","","(nf,list,arch,2)"},
! 230: {"ideallistarch","","(nf,list,arch,3)"},
! 231: {"ideallist","","(nf,list,3)"},
! 232: {"ideallist","(nf,bound)","(nf,bound)"},
! 233: {"ideallist","(nf,bound)","(nf,bound,1)"},
! 234: {"idealred","(nf,x,vdir)","(nf,x,vdir)"},
! 235: _SAME,
! 236: {"idealmul","(nf,x,y)","(nf,x,y,1)"},
! 237: _SAME,
! 238: _SAME,
! 239: {"idealpow","(nf,x,y)","(nf,x,y,1)"},
! 240: _SAME,
! 241: {"idealtwoelt","(nf,x,a)","(nf,x,a)"},
! 242: _SAME,
! 243: {"matid","(n)","(n)"},
! 244: _SAME,
! 245: _SAME,
! 246: {"matimage","(x)","(x)"},
! 247: {"matimage","(x)","(x,1)"},
! 248: {"matimagecompl","(x)","(x)"},
! 249: _SAME,
! 250: _REMOV,
! 251: _REMOV,
! 252: _REMOV,
! 253: {"incgam","(s,x,y)","(s,x,y)"},
! 254: {"matindexrank","(x)","(x)"},
! 255: {"vecsort","(x)","(x,,1)"},
! 256: {"nfinit","(pol)","(pol)"},
! 257: {"nfinit","(x)","(x,2)"},
! 258: {"nfinit","(x)","(x,3)"},
! 259: {"ellinit","(x)","(x)"},
! 260: {"zetakinit","(x)","(x)"},
! 261: {"intformal","(x,y)","(x,y)"},
! 262: {"matintersect","(x,y)","(x,y)"},
! 263: {"intnum","(x=a,b,s)","(x=a,b,s,1)"},
! 264: {"intnum","(x=a,b,s)","(x=a,b,s,2)"},
! 265: _SAME,
! 266: {"intnum","(x=a,b,s)","(x=a,b,s,3)"},
! 267: {"matinverseimage","(x,y)","(x,y)"},
! 268: {"matisdiagonal","(x)","(x)"},
! 269: {"isfundamental","(x)","(x)"},
! 270: {"nfisideal","(nf,x)","(nf,x)"},
! 271: {"nfisincl","(x,y)","(x,y)"},
! 272: {"nfisincl","(nf1,nf2)","(nf1,nf2,1)"},
! 273: {"polisirreducible","(x)","(x)"},
! 274: {"nfisisom","(x,y)","(x,y)"},
! 275: {"nfisisom","(x,y)","(x,y)"},
! 276: {"ellisoncurve","(e,x)","(e,x)"},
! 277: _SAME,
! 278: {"bnfisprincipal","(bnf,x)","(bnf,x,0)"},
! 279: {"bnfisprincipal","(bnf,x)","(bnf,x,2)"},
! 280: {"bnfisprincipal","(bnf,x)","(bnf,x)"},
! 281: {"bnfisprincipal","(bnf,x)","(bnf,x,3)"},
! 282: {"bnrisprincipal","(bnf,x)","(bnf,x)"},
! 283: _SAME,
! 284: {"ispseudoprime","(x)","(x)"},
! 285: {"sqrtint","(x)","(x)"},
! 286: {"setisset","(x)","(x)"},
! 287: {"issquarefree","(x)","(x)"},
! 288: _SAME,
! 289: {"bnfisunit","(bnf,x)","(bnf,x)"},
! 290: {"qfjacobi","(x)","(x)"},
! 291: {"besseljh","(n,x)","(n,x)"},
! 292: {"ellj","(x)","(x)"},
! 293: _REMOV,
! 294: {"besselk","(nu,x)","(nu,x)"},
! 295: {"besselk","(nu,x)","(nu,x,1)"},
! 296: {"matker","(x)","(x)"},
! 297: {"matker","(x)","(x,1)"},
! 298: {"matkerint","(x)","(x)"},
! 299: {"matkerint","(x)","(x,1)"},
! 300: {"matkerint","(x)","(x,2)"},
! 301: {"kronecker","(x,y)","(x,y)"},
! 302: _REMOV,
! 303: {"zetak","(nfz,s)","(nfz,s,1)"},
! 304: {"serlaplace","(x)","(x)"},
! 305: _SAME,
! 306: {"pollegendre","(n)","(n)"},
! 307: _SAME,
! 308: _SAME,
! 309: {"vecsort","(x)","(x,,2)"},
! 310: _SAME,
! 311: _SAME,
! 312: {"lindep","(x)","(x,1)"},
! 313: {"qflll","(x)","(x)"},
! 314: {"qflll","(x)","(x,7)"},
! 315: {"qflll","(x)","(x,8)"},
! 316: {"qflllgram","(x)","(x)"},
! 317: {"qflllgram","(x)","(x,7)"},
! 318: {"qflllgram","(x)","(x,8)"},
! 319: {"qflllgram","(x)","(x,1)"},
! 320: {"qflllgram","(x)","(x,4)"},
! 321: {"qflllgram","(x)","(x,5)"},
! 322: {"qflll","(x)","(x,1)"},
! 323: {"qflll","(x)","(x,2)"},
! 324: {"qflll","(x)","(x,4)"},
! 325: {"qflll","(x)","(x,5)"},
! 326: {"qflll","(x)","(x,3)"},
! 327: {"log","(x)","(x)"},
! 328: _SAME,
! 329: {"elllocalred","(e)","(e)"},
! 330: _SAME,
! 331: {"log","(x)","(x,1)"},
! 332: {"elllseries","(e,s,N,A)","(e,s,A)"},
! 333: {"bnfmake","(sbnf)","(sbnf)"},
! 334: {"Mat","(x)","(x)"},
! 335: {"vecextract","(x,y,z)","(x,y,z)"},
! 336: {"ellheightmatrix","(e,x)","(e,x)"},
! 337: _SAME,
! 338: _SAME,
! 339: {"matrixqz","(x,p)","(x,-1)"},
! 340: {"matrixqz","(x,p)","(x,-2)"},
! 341: _SAME,
! 342: _SAME,
! 343: _SAME,
! 344: {"idealmin","(nf,ix,vdir)","(nf,ix,vdir)"},
! 345: {"qfminim","(x,bound,maxnum)","(x,bound,maxnum)"},
! 346: {"qfminim","(x,bound)","(x,bound,,1)"},
! 347: {"Mod","(x,y)","(x,y)"},
! 348: {"Mod","(x,y,p)","(x,y,1)"},
! 349: _SAME,
! 350: {"gcd","(x,y)","(x,y,1)"},
! 351: {"moebius","(n)","(n)"},
! 352: _SAME,
! 353: _SAME,
! 354: _SAME,
! 355: {"nfeltdiv","(nf,a,b)","(nf,a,b)"},
! 356: {"nfeltdiveuc","(nf,a,b)","(nf,a,b)"},
! 357: {"nfeltdivrem","(nf,a,b)","(nf,a,b)"},
! 358: {"nfhnf","(nf,x)","(nf,x)"},
! 359: {"nfhnfmod","(nf,x,detx)","(nf,x,detx)"},
! 360: {"nfeltmod","(nf,a,b)","(nf,a,b)"},
! 361: {"nfeltmul","(nf,a,b)","(nf,a,b)"},
! 362: {"nfeltpow","(nf,a,k)","(nf,a,k)"},
! 363: {"nfeltreduce","(nf,a,id)","(nf,a,id)"},
! 364: {"nfsnf","(nf,x)","(nf,x)"},
! 365: {"nfeltval","(nf,a,pr)","(nf,a,pr)"},
! 366: _SAME,
! 367: _SAME,
! 368: {"qfbnucomp","(x,y,l)","(x,y,l)"},
! 369: _SAME,
! 370: {"numerator","(x)","(x)"},
! 371: {"qfbnupow","(x,n)","(x,n)"},
! 372: {"O","(x)","(x)"},
! 373: _SAME,
! 374: {"ellordinate","(e,x)","(e,x)"},
! 375: {"znorder","(x)","(x)"},
! 376: {"ellorder","(e,x)","(e,x)"},
! 377: {"polredord","(x)","(x)"},
! 378: _SAME,
! 379: {"matpascal","(n)","(n)"},
! 380: {"qfperfection","(a)","(a)"},
! 381: {"numtoperm","(n,k)","(n,k)"},
! 382: {"permtonum","(vect)","(vect)"},
! 383: {"qfbprimeform","(x,p)","(x,p)"},
! 384: {"eulerphi","(x)","(x)"},
! 385: {"Pi","",""},
! 386: {"contfracpnqn","(x)","(x)"},
! 387: {"ellztopoint","(e,z)","(e,z)"},
! 388: {"polinterpolate","(xa,ya,x)","(xa,ya,p)"},
! 389: _SAME,
! 390: {"polred","(x)","(x,2)"},
! 391: _SAME,
! 392: {"polredabs","(x)","(x,1)"},
! 393: {"polredabs","(x)","(x,4)"},
! 394: {"polredabs","(x)","(x,8)"},
! 395: {"polredabs","(x)","(x,2)"},
! 396: _SAME,
! 397: {"variable","(x)","(x)"},
! 398: {"Pol","(x,v)","(x,v)"},
! 399: _SAME,
! 400: {"polylog","(m,x)","(m,x,1)"},
! 401: {"polylog","(m,x)","(m,x,2)"},
! 402: {"polylog","(m,x)","(m,x,3)"},
! 403: {"Polrev","(x,v)","(x,v)"},
! 404: {"polzagier","(n,m)","(n,m)"},
! 405: {"ellpow","(e,x,n)","(e,x,n)"},
! 406: {"qfbpowraw","(x,n)","(x,n)"},
! 407: {"precision","(x,n)","(x,n)"},
! 408: _SAME,
! 409: _SAME,
! 410: {"idealprimedec","(nf,p)","(nf,p)"},
! 411: _SAME,
! 412: {"znprimroot","(n)","(n)"},
! 413: {"idealprincipal","(nf,x)","(nf,x)"},
! 414: {"ideleprincipal","(nf,x)","(nf,x)"},
! 415: {"prod","(x,X=a,b,expr)","(X=a,b,expr,x)"},
! 416: _SAME,
! 417: _SAME,
! 418: {"prodinf","(X=a,expr)","(X=a,expr,1)"},
! 419: _SAME,
! 420: {"Qfb","(a,b,c)","(a,b,c)"},
! 421: {"Qfb","(a,b,c,d)","(a,b,c,d)"},
! 422: _SAME,
! 423: _SAME,
! 424: _SAME,
! 425: _SAME,
! 426: {"matrank","(x)","(x)"},
! 427: {"bnrclassno","(bnf,x)","(bnf,x)"},
! 428: {"bnrclassnolist","(bnf,liste)","(bnf,liste)"},
! 429: _SAME,
! 430: {"polrecip","(x)","(x)"},
! 431: {"qfbred","(x)","(x)"},
! 432: {"qfbred","(x)","(x)"},
! 433: {"qfbred","(x,d)","(x,2,,d)"},
! 434: {"poldiscreduced","(f)","(f)"},
! 435: {"quadregulator","(x)","(x)"},
! 436: _SAME,
! 437: {"polresultant","(x,y)","(x,y)"},
! 438: {"polresultant","(x,y)","(x,y,1)"},
! 439: {"serreverse","(x)","(x)"},
! 440: {"qfbred","(x)","(x,1)"},
! 441: {"qfbred","(x,d)","(x,3,,d)"},
! 442: {"round","(x)","(x,&e)"},
! 443: _SAME,
! 444: {"rnfdisc","(nf,pol)","(nf,pol)"},
! 445: _SAME,
! 446: {"rnfequation","(nf,pol)","(nf,pol,1)"},
! 447: {"rnfhnfbasis","(bnf,order)","(bnf,order)"},
! 448: _SAME,
! 449: _SAME,
! 450: _SAME,
! 451: _SAME,
! 452: _SAME,
! 453: {"polrootsmod","(x,p)","(x,p)"},
! 454: {"polrootsmod","(x,p)","(x,p,1)"},
! 455: {"polrootspadic","(x,p,r)","(x,p,r)"},
! 456: {"polroots","(x)","(x)"},
! 457: {"nfrootsof1","(nf)","(nf)"},
! 458: {"polroots","(x)","(x,1)"},
! 459: _SAME,
! 460: {"round","(x)","(x,&e)"},
! 461: {"Ser","(x,v)","(x,v)"},
! 462: {"Set","(x)","(x)"},
! 463: _SAME,
! 464: _SAME,
! 465: _SAME,
! 466: _SAME,
! 467: _SAME,
! 468: _SAME,
! 469: _SAME,
! 470: _SAME,
! 471: {"sigma","(k,x)","(x,k)"},
! 472: _SAME,
! 473: {"qfsign","(x)","(x)"},
! 474: {"bnfsignunit","(bnf)","(bnf)"},
! 475: {"factormod","(x,p)","(x,p,1)"},
! 476: _SAME,
! 477: _SAME,
! 478: _SAME,
! 479: {"sizedigit","(x)","(x)"},
! 480: {"nfbasis","(x)","(x,1)"},
! 481: {"bnfinit","(x)","(x,3)"},
! 482: {"nfdisc","(x)","(x,1)"},
! 483: {"factor","(x)","(x,0)"},
! 484: {"ellinit","(x)","(x,1)"},
! 485: {"polred","(x)","(x,1)"},
! 486: {"polred","(x)","(x,3)"},
! 487: {"matsnf","(x)","(x)"},
! 488: {"matsnf","(x)","(x,1)"},
! 489: {"matsnf","(x)","(x,4)"},
! 490: {"matsnf","(x)","(x,2)"},
! 491: _SAME,
! 492: {"vecsort","(x)","(x)"},
! 493: _SAME,
! 494: {"qfgaussred","(x)","(x)"},
! 495: _SAME,
! 496: {"gcd","(x,y)","(x,y,2)"},
! 497: {"polsturm","(x)","(x)"},
! 498: {"polsturm","(x,a,b)","(x,a,b)"},
! 499: {"polsubcyclo","(p,d)","(p,d)"},
! 500: {"ellsub","(e,a,b)","(e,a,b)"},
! 501: _SAME,
! 502: {"sum","(x,X=a,b,expr)","(X=a,b,expr,x)"},
! 503: _SAME,
! 504: {"sumalt","(X=a,expr)","(X=a,expr,1)"},
! 505: _SAME,
! 506: _SAME,
! 507: {"sumpos","(X=a,expr)","(X=a,expr,1)"},
! 508: {"matsupplement","(x)","(x)"},
! 509: {"polsylvestermatrix","(x,y)","(x,y)"},
! 510: _SAME,
! 511: _SAME,
! 512: {"elltaniyama","(e)","(e)"},
! 513: _SAME,
! 514: {"poltchebi","(n)","(n)"},
! 515: {"teichmuller","(x)","(x)"},
! 516: _SAME,
! 517: _SAME,
! 518: _REMOV,
! 519: _REMOV,
! 520: {"elltors","(e)","(e)"},
! 521: _SAME,
! 522: {"mattranspose","(x)","(x)"},
! 523: {"truncate","(x)","(x)"},
! 524: {"poltschirnhaus","(x)","(x)"},
! 525: _REMOV,
! 526: {"quadunit","(x)","(x)"},
! 527: _SAME,
! 528: _SAME,
! 529: {"Vec","(x)","(x)"},
! 530: {"vecsort","(x)","(x,,1)"},
! 531: {"vecsort","(x)","(x,,2)"},
! 532: _SAME,
! 533: _SAME,
! 534: _SAME,
! 535: _SAME,
! 536: {"vectorv","(n,X,expr)","(n,X,expr)"},
! 537: {"ellwp","(e)","(e)"},
! 538: {"weber","(x)","(x)"},
! 539: {"weber","(x)","(x,2)"},
! 540: _SAME,
! 541: {"ellpointtoz","(e,P)","(e,P)"},
! 542: _SAME,
! 543: _SAME,
! 544: {"ideallog","(nf,x,bid)","(nf,x,bid)"},
! 545: {"idealstar","(nf,I)","(nf,I)"},
! 546: {"idealstar","(nf,id)","(nf,id,1)"},
! 547: {"idealstar","(nf,id)","(nf,id,2)"},
! 548: _SAME,
! 549:
! 550: _SAME,
! 551: {"plotbox","(x,a)","(x,a)"},
! 552: {"plotcolor","(w,c)","(w,c)"},
! 553: {"plotcursor","(w)","(w)"},
! 554: _SAME,
! 555: {"plotdraw","(list)","(list)"},
! 556: {"plotinit","(w,x,y)","(w,x,y)"},
! 557: _SAME,
! 558: {"plotkill","(w)","(w)"},
! 559: {"plotlines","(w,x2,y2)","(w,x2,y2)"},
! 560: {"plotlines","(w,x2,y2)","(w,x2,y2)"},
! 561: {"plotmove","(w,x,y)","(w,x,y)"},
! 562: _SAME,
! 563: _SAME,
! 564: {"ploth","(X=a,b,expr)","(X=a,b,expr,1)"},
! 565: {"ploth","(X=a,b,expr)","(X=a,b,expr)"},
! 566: _SAME,
! 567: {"plotpoints","(w,x,y)","(w,x,y)"},
! 568: {"plotpoints","(w,x,y)","(w,x,y)"},
! 569: {"psdraw","(list)","(list)"},
! 570: {"psploth","(X=a,b,expr)","(X=a,b,expr)"},
! 571: {"psploth","(X=a,b,expr)","(X=a,b,expr,1)"},
! 572: {"psplothraw","(listx,listy)","(listx,listy)"},
! 573: {"printp","(x)","(x)"},
! 574: {"printp1","(x)","(x)"},
! 575: _SAME,
! 576: _SAME,
! 577: {"plotrbox","(w,dx,dy)","(w,dx,dy)"},
! 578: {"input","(x)","(x)"},
! 579: {"plotrline","(w,dx,dy)","(w,dx,dy)"},
! 580: {"plotrlines","(w,dx,dy)","(w,dx,dy,1)"},
! 581: {"plotrmove","(w,dx,dy)","(w,dx,dy)"},
! 582: {"plotrpoint","(w,dx,dy)","(w,dx,dy)"},
! 583: {"plotrpoints","(w,dx,dy)","(w,dx,dy)"},
! 584: {"plotscale","(w,x1,x2,y1,y2)","(w,x1,x2,y1,y2)"},
! 585: {"default","(n)","(realprecision,n)"},
! 586: {"default","(n)","(seriesprecision,n)"},
! 587: {"type","(x,t)","(x,t)"},
! 588: {"plotstring","(w,x)","(w,x)"},
! 589: _SAME,
! 590: {"printtex","(x)","(x)"},
! 591: _SAME
! 592: };
! 593:
! 594: /* If flag = 0 (default): check if s existed in 1.39.15 and print verbosely
! 595: * the answer.
! 596: * If flag > 0: silently return n+1 if function changed, 0 otherwise.
! 597: * (where n is the index of s in whatnowlist).
! 598: * If flag < 0: -flag-1 is the index in whatnowlist
! 599: */
! 600: int
! 601: whatnow(char *s, int flag)
! 602: {
! 603: int n;
! 604: char *def;
! 605: whatnow_t wp;
! 606: entree *ep;
! 607:
! 608: if (flag < 0) { n = -flag; flag = 0; }
! 609: else
! 610: {
! 611: if (flag && strlen(s)==1) return 0; /* special case "i" and "o" */
! 612: if (!is_identifier(s) || !is_entry_intern(s,funct_old_hash,NULL))
! 613: {
! 614: if (flag) return 0;
! 615: err(talker,"as far as I can recall, this function never existed");
! 616: }
! 617: n = 0;
! 618: do
! 619: def = (oldfonctions[n++]).name;
! 620: while (def && strcmp(def,s));
! 621: if (!def)
! 622: {
! 623: int m=0;
! 624: do
! 625: def = (functions_oldgp[m++]).name;
! 626: while (def && strcmp(def,s));
! 627: n += m - 1;
! 628: }
! 629: }
! 630:
! 631: wp=whatnowlist[n-1]; def=wp.name;
! 632: if (def == SAME)
! 633: {
! 634: if (flag) return 0;
! 635: err(talker,"this function did not change");
! 636: }
! 637: if (flag) return n;
! 638:
! 639: if (def == REMOV)
! 640: err(talker,"this function was suppressed");
! 641: if (!strcmp(def,"x*y"))
! 642: {
! 643: pariputsf(" %s is now called *.\n\n",s);
! 644: pariputsf(" %s%s ===> %s%s\n\n",s,wp.oldarg,wp.name,wp.newarg);
! 645: return 1;
! 646: }
! 647: ep = is_entry(wp.name);
! 648: if (!ep) err(bugparier,"whatnow");
! 649: pariputs("New syntax: "); term_color(c_ERR);
! 650: pariputsf("%s%s ===> %s%s\n\n",s,wp.oldarg,wp.name,wp.newarg);
! 651: term_color(c_HELP);
! 652: print_text(ep->help); pariputc('\n');
! 653: term_color(c_NONE); return 1;
! 654: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>