[BACK]Return to nfields CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari-2.2 / src / test / 64

Annotation of OpenXM_contrib/pari-2.2/src/test/64/nfields, Revision 1.1.1.1

1.1       noro        1:    echo = 1 (on)
                      2: ? nfpol=x^5-5*x^3+5*x+25
                      3: x^5 - 5*x^3 + 5*x + 25
                      4: ? qpol=y^3-y-1;un=Mod(1,qpol);w=Mod(y,qpol);p=un*(x^5-5*x+w)
                      5: Mod(1, y^3 - y - 1)*x^5 + Mod(-5, y^3 - y - 1)*x + Mod(y, y^3 - y - 1)
                      6: ? p2=x^5+3021*x^4-786303*x^3-6826636057*x^2-546603588746*x+3853890514072057
                      7: x^5 + 3021*x^4 - 786303*x^3 - 6826636057*x^2 - 546603588746*x + 385389051407
                      8: 2057
                      9: ? fa=[11699,6;2392997,2;4987333019653,2]
                     10:
                     11: [11699 6]
                     12:
                     13: [2392997 2]
                     14:
                     15: [4987333019653 2]
                     16:
                     17: ? setrand(1);a=matrix(3,5,j,k,vectorv(5,l,random\10^8));
                     18: ? setrand(1);as=matrix(3,3,j,k,vectorv(5,l,random\10^8));
                     19: ? nf=nfinit(nfpol)
                     20: [x^5 - 5*x^3 + 5*x + 25, [1, 2], 595125, 45, [[1, -2.42851749071941860689920
                     21: 69565359418364, 5.8976972027301414394898806541072047941, -7.0734526715090929
                     22: 269887668671457811020, 3.8085820570096366144649278594400435257; 1, 1.9647119
                     23: 211288133163138753392090569931 + 0.80971492418897895128294082219556466857*I,
                     24:  3.2044546745713084269203768790545260356 + 3.1817131285400005341145852263331
                     25: 539899*I, -0.16163499313031744537610982231988834519 + 1.88804378620070569319
                     26: 06454476483475283*I, 2.0660709538372480632698971148801090692 + 2.68989675196
                     27: 23140991170523711857387388*I; 1, -0.75045317576910401286427186094108607489 +
                     28:  1.3101462685358123283560773619310445915*I, -1.15330327593637914666531720610
                     29: 81284327 - 1.9664068558894834311780119356739268309*I, 1.19836132888486390887
                     30: 04932558927788962 + 0.64370238076256988899570325671192132449*I, -0.470361982
                     31: 34206637050236104460013083212 + 0.083628266711589186119416762685933385421*I]
                     32: , [1, 2, 2; -2.4285174907194186068992069565359418364, 3.92942384225762663262
                     33: 77506784181139862 - 1.6194298483779579025658816443911293371*I, -1.5009063515
                     34: 382080257285437218821721497 - 2.6202925370716246567121547238620891831*I; 5.8
                     35: 976972027301414394898806541072047941, 6.408909349142616853840753758109052071
                     36: 2 - 6.3634262570800010682291704526663079798*I, -2.30660655187275829333063441
                     37: 22162568654 + 3.9328137117789668623560238713478536619*I; -7.0734526715090929
                     38: 269887668671457811020, -0.32326998626063489075221964463977669038 - 3.7760875
                     39: 724014113863812908952966950567*I, 2.3967226577697278177409865117855577924 -
                     40: 1.2874047615251397779914065134238426489*I; 3.8085820570096366144649278594400
                     41: 435257, 4.1321419076744961265397942297602181385 - 5.379793503924628198234104
                     42: 7423714774776*I, -0.94072396468413274100472208920026166424 - 0.1672565334231
                     43: 7837223883352537186677084*I], [5, 0.E-77, 10.0000000000000000000000000000000
                     44: 00000, -5.0000000000000000000000000000000000000, 7.0000000000000000000000000
                     45: 000000000000; 0.E-77, 19.488486013650707197449403270536023970, 2.07268045322
                     46: 2666710 E-76, 19.488486013650707197449403270536023970, 4.1504592246706085588
                     47: 902013976045703227; 10.000000000000000000000000000000000000, 2.0726804532226
                     48: 66710 E-76, 85.960217420851846480305133936577594605, -36.0342682914829798382
                     49: 67056239752434596, 53.576130452511107888183080361946556763; -5.0000000000000
                     50: 000000000000000000000000, 19.488486013650707197449403270536023970, -36.03426
                     51: 8291482979838267056239752434596, 60.916248374441986300937507618575151517, -1
                     52: 8.470101750219179344070032346246890434; 7.0000000000000000000000000000000000
                     53: 000, 4.1504592246706085588902013976045703227, 53.576130452511107888183080361
                     54: 946556763, -18.470101750219179344070032346246890434, 37.97015289284236734089
                     55: 7384258599214282], [5, 0, 10, -5, 7; 0, 10, 0, 10, -5; 10, 0, 30, -55, 20; -
                     56: 5, 10, -55, 45, -39; 7, -5, 20, -39, 9], [345, 0, 340, 167, 150; 0, 345, 110
                     57: , 220, 153; 0, 0, 5, 2, 1; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [132825, -18975, -
                     58: 5175, 27600, 17250; -18975, 34500, 41400, 3450, -43125; -5175, 41400, -41400
                     59: , -15525, 51750; 27600, 3450, -15525, -3450, 0; 17250, -43125, 51750, 0, -86
                     60: 250], [595125, [-13800, 117300, 67275, 1725, 0]~]], [-2.42851749071941860689
                     61: 92069565359418364, 1.9647119211288133163138753392090569931 + 0.8097149241889
                     62: 7895128294082219556466857*I, -0.75045317576910401286427186094108607489 + 1.3
                     63: 101462685358123283560773619310445915*I], [1, x, x^2, 1/3*x^3 - 1/3*x^2 - 1/3
                     64: , 1/15*x^4 + 1/3*x^2 + 1/3*x + 1/3], [1, 0, 0, 1, -5; 0, 1, 0, 0, -5; 0, 0,
                     65: 1, 1, -5; 0, 0, 0, 3, 0; 0, 0, 0, 0, 15], [1, 0, 0, 0, 0, 0, 0, 1, -2, -1, 0
                     66: , 1, -5, -5, -3, 0, -2, -5, 1, -4, 0, -1, -3, -4, -3; 0, 1, 0, 0, 0, 1, 0, 0
                     67: , -2, 0, 0, 0, -5, 0, -5, 0, -2, 0, -5, 0, 0, 0, -5, 0, -4; 0, 0, 1, 0, 0, 0
                     68: , 1, 1, -2, 1, 1, 1, -5, 3, -3, 0, -2, 3, -5, 1, 0, 1, -3, 1, -2; 0, 0, 0, 1
                     69: , 0, 0, 0, 3, -1, 2, 0, 3, 0, 5, 1, 1, -1, 5, -4, 3, 0, 2, 1, 3, 1; 0, 0, 0,
                     70:  0, 1, 0, 0, 0, 5, 0, 0, 0, 15, -5, 10, 0, 5, -5, 10, -2, 1, 0, 10, -2, 7]]
                     71: ? nf1=nfinit(nfpol,2)
                     72: [x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2, [1, 2], 595125, 4, [[1, -1.089115145
                     73: 7205048250249527946671612684, 1.1861718006377964594796293860483989860, -0.59
                     74: 741050929194782733001765987770358483, 0.158944197453903762065494816710718942
                     75: 89; 1, -0.13838372073406036365047976417441696637 + 0.49181637657768643499753
                     76: 285514741525107*I, -0.22273329410580226599155701611419649154 - 0.13611876021
                     77: 752805221674918029071012580*I, -0.13167445871785818798769651537619416009 + 0
                     78: .13249517760521973840801462296650806543*I, -0.053650958656997725359297528357
                     79: 602608116 + 0.27622636814169107038138284681568361486*I; 1, 1.682941293594312
                     80: 7761629561615079976005 + 2.0500351226010726172974286983598602163*I, -1.37035
                     81: 26062130959637482576769100030014 + 6.9001775222880494773720769629846373016*I
                     82: , -8.0696202866361678983472946546849540475 + 8.87676767859710424508852843013
                     83: 48051602*I, -22.025821140069954155673449879997756863 - 8.4306586896999153544
                     84: 710860185447589664*I], [1, 2, 2; -1.0891151457205048250249527946671612684, -
                     85: 0.27676744146812072730095952834883393274 - 0.9836327531553728699950657102948
                     86: 3050214*I, 3.3658825871886255523259123230159952011 - 4.100070245202145234594
                     87: 8573967197204327*I; 1.1861718006377964594796293860483989860, -0.445466588211
                     88: 60453198311403222839298308 + 0.27223752043505610443349836058142025160*I, -2.
                     89: 7407052124261919274965153538200060029 - 13.800355044576098954744153925969274
                     90: 603*I; -0.59741050929194782733001765987770358483, -0.26334891743571637597539
                     91: 303075238832018 - 0.26499035521043947681602924593301613087*I, -16.1392405732
                     92: 72335796694589309369908095 - 17.753535357194208490177056860269610320*I; 0.15
                     93: 894419745390376206549481671071894289, -0.10730191731399545071859505671520521
                     94: 623 - 0.55245273628338214076276569363136722973*I, -44.0516422801399083113468
                     95: 99759995513726 + 16.861317379399830708942172037089517932*I], [5, 2.000000000
                     96: 0000000000000000000000000000, -2.0000000000000000000000000000000000000, -17.
                     97: 000000000000000000000000000000000000, -44.0000000000000000000000000000000000
                     98: 00; 2.0000000000000000000000000000000000000, 15.7781094086719980448363574712
                     99: 83695361, 22.314643349754061651916553814602769764, 10.0513952578314782754999
                    100: 32716306366248, -108.58917507620841447456569092094763671; -2.000000000000000
                    101: 0000000000000000000000, 22.314643349754061651916553814602769764, 100.5239126
                    102: 2388960975827806174040462368, 143.93295090847353519436673793501057176, -55.8
                    103: 42564718082452641322500190813370023; -17.00000000000000000000000000000000000
                    104: 0, 10.051395257831478275499932716306366248, 143.9329509084735351943667379350
                    105: 1057176, 288.25823756749944693139292174819167135, 205.7984003827766237572018
                    106: 0649465932302; -44.000000000000000000000000000000000000, -108.58917507620841
                    107: 447456569092094763671, -55.842564718082452641322500190813370023, 205.7984003
                    108: 8277662375720180649465932302, 1112.6092277946777707779250962522343036], [5,
                    109: 2, -2, -17, -44; 2, -2, -34, -63, -40; -2, -34, -90, -101, 177; -17, -63, -1
                    110: 01, -27, 505; -44, -40, 177, 505, 828], [345, 0, 160, 252, 156; 0, 345, 215,
                    111:  311, 306; 0, 0, 5, 3, 2; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [163875, -388125, -
                    112: 296700, 234600, -89700; -388125, -1593900, -677925, 595125, -315675; -296700
                    113: , -677925, 17250, 58650, -87975; 234600, 595125, 58650, -100050, 89700; -897
                    114: 00, -315675, -87975, 89700, -55200], [595125, [-167325, -82800, 79350, 1725,
                    115:  0]~]], [-1.0891151457205048250249527946671612684, -0.1383837207340603636504
                    116: 7976417441696637 + 0.49181637657768643499753285514741525107*I, 1.68294129359
                    117: 43127761629561615079976005 + 2.0500351226010726172974286983598602163*I], [1,
                    118:  x, x^2, 1/2*x^3 + 1/2*x^2 + 1/2*x, 1/2*x^4 + 1/2*x], [1, 0, 0, 0, 0; 0, 1,
                    119: 0, -1, -1; 0, 0, 1, -1, 0; 0, 0, 0, 2, 0; 0, 0, 0, 0, 2], [1, 0, 0, 0, 0, 0,
                    120:  0, 0, 0, -1, 0, 0, 0, -1, -2, 0, 0, -1, -2, -2, 0, -1, -2, -2, 5; 0, 1, 0,
                    121: 0, 0, 1, 0, -1, -1, -1, 0, -1, -1, -2, 2, 0, -1, -2, -1, 7, 0, -1, 2, 7, 14;
                    122:  0, 0, 1, 0, 0, 0, 1, -1, 0, -2, 1, -1, 0, -3, -3, 0, 0, -3, -4, -1, 0, -2,
                    123: -3, -1, 15; 0, 0, 0, 1, 0, 0, 0, 2, 1, -3, 0, 2, 0, -2, -13, 1, 1, -2, -9, -
                    124: 19, 0, -3, -13, -19, 7; 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 2, 3, 1, 0, 1, 3
                    125: , 4, -4, 1, 2, 1, -4, -21]]
                    126: ? nfinit(nfpol,3)
                    127: [[x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2, [1, 2], 595125, 4, [[1, -1.08911514
                    128: 57205048250249527946671612684, 1.1861718006377964594796293860483989860, -0.5
                    129: 9741050929194782733001765987770358483, 0.15894419745390376206549481671071894
                    130: 289; 1, -0.13838372073406036365047976417441696637 + 0.4918163765776864349975
                    131: 3285514741525107*I, -0.22273329410580226599155701611419649154 - 0.1361187602
                    132: 1752805221674918029071012580*I, -0.13167445871785818798769651537619416009 +
                    133: 0.13249517760521973840801462296650806543*I, -0.05365095865699772535929752835
                    134: 7602608116 + 0.27622636814169107038138284681568361486*I; 1, 1.68294129359431
                    135: 27761629561615079976005 + 2.0500351226010726172974286983598602163*I, -1.3703
                    136: 526062130959637482576769100030014 + 6.9001775222880494773720769629846373016*
                    137: I, -8.0696202866361678983472946546849540475 + 8.8767676785971042450885284301
                    138: 348051602*I, -22.025821140069954155673449879997756863 - 8.430658689699915354
                    139: 4710860185447589664*I], [1, 2, 2; -1.0891151457205048250249527946671612684,
                    140: -0.27676744146812072730095952834883393274 - 0.983632753155372869995065710294
                    141: 83050214*I, 3.3658825871886255523259123230159952011 - 4.10007024520214523459
                    142: 48573967197204327*I; 1.1861718006377964594796293860483989860, -0.44546658821
                    143: 160453198311403222839298308 + 0.27223752043505610443349836058142025160*I, -2
                    144: .7407052124261919274965153538200060029 - 13.80035504457609895474415392596927
                    145: 4603*I; -0.59741050929194782733001765987770358483, -0.2633489174357163759753
                    146: 9303075238832018 - 0.26499035521043947681602924593301613087*I, -16.139240573
                    147: 272335796694589309369908095 - 17.753535357194208490177056860269610320*I; 0.1
                    148: 5894419745390376206549481671071894289, -0.1073019173139954507185950567152052
                    149: 1623 - 0.55245273628338214076276569363136722973*I, -44.051642280139908311346
                    150: 899759995513726 + 16.861317379399830708942172037089517932*I], [5, 2.00000000
                    151: 00000000000000000000000000000, -2.0000000000000000000000000000000000000, -17
                    152: .000000000000000000000000000000000000, -44.000000000000000000000000000000000
                    153: 000; 2.0000000000000000000000000000000000000, 15.778109408671998044836357471
                    154: 283695361, 22.314643349754061651916553814602769764, 10.051395257831478275499
                    155: 932716306366248, -108.58917507620841447456569092094763671; -2.00000000000000
                    156: 00000000000000000000000, 22.314643349754061651916553814602769764, 100.523912
                    157: 62388960975827806174040462368, 143.93295090847353519436673793501057176, -55.
                    158: 842564718082452641322500190813370023; -17.0000000000000000000000000000000000
                    159: 00, 10.051395257831478275499932716306366248, 143.932950908473535194366737935
                    160: 01057176, 288.25823756749944693139292174819167135, 205.798400382776623757201
                    161: 80649465932302; -44.000000000000000000000000000000000000, -108.5891750762084
                    162: 1447456569092094763671, -55.842564718082452641322500190813370023, 205.798400
                    163: 38277662375720180649465932302, 1112.6092277946777707779250962522343036], [5,
                    164:  2, -2, -17, -44; 2, -2, -34, -63, -40; -2, -34, -90, -101, 177; -17, -63, -
                    165: 101, -27, 505; -44, -40, 177, 505, 828], [345, 0, 160, 252, 156; 0, 345, 215
                    166: , 311, 306; 0, 0, 5, 3, 2; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [163875, -388125,
                    167: -296700, 234600, -89700; -388125, -1593900, -677925, 595125, -315675; -29670
                    168: 0, -677925, 17250, 58650, -87975; 234600, 595125, 58650, -100050, 89700; -89
                    169: 700, -315675, -87975, 89700, -55200], [595125, [-167325, -82800, 79350, 1725
                    170: , 0]~]], [-1.0891151457205048250249527946671612684, -0.138383720734060363650
                    171: 47976417441696637 + 0.49181637657768643499753285514741525107*I, 1.6829412935
                    172: 943127761629561615079976005 + 2.0500351226010726172974286983598602163*I], [1
                    173: , x, x^2, 1/2*x^3 + 1/2*x^2 + 1/2*x, 1/2*x^4 + 1/2*x], [1, 0, 0, 0, 0; 0, 1,
                    174:  0, -1, -1; 0, 0, 1, -1, 0; 0, 0, 0, 2, 0; 0, 0, 0, 0, 2], [1, 0, 0, 0, 0, 0
                    175: , 0, 0, 0, -1, 0, 0, 0, -1, -2, 0, 0, -1, -2, -2, 0, -1, -2, -2, 5; 0, 1, 0,
                    176:  0, 0, 1, 0, -1, -1, -1, 0, -1, -1, -2, 2, 0, -1, -2, -1, 7, 0, -1, 2, 7, 14
                    177: ; 0, 0, 1, 0, 0, 0, 1, -1, 0, -2, 1, -1, 0, -3, -3, 0, 0, -3, -4, -1, 0, -2,
                    178:  -3, -1, 15; 0, 0, 0, 1, 0, 0, 0, 2, 1, -3, 0, 2, 0, -2, -13, 1, 1, -2, -9,
                    179: -19, 0, -3, -13, -19, 7; 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 2, 3, 1, 0, 1,
                    180: 3, 4, -4, 1, 2, 1, -4, -21]], Mod(-1/2*x^4 + 3/2*x^3 - 5/2*x^2 - 2*x + 1, x^
                    181: 5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2)]
                    182: ? nfinit(nfpol,4)
                    183: [x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2, [1, 2], 595125, 4, [[1, -1.089115145
                    184: 7205048250249527946671612684, 1.1861718006377964594796293860483989860, -0.59
                    185: 741050929194782733001765987770358483, 0.158944197453903762065494816710718942
                    186: 89; 1, -0.13838372073406036365047976417441696637 + 0.49181637657768643499753
                    187: 285514741525107*I, -0.22273329410580226599155701611419649154 - 0.13611876021
                    188: 752805221674918029071012580*I, -0.13167445871785818798769651537619416009 + 0
                    189: .13249517760521973840801462296650806543*I, -0.053650958656997725359297528357
                    190: 602608116 + 0.27622636814169107038138284681568361486*I; 1, 1.682941293594312
                    191: 7761629561615079976005 + 2.0500351226010726172974286983598602163*I, -1.37035
                    192: 26062130959637482576769100030014 + 6.9001775222880494773720769629846373016*I
                    193: , -8.0696202866361678983472946546849540475 + 8.87676767859710424508852843013
                    194: 48051602*I, -22.025821140069954155673449879997756863 - 8.4306586896999153544
                    195: 710860185447589664*I], [1, 2, 2; -1.0891151457205048250249527946671612684, -
                    196: 0.27676744146812072730095952834883393274 - 0.9836327531553728699950657102948
                    197: 3050214*I, 3.3658825871886255523259123230159952011 - 4.100070245202145234594
                    198: 8573967197204327*I; 1.1861718006377964594796293860483989860, -0.445466588211
                    199: 60453198311403222839298308 + 0.27223752043505610443349836058142025160*I, -2.
                    200: 7407052124261919274965153538200060029 - 13.800355044576098954744153925969274
                    201: 603*I; -0.59741050929194782733001765987770358483, -0.26334891743571637597539
                    202: 303075238832018 - 0.26499035521043947681602924593301613087*I, -16.1392405732
                    203: 72335796694589309369908095 - 17.753535357194208490177056860269610320*I; 0.15
                    204: 894419745390376206549481671071894289, -0.10730191731399545071859505671520521
                    205: 623 - 0.55245273628338214076276569363136722973*I, -44.0516422801399083113468
                    206: 99759995513726 + 16.861317379399830708942172037089517932*I], [5, 2.000000000
                    207: 0000000000000000000000000000, -2.0000000000000000000000000000000000000, -17.
                    208: 000000000000000000000000000000000000, -44.0000000000000000000000000000000000
                    209: 00; 2.0000000000000000000000000000000000000, 15.7781094086719980448363574712
                    210: 83695361, 22.314643349754061651916553814602769764, 10.0513952578314782754999
                    211: 32716306366248, -108.58917507620841447456569092094763671; -2.000000000000000
                    212: 0000000000000000000000, 22.314643349754061651916553814602769764, 100.5239126
                    213: 2388960975827806174040462368, 143.93295090847353519436673793501057176, -55.8
                    214: 42564718082452641322500190813370023; -17.00000000000000000000000000000000000
                    215: 0, 10.051395257831478275499932716306366248, 143.9329509084735351943667379350
                    216: 1057176, 288.25823756749944693139292174819167135, 205.7984003827766237572018
                    217: 0649465932302; -44.000000000000000000000000000000000000, -108.58917507620841
                    218: 447456569092094763671, -55.842564718082452641322500190813370023, 205.7984003
                    219: 8277662375720180649465932302, 1112.6092277946777707779250962522343036], [5,
                    220: 2, -2, -17, -44; 2, -2, -34, -63, -40; -2, -34, -90, -101, 177; -17, -63, -1
                    221: 01, -27, 505; -44, -40, 177, 505, 828], [345, 0, 160, 252, 156; 0, 345, 215,
                    222:  311, 306; 0, 0, 5, 3, 2; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [163875, -388125, -
                    223: 296700, 234600, -89700; -388125, -1593900, -677925, 595125, -315675; -296700
                    224: , -677925, 17250, 58650, -87975; 234600, 595125, 58650, -100050, 89700; -897
                    225: 00, -315675, -87975, 89700, -55200], [595125, [-167325, -82800, 79350, 1725,
                    226:  0]~]], [-1.0891151457205048250249527946671612684, -0.1383837207340603636504
                    227: 7976417441696637 + 0.49181637657768643499753285514741525107*I, 1.68294129359
                    228: 43127761629561615079976005 + 2.0500351226010726172974286983598602163*I], [1,
                    229:  x, x^2, 1/2*x^3 + 1/2*x^2 + 1/2*x, 1/2*x^4 + 1/2*x], [1, 0, 0, 0, 0; 0, 1,
                    230: 0, -1, -1; 0, 0, 1, -1, 0; 0, 0, 0, 2, 0; 0, 0, 0, 0, 2], [1, 0, 0, 0, 0, 0,
                    231:  0, 0, 0, -1, 0, 0, 0, -1, -2, 0, 0, -1, -2, -2, 0, -1, -2, -2, 5; 0, 1, 0,
                    232: 0, 0, 1, 0, -1, -1, -1, 0, -1, -1, -2, 2, 0, -1, -2, -1, 7, 0, -1, 2, 7, 14;
                    233:  0, 0, 1, 0, 0, 0, 1, -1, 0, -2, 1, -1, 0, -3, -3, 0, 0, -3, -4, -1, 0, -2,
                    234: -3, -1, 15; 0, 0, 0, 1, 0, 0, 0, 2, 1, -3, 0, 2, 0, -2, -13, 1, 1, -2, -9, -
                    235: 19, 0, -3, -13, -19, 7; 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 2, 3, 1, 0, 1, 3
                    236: , 4, -4, 1, 2, 1, -4, -21]]
                    237: ? nf3=nfinit(x^6+108);
                    238: ? nf4=nfinit(x^3-10*x+8)
                    239: [x^3 - 10*x + 8, [3, 0], 568, 2, [[1, -3.50466435358804770515010852590433205
                    240: 79, 6.1413361156553641347759399165844441383; 1, 0.86464088669540302583112842
                    241: 266613688800, 0.37380193147270638662350044992137561317; 1, 2.640023466892644
                    242: 6793189801032381951699, 3.4848619528719294786005596334941802484], [1, 1, 1;
                    243: -3.5046643535880477051501085259043320579, 0.86464088669540302583112842266613
                    244: 688800, 2.6400234668926446793189801032381951699; 6.1413361156553641347759399
                    245: 165844441383, 0.37380193147270638662350044992137561317, 3.484861952871929478
                    246: 6005596334941802484], [3, -3.454467422037777850 E-77, 10.0000000000000000000
                    247: 00000000000000000; -3.454467422037777850 E-77, 20.00000000000000000000000000
                    248: 0000000000, -12.000000000000000000000000000000000000; 10.0000000000000000000
                    249: 00000000000000000, -12.000000000000000000000000000000000000, 50.000000000000
                    250: 000000000000000000000000], [3, 0, 10; 0, 20, -12; 10, -12, 50], [284, 168, 2
                    251: 35; 0, 2, 0; 0, 0, 1], [856, -120, -200; -120, 50, 36; -200, 36, 60], [568,
                    252: [-216, 90, 8]~]], [-3.5046643535880477051501085259043320579, 0.8646408866954
                    253: 0302583112842266613688800, 2.6400234668926446793189801032381951699], [1, x,
                    254: 1/2*x^2], [1, 0, 0; 0, 1, 0; 0, 0, 2], [1, 0, 0, 0, 0, -4, 0, -4, 0; 0, 1, 0
                    255: , 1, 0, 5, 0, 5, -2; 0, 0, 1, 0, 2, 0, 1, 0, 5]]
                    256: ? setrand(1);bnf2=bnfinit(qpol);nf2=bnf2[7];
                    257: ? setrand(1);bnf=bnfinit(x^2-x-57,,[0.2,0.2])
                    258: [Mat(3), Mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.71246530518434397468087951060
                    259: 61300699 + 3.1415926535897932384626433832795028842*I; 2.71246530518434397468
                    260: 08795106061300699 - 6.2831853071795864769252867665590057684*I], [9.927737672
                    261: 2507613003718504524486100858 + 3.1415926535897932384626433832795028842*I, 1.
                    262: 2897619530652735025030086072395031017 + 0.E-57*I, -2.01097980249891575621226
                    263: 34098917610612 + 3.1415926535897932384626433832795028842*I, 24.4121877466590
                    264: 95772127915595455170629 + 6.2831853071795864769252867665590057684*I, 30.3376
                    265: 98160660239595315877930058147543 + 9.4247779607693797153879301498385086526*I
                    266: , -20.610866187462450639586440264933189691 + 9.42477796076937971538793014983
                    267: 85086526*I, 29.258282452818196217527894893424939793 + 9.42477796076937971538
                    268: 79301498385086526*I, -0.34328764427702709438988786673341921876 + 3.141592653
                    269: 5897932384626433832795028842*I, -14.550628376291080203941433635329724736 + 0
                    270: .E-56*I, 24.478366048541841504313284087778334822 + 3.14159265358979323846264
                    271: 33832795028842*I; -9.9277376722507613003718504524486100858 + 6.2831853071795
                    272: 864769252867665590057684*I, -1.2897619530652735025030086072395031017 + 9.424
                    273: 7779607693797153879301498385086526*I, 2.010979802498915756212263409891761061
                    274: 2 + 0.E-57*I, -24.412187746659095772127915595455170629 + 3.14159265358979323
                    275: 84626433832795028842*I, -30.337698160660239595315877930058147543 + 3.1415926
                    276: 535897932384626433832795028842*I, 20.610866187462450639586440264933189691 +
                    277: 3.1415926535897932384626433832795028842*I, -29.25828245281819621752789489342
                    278: 4939793 + 6.2831853071795864769252867665590057684*I, 0.343287644277027094389
                    279: 88786673341921876 + 0.E-57*I, 14.550628376291080203941433635329724736 + 3.14
                    280: 15926535897932384626433832795028842*I, -24.478366048541841504313284087778334
                    281: 822 + 3.1415926535897932384626433832795028842*I], [[3, [-1, 1]~, 1, 1, [0, 1
                    282: ]~], [3, [0, 1]~, 1, 1, [-1, 1]~], [5, [-2, 1]~, 1, 1, [1, 1]~], [5, [1, 1]~
                    283: , 1, 1, [-2, 1]~], [11, [-2, 1]~, 1, 1, [1, 1]~], [11, [1, 1]~, 1, 1, [-2, 1
                    284: ]~], [17, [-3, 1]~, 1, 1, [2, 1]~], [17, [2, 1]~, 1, 1, [-3, 1]~], [19, [-1,
                    285:  1]~, 1, 1, [0, 1]~], [19, [0, 1]~, 1, 1, [-1, 1]~]]~, [1, 3, 5, 2, 4, 6, 7,
                    286:  8, 10, 9], [x^2 - x - 57, [2, 0], 229, 1, [[1, -7.0663729752107779635959310
                    287: 246705326058; 1, 8.0663729752107779635959310246705326058], [1, 1; -7.0663729
                    288: 752107779635959310246705326058, 8.0663729752107779635959310246705326058], [2
                    289: , 1.0000000000000000000000000000000000000; 1.0000000000000000000000000000000
                    290: 000000, 115.00000000000000000000000000000000000], [2, 1; 1, 115], [229, 114;
                    291:  0, 1], [115, -1; -1, 2], [229, [114, 1]~]], [-7.066372975210777963595931024
                    292: 6705326058, 8.0663729752107779635959310246705326058], [1, x], [1, 0; 0, 1],
                    293: [1, 0, 0, 57; 0, 1, 1, 1]], [[3, [3], [[3, 2; 0, 1]]], 2.7124653051843439746
                    294: 808795106061300699, 0.8814422512654579369, [2, -1], [x + 7], 185], [Mat(1),
                    295: [[0, 0]], [[9.9277376722507613003718504524486100858 + 3.14159265358979323846
                    296: 26433832795028842*I, -9.9277376722507613003718504524486100858 + 6.2831853071
                    297: 795864769252867665590057684*I]]], 0]
                    298: ? setrand(1);bnfinit(x^2-x-100000,1)
                    299: [Mat(5), Mat([3, 2, 1, 2, 0, 3, 2, 3, 0, 0, 1, 4, 3, 2, 2, 3, 3, 2]), [-129.
                    300: 82045011403975460991182396195022419 - 6.283185307179586476925286766559005768
                    301: 4*I; 129.82045011403975460991182396195022419 - 12.56637061435917295385057353
                    302: 3118011536*I], [-41.811264589129943393339502258694361489 + 8.121413879410077
                    303: 514 E-115*I, 9.2399004147902289816376260438840931575 + 3.1415926535897932384
                    304: 626433832795028842*I, -11.874609881075406725097315997431161032 + 9.424777960
                    305: 7693797153879301498385086526*I, 389.46135034211926382973547188585067257 + 12
                    306: .566370614359172953850573533118011536*I, -440.512515346039436204712600188429
                    307: 12722 + 0.E-113*I, -324.55112528509938652477955990487556047 + 6.283185307179
                    308: 5864769252867665590057684*I, 229.70424552002497255158146166263724792 + 3.141
                    309: 5926535897932384626433832795028842*I, -785.660451862534215720251179722755983
                    310: 25 + 6.2831853071795864769252867665590057684*I, -554.35531386699327377220656
                    311: 215544062014 + 6.2831853071795864769252867665590057684*I, -47.66831907156823
                    312: 3997332918482707687879 + 9.4247779607693797153879301498385086526*I, 177.4887
                    313: 6918560798860724474244465791207 + 6.497131103528062011 E-114*I, -875.6123693
                    314: 7168080069763246690606885226 + 2.598852441411224804 E-113*I, 54.878404098312
                    315: 329644822020875673145627 + 9.4247779607693797153879301498385086526*I, -404.4
                    316: 4153844676787690336623107514389175 + 0.E-113*I, 232.809823743598178900114904
                    317: 85449930607 + 6.2831853071795864769252867665590057684*I, -668.80899963671483
                    318: 856204802764462926790 + 9.4247779607693797153879301498385086526*I, 367.35683
                    319: 481950538594888487746203445802 + 12.566370614359172953850573533118011536*I,
                    320: -1214.0716092619656173892944003952818868 + 9.4247779607693797153879301498385
                    321: 086526*I, -125.94415646756187210316334148291471657 + 6.283185307179586476925
                    322: 2867665590057684*I; 41.811264589129943393339502258694361489 + 6.283185307179
                    323: 5864769252867665590057684*I, -9.2399004147902289816376260438840931575 + 12.5
                    324: 66370614359172953850573533118011536*I, 11.8746098810754067250973159974311610
                    325: 32 + 8.121413879410077514 E-115*I, -389.46135034211926382973547188585067257
                    326: + 6.2831853071795864769252867665590057684*I, 440.512515346039436204712600188
                    327: 42912722 + 3.1415926535897932384626433832795028842*I, 324.551125285099386524
                    328: 77955990487556047 + 9.4247779607693797153879301498385086526*I, -229.70424552
                    329: 002497255158146166263724792 + 6.2831853071795864769252867665590057684*I, 785
                    330: .66045186253421572025117972275598325 + 9.42477796076937971538793014983850865
                    331: 26*I, 554.35531386699327377220656215544062014 + 3.14159265358979323846264338
                    332: 32795028842*I, 47.668319071568233997332918482707687878 + 3.14159265358979323
                    333: 84626433832795028842*I, -177.48876918560798860724474244465791207 + 6.2831853
                    334: 071795864769252867665590057684*I, 875.61236937168080069763246690606885226 +
                    335: 6.497131103528062011 E-114*I, -54.878404098312329644822020875673145627 + 9.4
                    336: 247779607693797153879301498385086526*I, 404.44153844676787690336623107514389
                    337: 175 + 9.4247779607693797153879301498385086526*I, -232.8098237435981789001149
                    338: 0485449930607 + 3.1415926535897932384626433832795028842*I, 668.8089996367148
                    339: 3856204802764462926790 + 6.2831853071795864769252867665590057684*I, -367.356
                    340: 83481950538594888487746203445803 + 3.1415926535897932384626433832795028842*I
                    341: , 1214.0716092619656173892944003952818868 + 3.141592653589793238462643383279
                    342: 5028842*I, 125.94415646756187210316334148291471657 + 6.283185307179586476925
                    343: 2867665590057684*I], [[2, [1, 1]~, 1, 1, [0, 1]~], [2, [2, 1]~, 1, 1, [1, 1]
                    344: ~], [5, [4, 1]~, 1, 1, [0, 1]~], [5, [5, 1]~, 1, 1, [-1, 1]~], [7, [3, 1]~,
                    345: 2, 1, [3, 1]~], [13, [-6, 1]~, 1, 1, [5, 1]~], [13, [5, 1]~, 1, 1, [-6, 1]~]
                    346: , [17, [14, 1]~, 1, 1, [2, 1]~], [17, [19, 1]~, 1, 1, [-3, 1]~], [23, [-7, 1
                    347: ]~, 1, 1, [6, 1]~], [23, [6, 1]~, 1, 1, [-7, 1]~], [29, [-14, 1]~, 1, 1, [13
                    348: , 1]~], [29, [13, 1]~, 1, 1, [-14, 1]~], [31, [23, 1]~, 1, 1, [7, 1]~], [31,
                    349:  [38, 1]~, 1, 1, [-8, 1]~], [41, [-7, 1]~, 1, 1, [6, 1]~], [41, [6, 1]~, 1,
                    350: 1, [-7, 1]~], [43, [-16, 1]~, 1, 1, [15, 1]~], [43, [15, 1]~, 1, 1, [-16, 1]
                    351: ~]]~, [1, 3, 6, 2, 4, 5, 7, 9, 8, 11, 10, 13, 12, 15, 14, 17, 16, 19, 18], [
                    352: x^2 - x - 100000, [2, 0], 400001, 1, [[1, -315.72816130129840161392089489603
                    353: 747004; 1, 316.72816130129840161392089489603747004], [1, 1; -315.72816130129
                    354: 840161392089489603747004, 316.72816130129840161392089489603747004], [2, 1.00
                    355: 00000000000000000000000000000000000; 1.0000000000000000000000000000000000000
                    356: , 200001.00000000000000000000000000000000], [2, 1; 1, 200001], [400001, 2000
                    357: 00; 0, 1], [200001, -1; -1, 2], [400001, [200000, 1]~]], [-315.7281613012984
                    358: 0161392089489603747004, 316.72816130129840161392089489603747004], [1, x], [1
                    359: , 0; 0, 1], [1, 0, 0, 100000; 0, 1, 1, 1]], [[5, [5], [[2, 1; 0, 1]]], 129.8
                    360: 2045011403975460991182396195022419, 0.9876536979069047239, [2, -1], [3795548
                    361: 84019013781006303254896369154068336082609238336*x + 119836165644250789990462
                    362: 835950022871665178127611316131167], 186], [Mat(1), [[0, 0]], [[-41.811264589
                    363: 129943393339502258694361489 + 8.121413879410077514 E-115*I, 41.8112645891299
                    364: 43393339502258694361489 + 6.2831853071795864769252867665590057684*I]]], 0]
                    365: ? \p19
                    366:    realprecision = 19 significant digits
                    367: ? setrand(1);sbnf=bnfinit(x^3-x^2-14*x-1,3)
                    368: [x^3 - x^2 - 14*x - 1, 3, 10889, [1, x, x^2], [-3.233732695981516673, -0.071
                    369: 82350902743636344, 4.305556205008953036], [10889, 5698, 3794; 0, 1, 0; 0, 0,
                    370:  1], Mat(2), Mat([0, 1, 1, 1, 1, 0, 1, 1]), [9, 15, 16, 17, 10, 69, 33, 39,
                    371: 57], [2, [-1, 0, 0]~], [[0, 1, 0]~, [-4, 2, 1]~], [-4, 3, -1, 2, 3, 11, 1, -
                    372: 1, -7; 1, 1, 1, 1, 0, 2, 1, -4, -2; 0, 0, 0, 0, 0, -1, 0, -1, 0]]
                    373: ? \p38
                    374:    realprecision = 38 significant digits
                    375: ? bnrinit(bnf,[[5,3;0,1],[1,0]],1)
                    376: [[Mat(3), Mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.7124653051843439746808795106
                    377: 061300699 + 3.1415926535897932384626433832795028842*I; 2.7124653051843439746
                    378: 808795106061300699 - 6.2831853071795864769252867665590057684*I], [9.92773767
                    379: 22507613003718504524486100858 + 3.1415926535897932384626433832795028842*I, 1
                    380: .2897619530652735025030086072395031017 + 0.E-57*I, -2.0109798024989157562122
                    381: 634098917610612 + 3.1415926535897932384626433832795028842*I, 24.412187746659
                    382: 095772127915595455170629 + 6.2831853071795864769252867665590057684*I, 30.337
                    383: 698160660239595315877930058147543 + 9.4247779607693797153879301498385086526*
                    384: I, -20.610866187462450639586440264933189691 + 9.4247779607693797153879301498
                    385: 385086526*I, 29.258282452818196217527894893424939793 + 9.4247779607693797153
                    386: 879301498385086526*I, -0.34328764427702709438988786673341921876 + 3.14159265
                    387: 35897932384626433832795028842*I, -14.550628376291080203941433635329724736 +
                    388: 0.E-56*I, 24.478366048541841504313284087778334822 + 3.1415926535897932384626
                    389: 433832795028842*I; -9.9277376722507613003718504524486100858 + 6.283185307179
                    390: 5864769252867665590057684*I, -1.2897619530652735025030086072395031017 + 9.42
                    391: 47779607693797153879301498385086526*I, 2.01097980249891575621226340989176106
                    392: 12 + 0.E-57*I, -24.412187746659095772127915595455170629 + 3.1415926535897932
                    393: 384626433832795028842*I, -30.337698160660239595315877930058147543 + 3.141592
                    394: 6535897932384626433832795028842*I, 20.610866187462450639586440264933189691 +
                    395:  3.1415926535897932384626433832795028842*I, -29.2582824528181962175278948934
                    396: 24939793 + 6.2831853071795864769252867665590057684*I, 0.34328764427702709438
                    397: 988786673341921876 + 0.E-57*I, 14.550628376291080203941433635329724736 + 3.1
                    398: 415926535897932384626433832795028842*I, -24.47836604854184150431328408777833
                    399: 4822 + 3.1415926535897932384626433832795028842*I], [[3, [-1, 1]~, 1, 1, [0,
                    400: 1]~], [3, [0, 1]~, 1, 1, [-1, 1]~], [5, [-2, 1]~, 1, 1, [1, 1]~], [5, [1, 1]
                    401: ~, 1, 1, [-2, 1]~], [11, [-2, 1]~, 1, 1, [1, 1]~], [11, [1, 1]~, 1, 1, [-2,
                    402: 1]~], [17, [-3, 1]~, 1, 1, [2, 1]~], [17, [2, 1]~, 1, 1, [-3, 1]~], [19, [-1
                    403: , 1]~, 1, 1, [0, 1]~], [19, [0, 1]~, 1, 1, [-1, 1]~]]~, [1, 3, 5, 2, 4, 6, 7
                    404: , 8, 10, 9], [x^2 - x - 57, [2, 0], 229, 1, [[1, -7.066372975210777963595931
                    405: 0246705326058; 1, 8.0663729752107779635959310246705326058], [1, 1; -7.066372
                    406: 9752107779635959310246705326058, 8.0663729752107779635959310246705326058], [
                    407: 2, 1.0000000000000000000000000000000000000; 1.000000000000000000000000000000
                    408: 0000000, 115.00000000000000000000000000000000000], [2, 1; 1, 115], [229, 114
                    409: ; 0, 1], [115, -1; -1, 2], [229, [114, 1]~]], [-7.06637297521077796359593102
                    410: 46705326058, 8.0663729752107779635959310246705326058], [1, x], [1, 0; 0, 1],
                    411:  [1, 0, 0, 57; 0, 1, 1, 1]], [[3, [3], [[3, 2; 0, 1]]], 2.712465305184343974
                    412: 6808795106061300699, 0.8814422512654579369, [2, -1], [x + 7], 185], [Mat(1),
                    413:  [[0, 0]], [[9.9277376722507613003718504524486100858 + 3.1415926535897932384
                    414: 626433832795028842*I, -9.9277376722507613003718504524486100858 + 6.283185307
                    415: 1795864769252867665590057684*I]]], [0, [Mat([[5, 1]~, 1])]]], [[[5, 3; 0, 1]
                    416: , [1, 0]], [8, [4, 2], [[2, 0]~, [-1, 1]~]], Mat([[5, [-2, 1]~, 1, 1, [1, 1]
                    417: ~], 1]), [[[[4], [[2, 0]~], [[2, 0]~], [[Mod(0, 2)]~], 1]], [[2], [[-1, 1]~]
                    418: , Mat(1)]], [1, 0; 0, 1]], [1], [1, -3, -6; 0, 0, 1; 0, 1, 0], [12, [12], [[
                    419: 3, 2; 0, 1]]], [[1/2, 0; 0, 0], [1, -1; 1, 1]]]
                    420: ? bnr=bnrclass(bnf,[[5,3;0,1],[1,0]],2)
                    421: [[Mat(3), Mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.7124653051843439746808795106
                    422: 061300699 + 3.1415926535897932384626433832795028842*I; 2.7124653051843439746
                    423: 808795106061300699 - 6.2831853071795864769252867665590057684*I], [9.92773767
                    424: 22507613003718504524486100858 + 3.1415926535897932384626433832795028842*I, 1
                    425: .2897619530652735025030086072395031017 + 0.E-57*I, -2.0109798024989157562122
                    426: 634098917610612 + 3.1415926535897932384626433832795028842*I, 24.412187746659
                    427: 095772127915595455170629 + 6.2831853071795864769252867665590057684*I, 30.337
                    428: 698160660239595315877930058147543 + 9.4247779607693797153879301498385086526*
                    429: I, -20.610866187462450639586440264933189691 + 9.4247779607693797153879301498
                    430: 385086526*I, 29.258282452818196217527894893424939793 + 9.4247779607693797153
                    431: 879301498385086526*I, -0.34328764427702709438988786673341921876 + 3.14159265
                    432: 35897932384626433832795028842*I, -14.550628376291080203941433635329724736 +
                    433: 0.E-56*I, 24.478366048541841504313284087778334822 + 3.1415926535897932384626
                    434: 433832795028842*I; -9.9277376722507613003718504524486100858 + 6.283185307179
                    435: 5864769252867665590057684*I, -1.2897619530652735025030086072395031017 + 9.42
                    436: 47779607693797153879301498385086526*I, 2.01097980249891575621226340989176106
                    437: 12 + 0.E-57*I, -24.412187746659095772127915595455170629 + 3.1415926535897932
                    438: 384626433832795028842*I, -30.337698160660239595315877930058147543 + 3.141592
                    439: 6535897932384626433832795028842*I, 20.610866187462450639586440264933189691 +
                    440:  3.1415926535897932384626433832795028842*I, -29.2582824528181962175278948934
                    441: 24939793 + 6.2831853071795864769252867665590057684*I, 0.34328764427702709438
                    442: 988786673341921876 + 0.E-57*I, 14.550628376291080203941433635329724736 + 3.1
                    443: 415926535897932384626433832795028842*I, -24.47836604854184150431328408777833
                    444: 4822 + 3.1415926535897932384626433832795028842*I], [[3, [-1, 1]~, 1, 1, [0,
                    445: 1]~], [3, [0, 1]~, 1, 1, [-1, 1]~], [5, [-2, 1]~, 1, 1, [1, 1]~], [5, [1, 1]
                    446: ~, 1, 1, [-2, 1]~], [11, [-2, 1]~, 1, 1, [1, 1]~], [11, [1, 1]~, 1, 1, [-2,
                    447: 1]~], [17, [-3, 1]~, 1, 1, [2, 1]~], [17, [2, 1]~, 1, 1, [-3, 1]~], [19, [-1
                    448: , 1]~, 1, 1, [0, 1]~], [19, [0, 1]~, 1, 1, [-1, 1]~]]~, [1, 3, 5, 2, 4, 6, 7
                    449: , 8, 10, 9], [x^2 - x - 57, [2, 0], 229, 1, [[1, -7.066372975210777963595931
                    450: 0246705326058; 1, 8.0663729752107779635959310246705326058], [1, 1; -7.066372
                    451: 9752107779635959310246705326058, 8.0663729752107779635959310246705326058], [
                    452: 2, 1.0000000000000000000000000000000000000; 1.000000000000000000000000000000
                    453: 0000000, 115.00000000000000000000000000000000000], [2, 1; 1, 115], [229, 114
                    454: ; 0, 1], [115, -1; -1, 2], [229, [114, 1]~]], [-7.06637297521077796359593102
                    455: 46705326058, 8.0663729752107779635959310246705326058], [1, x], [1, 0; 0, 1],
                    456:  [1, 0, 0, 57; 0, 1, 1, 1]], [[3, [3], [[3, 2; 0, 1]]], 2.712465305184343974
                    457: 6808795106061300699, 0.8814422512654579369, [2, -1], [x + 7], 185], [Mat(1),
                    458:  [[0, 0]], [[9.9277376722507613003718504524486100858 + 3.1415926535897932384
                    459: 626433832795028842*I, -9.9277376722507613003718504524486100858 + 6.283185307
                    460: 1795864769252867665590057684*I]]], [0, [Mat([[5, 1]~, 1])]]], [[[5, 3; 0, 1]
                    461: , [1, 0]], [8, [4, 2], [[2, 0]~, [-1, 1]~]], Mat([[5, [-2, 1]~, 1, 1, [1, 1]
                    462: ~], 1]), [[[[4], [[2, 0]~], [[2, 0]~], [[Mod(0, 2)]~], 1]], [[2], [[-1, 1]~]
                    463: , Mat(1)]], [1, 0; 0, 1]], [1], [1, -3, -6; 0, 0, 1; 0, 1, 0], [12, [12], [[
                    464: 3, 2; 0, 1]]], [[1/2, 0; 0, 0], [1, -1; 1, 1]]]
                    465: ? rnfinit(nf2,x^5-x-2)
                    466: [x^5 - x - 2, [[1, 2], [0, 5]], [[49744, 0, 0; 0, 49744, 0; 0, 0, 49744], [3
                    467: 109, 0, 0]~], [1, 0, 0; 0, 1, 0; 0, 0, 1], [[[1, 1.2671683045421243172528914
                    468: 279776896412, 1.6057155120361619195949075151301679393, 2.0347118029638523119
                    469: 874445717108994866, 2.5783223055935536544757871909285592749; 1, 0.2609638803
                    470: 8645528500256735072673484811 + 1.1772261533941944394700286585617926513*I, -1
                    471: .3177592693689352747870763902256347904 + 0.614427010164338838041906608641467
                    472: 31824*I, -1.0672071180669977537495893497477340535 - 1.3909574189920019216524
                    473: 673160314582604*I, 1.3589689411882615753626439480614001936 - 1.6193337759893
                    474: 970298359887428575174472*I; 1, -0.89454803265751744362901306471557966872 + 0
                    475: .53414854617473272670874609150394379949*I, 0.5149015133508543149896226326605
                    476: 5082078 - 0.95564306225496055080453352211847466685*I, 0.04985121658507159775
                    477: 5867063892284310224 + 1.1299025160425089918993024639913611785*I, -0.64813009
                    478: 398503840260053754352567983115 - 0.98412411795664774269323431620030610541*I]
                    479: , [1, 1.2671683045421243172528914279776896412 + 0.E-38*I, 1.6057155120361619
                    480: 195949075151301679393 + 0.E-38*I, 2.0347118029638523119874445717108994866 +
                    481: 0.E-37*I, 2.5783223055935536544757871909285592749 + 0.E-37*I; 1, 0.260963880
                    482: 38645528500256735072673484811 - 1.1772261533941944394700286585617926513*I, -
                    483: 1.3177592693689352747870763902256347904 - 0.61442701016433883804190660864146
                    484: 731824*I, -1.0672071180669977537495893497477340535 + 1.390957418992001921652
                    485: 4673160314582604*I, 1.3589689411882615753626439480614001936 + 1.619333775989
                    486: 3970298359887428575174472*I; 1, 0.26096388038645528500256735072673484811 + 1
                    487: .1772261533941944394700286585617926513*I, -1.3177592693689352747870763902256
                    488: 347904 + 0.61442701016433883804190660864146731824*I, -1.06720711806699775374
                    489: 95893497477340535 - 1.3909574189920019216524673160314582604*I, 1.35896894118
                    490: 82615753626439480614001936 - 1.6193337759893970298359887428575174472*I; 1, -
                    491: 0.89454803265751744362901306471557966872 - 0.5341485461747327267087460915039
                    492: 4379949*I, 0.51490151335085431498962263266055082078 + 0.95564306225496055080
                    493: 453352211847466685*I, 0.049851216585071597755867063892284310224 - 1.12990251
                    494: 60425089918993024639913611785*I, -0.64813009398503840260053754352567983115 +
                    495:  0.98412411795664774269323431620030610541*I; 1, -0.8945480326575174436290130
                    496: 6471557966872 + 0.53414854617473272670874609150394379949*I, 0.51490151335085
                    497: 431498962263266055082078 - 0.95564306225496055080453352211847466685*I, 0.049
                    498: 851216585071597755867063892284310224 + 1.12990251604250899189930246399136117
                    499: 85*I, -0.64813009398503840260053754352567983115 - 0.984124117956647742693234
                    500: 31620030610541*I]], [[1, 2, 2; 1.2671683045421243172528914279776896412, 0.52
                    501: 192776077291057000513470145346969622 - 2.35445230678838887894005731712358530
                    502: 26*I, -1.7890960653150348872580261294311593374 - 1.0682970923494654534174921
                    503: 830078875989*I; 1.6057155120361619195949075151301679393, -2.6355185387378705
                    504: 495741527804512695809 - 1.2288540203286776760838132172829346364*I, 1.0298030
                    505: 267017086299792452653211016415 + 1.9112861245099211016090670442369493337*I;
                    506: 2.0347118029638523119874445717108994866, -2.13441423613399550749917869949546
                    507: 81070 + 2.7819148379840038433049346320629165208*I, 0.09970243317014319551173
                    508: 4127784568620449 - 2.2598050320850179837986049279827223571*I; 2.578322305593
                    509: 5536544757871909285592749, 2.7179378823765231507252878961228003872 + 3.23866
                    510: 75519787940596719774857150348944*I, -1.2962601879700768052010750870513596623
                    511:  + 1.9682482359132954853864686324006122108*I], [1, 1, 1, 1, 1; 1.26716830454
                    512: 21243172528914279776896412 + 0.E-38*I, 0.26096388038645528500256735072673484
                    513: 811 + 1.1772261533941944394700286585617926513*I, 0.2609638803864552850025673
                    514: 5072673484811 - 1.1772261533941944394700286585617926513*I, -0.89454803265751
                    515: 744362901306471557966872 + 0.53414854617473272670874609150394379949*I, -0.89
                    516: 454803265751744362901306471557966872 - 0.53414854617473272670874609150394379
                    517: 949*I; 1.6057155120361619195949075151301679393 + 0.E-38*I, -1.31775926936893
                    518: 52747870763902256347904 + 0.61442701016433883804190660864146731824*I, -1.317
                    519: 7592693689352747870763902256347904 - 0.6144270101643388380419066086414673182
                    520: 4*I, 0.51490151335085431498962263266055082078 - 0.95564306225496055080453352
                    521: 211847466685*I, 0.51490151335085431498962263266055082078 + 0.955643062254960
                    522: 55080453352211847466685*I; 2.0347118029638523119874445717108994866 + 0.E-37*
                    523: I, -1.0672071180669977537495893497477340535 - 1.3909574189920019216524673160
                    524: 314582604*I, -1.0672071180669977537495893497477340535 + 1.390957418992001921
                    525: 6524673160314582604*I, 0.049851216585071597755867063892284310224 + 1.1299025
                    526: 160425089918993024639913611785*I, 0.049851216585071597755867063892284310224
                    527: - 1.1299025160425089918993024639913611785*I; 2.57832230559355365447578719092
                    528: 85592749 + 0.E-37*I, 1.3589689411882615753626439480614001936 - 1.61933377598
                    529: 93970298359887428575174472*I, 1.3589689411882615753626439480614001936 + 1.61
                    530: 93337759893970298359887428575174472*I, -0.6481300939850384026005375435256798
                    531: 3115 - 0.98412411795664774269323431620030610541*I, -0.6481300939850384026005
                    532: 3754352567983115 + 0.98412411795664774269323431620030610541*I]], [[5, -5.877
                    533: 471754111437539 E-39 + 3.4227493991378543323575495001314729016*I, 2.35098870
                    534: 1644575015 E-38 - 0.68243210418124342552525382695401469720*I, -2.35098870164
                    535: 4575015 E-38 - 0.52210980589898585950632970408019416371*I, 3.999999999999999
                    536: 9999999999999999999999 - 5.2069157878920895450584461181156471052*I; -5.87747
                    537: 1754111437539 E-39 - 3.4227493991378543323575495001314729016*I, 6.6847043424
                    538: 634879841147654217963674264 - 5.877471754111437539 E-39*I, 0.851456773407213
                    539: 76574333983502938573598 + 4.5829573180978430291541592600601794652*I, -0.1357
                    540: 4266252716976137461193821267520737 - 0.2880510854402577236173893646768205039
                    541: 1*I, 0.27203784387468568916539788233281013320 - 1.59171472799429477189656508
                    542: 59986677247*I; 2.350988701644575015 E-38 + 0.6824321041812434255252538269540
                    543: 1469720*I, 0.85145677340721376574333983502938573598 - 4.58295731809784302915
                    544: 41592600601794652*I, 9.1630968530221077951281598310681467898 + 0.E-38*I, 2.2
                    545: 622987652095629453403849736225691490 + 6.23619279135585067657240470631807068
                    546: 69*I, -0.21796409886496632254445901043974770643 + 0.345593689310632156861589
                    547: 39748833975810*I; -2.350988701644575015 E-38 + 0.522109805898985859506329704
                    548: 08019416371*I, -0.13574266252716976137461193821267520737 + 0.288051085440257
                    549: 72361738936467682050392*I, 2.2622987652095629453403849736225691490 - 6.23619
                    550: 27913558506765724047063180706869*I, 12.845768948832335511882696939380696155
                    551: + 1.175494350822287507 E-38*I, 4.5618400502378124720913214622468855074 + 8.6
                    552: 033930051068500425218923146793019614*I; 3.9999999999999999999999999999999999
                    553: 999 + 5.2069157878920895450584461181156471052*I, 0.2720378438746856891653978
                    554: 8233281013320 + 1.5917147279942947718965650859986677247*I, -0.21796409886496
                    555: 632254445901043974770643 - 0.34559368931063215686158939748833975810*I, 4.561
                    556: 8400502378124720913214622468855074 - 8.6033930051068500425218923146793019615
                    557: *I, 18.362968630416114402425299186062892646 + 5.877471754111437539 E-39*I],
                    558: [5, -1.175494350822287507 E-38 + 0.E-38*I, 2.350988701644575015 E-38 + 0.E-3
                    559: 8*I, -1.763241526233431261 E-38 + 0.E-38*I, 3.999999999999999999999999999999
                    560: 9999998 + 0.E-38*I; -1.175494350822287507 E-38 + 0.E-38*I, 6.684704342463487
                    561: 9841147654217963674264 - 5.877471754111437539 E-39*I, 0.85145677340721376574
                    562: 333983502938573597 + 5.877471754111437539 E-39*I, -0.13574266252716976137461
                    563: 193821267520737 + 5.877471754111437539 E-39*I, 0.272037843874685689165397882
                    564: 33281013314 - 5.877471754111437539 E-39*I; 2.350988701644575015 E-38 + 0.E-3
                    565: 8*I, 0.85145677340721376574333983502938573597 + 5.877471754111437539 E-39*I,
                    566:  9.1630968530221077951281598310681467898 + 0.E-38*I, 2.262298765209562945340
                    567: 3849736225691490 + 2.350988701644575015 E-38*I, -0.2179640988649663225444590
                    568: 1043974770651 + 0.E-38*I; -1.763241526233431261 E-38 + 0.E-38*I, -0.13574266
                    569: 252716976137461193821267520737 + 5.877471754111437539 E-39*I, 2.262298765209
                    570: 5629453403849736225691490 + 2.350988701644575015 E-38*I, 12.8457689488323355
                    571: 11882696939380696155 + 0.E-37*I, 4.5618400502378124720913214622468855073 - 3
                    572: .526483052466862523 E-38*I; 3.9999999999999999999999999999999999998 + 0.E-38
                    573: *I, 0.27203784387468568916539788233281013314 - 5.877471754111437539 E-39*I,
                    574: -0.21796409886496632254445901043974770651 + 0.E-38*I, 4.56184005023781247209
                    575: 13214622468855073 - 3.526483052466862523 E-38*I, 18.362968630416114402425299
                    576: 186062892646 + 0.E-37*I]], [Mod(5, y^3 - y - 1), 0, 0, 0, Mod(4, y^3 - y - 1
                    577: ); 0, 0, 0, Mod(4, y^3 - y - 1), Mod(10, y^3 - y - 1); 0, 0, Mod(4, y^3 - y
                    578: - 1), Mod(10, y^3 - y - 1), 0; 0, Mod(4, y^3 - y - 1), Mod(10, y^3 - y - 1),
                    579:  0, 0; Mod(4, y^3 - y - 1), Mod(10, y^3 - y - 1), 0, 0, Mod(4, y^3 - y - 1)]
                    580: , [;], [;], [;]], [[1.2671683045421243172528914279776896412, 0.2609638803864
                    581: 5528500256735072673484811 + 1.1772261533941944394700286585617926513*I, -0.89
                    582: 454803265751744362901306471557966872 + 0.53414854617473272670874609150394379
                    583: 949*I], [1.2671683045421243172528914279776896412 + 0.E-38*I, 0.2609638803864
                    584: 5528500256735072673484811 - 1.1772261533941944394700286585617926513*I, 0.260
                    585: 96388038645528500256735072673484811 + 1.177226153394194439470028658561792651
                    586: 3*I, -0.89454803265751744362901306471557966872 - 0.5341485461747327267087460
                    587: 9150394379949*I, -0.89454803265751744362901306471557966872 + 0.5341485461747
                    588: 3272670874609150394379949*I]~], [[Mod(1, y^3 - y - 1), Mod(1, y^3 - y - 1)*x
                    589: , Mod(1, y^3 - y - 1)*x^2, Mod(1, y^3 - y - 1)*x^3, Mod(1, y^3 - y - 1)*x^4]
                    590: , [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1,
                    591:  0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1]]], [M
                    592: od(1, y^3 - y - 1), 0, 0, 0, 0; 0, Mod(1, y^3 - y - 1), 0, 0, 0; 0, 0, Mod(1
                    593: , y^3 - y - 1), 0, 0; 0, 0, 0, Mod(1, y^3 - y - 1), 0; 0, 0, 0, 0, Mod(1, y^
                    594: 3 - y - 1)], [], [y^3 - y - 1, [1, 1], -23, 1, [[1, 1.3247179572447460259609
                    595: 088544780973407, 1.7548776662466927600495088963585286918; 1, -0.662358978622
                    596: 37301298045442723904867036 + 0.56227951206230124389918214490937306149*I, 0.1
                    597: 2256116687665361997524555182073565405 - 0.7448617666197442365931704286043923
                    598: 6724*I], [1, 2; 1.3247179572447460259609088544780973407, -1.3247179572447460
                    599: 259609088544780973407 - 1.1245590241246024877983642898187461229*I; 1.7548776
                    600: 662466927600495088963585286918, 0.24512233375330723995049110364147130810 + 1
                    601: .4897235332394884731863408572087847344*I], [3, 0.E-96, 2.0000000000000000000
                    602: 000000000000000000; 0.E-96, 3.2646329987400782801485266890755860756, 1.32471
                    603: 79572447460259609088544780973407; 2.0000000000000000000000000000000000000, 1
                    604: .3247179572447460259609088544780973407, 4.2192762054875453178332176670757633
                    605: 303], [3, 0, 2; 0, 2, 3; 2, 3, 2], [23, 13, 15; 0, 1, 0; 0, 0, 1], [-5, 6, -
                    606: 4; 6, 2, -9; -4, -9, 6], [23, [7, 10, 1]~]], [1.3247179572447460259609088544
                    607: 780973407, -0.66235897862237301298045442723904867036 + 0.5622795120623012438
                    608: 9918214490937306149*I], [1, y, y^2], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0,
                    609: 0, 0, 1, 0, 1, 0; 0, 1, 0, 1, 0, 1, 0, 1, 1; 0, 0, 1, 0, 1, 0, 1, 0, 1]], [x
                    610: ^15 - 5*x^13 + 5*x^12 + 7*x^11 - 26*x^10 - 5*x^9 + 45*x^8 + 158*x^7 - 98*x^6
                    611:  + 110*x^5 - 190*x^4 + 189*x^3 + 144*x^2 + 25*x + 1, Mod(39516536165538345/8
                    612: 3718587879473471*x^14 - 6500512476832995/83718587879473471*x^13 - 1962154720
                    613: 46117185/83718587879473471*x^12 + 229902227480108910/83718587879473471*x^11
                    614: + 237380704030959181/83718587879473471*x^10 - 1064931988160773805/8371858787
                    615: 9473471*x^9 - 20657086671714300/83718587879473471*x^8 + 1772885205999206010/
                    616: 83718587879473471*x^7 + 5952033217241102348/83718587879473471*x^6 - 48388401
                    617: 87320655696/83718587879473471*x^5 + 5180390720553188700/83718587879473471*x^
                    618: 4 - 8374015687535120430/83718587879473471*x^3 + 8907744727915040221/83718587
                    619: 879473471*x^2 + 4155976664123434381/83718587879473471*x + 318920215718580450
                    620: /83718587879473471, x^15 - 5*x^13 + 5*x^12 + 7*x^11 - 26*x^10 - 5*x^9 + 45*x
                    621: ^8 + 158*x^7 - 98*x^6 + 110*x^5 - 190*x^4 + 189*x^3 + 144*x^2 + 25*x + 1), -
                    622: 1, [1, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^10, x^11, x^12, x^13, 1/
                    623: 83718587879473471*x^14 - 20528463024680133/83718587879473471*x^13 - 47423929
                    624: 48888610/83718587879473471*x^12 - 9983523646123358/83718587879473471*x^11 +
                    625: 40898955597139011/83718587879473471*x^10 + 29412692423971937/837185878794734
                    626: 71*x^9 - 5017479463612351/83718587879473471*x^8 + 41014993230075066/83718587
                    627: 879473471*x^7 - 2712810874903165/83718587879473471*x^6 + 20152905879672878/8
                    628: 3718587879473471*x^5 + 9591643151927789/83718587879473471*x^4 - 847190574595
                    629: 7397/83718587879473471*x^3 - 13395753879413605/83718587879473471*x^2 + 27623
                    630: 037732247492/83718587879473471*x + 26306699661480593/83718587879473471], [1,
                    631:  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -26306699661480593; 0, 1, 0, 0, 0, 0
                    632: , 0, 0, 0, 0, 0, 0, 0, 0, -27623037732247492; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
                    633: 0, 0, 0, 0, 13395753879413605; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 847
                    634: 1905745957397; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -9591643151927789;
                    635: 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -20152905879672878; 0, 0, 0, 0, 0,
                    636:  0, 1, 0, 0, 0, 0, 0, 0, 0, 2712810874903165; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
                    637: 0, 0, 0, 0, -41014993230075066; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 50
                    638: 17479463612351; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -29412692423971937
                    639: ; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -40898955597139011; 0, 0, 0, 0,
                    640: 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 9983523646123358; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
                    641: , 0, 0, 1, 0, 4742392948888610; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 20
                    642: 528463024680133; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 83718587879473471
                    643: ]]]
                    644: ? bnfcertify(bnf)
                    645: 1
                    646: ? setrand(1);bnfclassunit(x^4-7,2,[0.2,0.2])
                    647:
                    648: [x^4 - 7]
                    649:
                    650: [[2, 1]]
                    651:
                    652: [[-87808, 1]]
                    653:
                    654: [[1, x, x^2, x^3]]
                    655:
                    656: [[2, [2], [[3, 1, 2, 1; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]]]]
                    657:
                    658: [14.229975145405511722395637833443108790]
                    659:
                    660: [1.121117107152756229]
                    661:
                    662: ? setrand(1);bnfclassunit(x^2-x-100000)
                    663:   ***   Warning: insufficient precision for fundamental units, not given.
                    664:
                    665: [x^2 - x - 100000]
                    666:
                    667: [[2, 0]]
                    668:
                    669: [[400001, 1]]
                    670:
                    671: [[1, x]]
                    672:
                    673: [[5, [5], [[2, 1; 0, 1]]]]
                    674:
                    675: [129.82045011403975460991182396195022419]
                    676:
                    677: [0.9876536979069047239]
                    678:
                    679: [[2, -1]]
                    680:
                    681: [[;]]
                    682:
                    683: [0]
                    684:
                    685: ? setrand(1);bnfclassunit(x^2-x-100000,1)
                    686:
                    687: [x^2 - x - 100000]
                    688:
                    689: [[2, 0]]
                    690:
                    691: [[400001, 1]]
                    692:
                    693: [[1, x]]
                    694:
                    695: [[5, [5], [[2, 1; 0, 1]]]]
                    696:
                    697: [129.82045011403975460991182396195022419]
                    698:
                    699: [0.9876536979069047239]
                    700:
                    701: [[2, -1]]
                    702:
                    703: [[379554884019013781006303254896369154068336082609238336*x + 119836165644250
                    704: 789990462835950022871665178127611316131167]]
                    705:
                    706: [186]
                    707:
                    708: ? setrand(1);bnfclassunit(x^4+24*x^2+585*x+1791,,[0.1,0.1])
                    709:
                    710: [x^4 + 24*x^2 + 585*x + 1791]
                    711:
                    712: [[0, 2]]
                    713:
                    714: [[18981, 3087]]
                    715:
                    716: [[1, x, 1/3*x^2, 1/1029*x^3 + 33/343*x^2 - 155/343*x - 58/343]]
                    717:
                    718: [[4, [4], [[7, 6, 2, 4; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]]]]
                    719:
                    720: [3.7941269688216589341408274220859400302]
                    721:
                    722: [0.8826018286655581306]
                    723:
                    724: [[6, -10/1029*x^3 + 13/343*x^2 - 165/343*x - 1135/343]]
                    725:
                    726: [[1/147*x^3 + 1/147*x^2 - 8/49*x - 9/49]]
                    727:
                    728: [182]
                    729:
                    730: ? setrand(1);bnfclgp(17)
                    731: [1, [], []]
                    732: ? setrand(1);bnfclgp(-31)
                    733: [3, [3], [Qfb(2, 1, 4)]]
                    734: ? setrand(1);bnfclgp(x^4+24*x^2+585*x+1791)
                    735: [4, [4], [[7, 5, 1, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]]]
                    736: ? bnrconductor(bnf,[[25,13;0,1],[1,1]])
                    737: [[5, 3; 0, 1], [1, 0]]
                    738: ? bnrconductorofchar(bnr,[2])
                    739: [[5, 3; 0, 1], [0, 0]]
                    740: ? bnfisprincipal(bnf,[5,1;0,1],0)
                    741: [1]~
                    742: ? bnfisprincipal(bnf,[5,1;0,1])
                    743: [[1]~, [-2, -1/3]~, 181]
                    744: ? bnfisunit(bnf,Mod(3405*x-27466,x^2-x-57))
                    745: [-4, Mod(1, 2)]~
                    746: ? \p19
                    747:    realprecision = 19 significant digits
                    748: ? bnfmake(sbnf)
                    749: [Mat(2), Mat([0, 1, 1, 1, 1, 0, 1, 1]), [1.173637103435061715 + 3.1415926535
                    750: 89793238*I, -4.562279014988837901 + 3.141592653589793238*I; -2.6335434327389
                    751: 76049 + 3.141592653589793238*I, 1.420330600779487357 + 3.141592653589793238*
                    752: I; 1.459906329303914334, 3.141948414209350543], [1.246346989334819161 + 3.14
                    753: 1592653589793238*I, -1.990056445584799713 + 3.141592653589793238*I, 0.540400
                    754: 6376129469727 + 3.141592653589793238*I, -0.6926391142471042845 + 3.141592653
                    755: 589793238*I, 0.E-96, 0.3677262014027817705 + 3.141592653589793238*I, 0.00437
                    756: 5616572659815402 + 3.141592653589793238*I, -0.8305625946607188639, -1.977791
                    757: 147836553953 + 3.141592653589793238*I; 0.6716827432867392935 + 3.14159265358
                    758: 9793238*I, 0.5379005671092853266, -0.8333219883742404172 + 3.141592653589793
                    759: 238*I, -0.2461086674077943078, 0.E-96, 0.9729063188316092378, -0.87383180430
                    760: 71131265, -1.552661549868775853 + 3.141592653589793238*I, 0.5774919091398324
                    761: 092 + 3.141592653589793238*I; -1.918029732621558454, 1.452155878475514386, 0
                    762: .2929213507612934444, 0.9387477816548985923, 0.E-96, -1.340632520234391008,
                    763: 0.8694561877344533111, 2.383224144529494717 + 3.141592653589793238*I, 1.4002
                    764: 99238696721544 + 3.141592653589793238*I], [[3, [-1, 1, 0]~, 1, 1, [1, 0, 1]~
                    765: ], [5, [3, 1, 0]~, 1, 1, [-2, 1, 1]~], [5, [-1, 1, 0]~, 1, 1, [1, 0, 1]~], [
                    766: 5, [2, 1, 0]~, 1, 1, [2, 2, 1]~], [3, [1, 0, 1]~, 1, 2, [-1, 1, 0]~], [23, [
                    767: -10, 1, 0]~, 1, 1, [7, 9, 1]~], [11, [1, 1, 0]~, 1, 1, [-1, -2, 1]~], [13, [
                    768: 19, 1, 0]~, 1, 1, [2, 6, 1]~], [19, [-6, 1, 0]~, 1, 1, [-3, 5, 1]~]]~, [1, 2
                    769: , 3, 4, 5, 6, 7, 8, 9]~, [x^3 - x^2 - 14*x - 1, [3, 0], 10889, 1, [[1, -3.23
                    770: 3732695981516673, 10.45702714905988813; 1, -0.07182350902743636344, 0.005158
                    771: 616449014232794; 1, 4.305556205008953036, 18.53781423449109762], [1, 1, 1; -
                    772: 3.233732695981516673, -0.07182350902743636344, 4.305556205008953036; 10.4570
                    773: 2714905988813, 0.005158616449014232794, 18.53781423449109762], [3, 1.0000000
                    774: 00000000000, 29.00000000000000000; 1.000000000000000000, 29.0000000000000000
                    775: 0, 46.00000000000000000; 29.00000000000000000, 46.00000000000000000, 453.000
                    776: 0000000000000], [3, 1, 29; 1, 29, 46; 29, 46, 453], [10889, 5698, 3794; 0, 1
                    777: , 0; 0, 0, 1], [11021, 881, -795; 881, 518, -109; -795, -109, 86], [10889, [
                    778: 1890, 5190, 1]~]], [-3.233732695981516673, -0.07182350902743636344, 4.305556
                    779: 205008953036], [1, x, x^2], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0, 0, 0, 1,
                    780: 0, 1, 1; 0, 1, 0, 1, 0, 14, 0, 14, 15; 0, 0, 1, 0, 1, 1, 1, 1, 15]], [[2, [2
                    781: ], [[3, 2, 2; 0, 1, 0; 0, 0, 1]]], 10.34800724602767998, 1.00000000000000000
                    782: 0, [2, -1], [x, x^2 + 2*x - 4], 1000], [Mat(1), [[0, 0, 0]], [[1.24634698933
                    783: 4819161 + 3.141592653589793238*I, 0.6716827432867392935 + 3.1415926535897932
                    784: 38*I, -1.918029732621558454]]], [-4, 3, -1, 2, 3, 11, 1, -1, -7; 1, 1, 1, 1,
                    785:  0, 2, 1, -4, -2; 0, 0, 0, 0, 0, -1, 0, -1, 0]]
                    786: ? \p38
                    787:    realprecision = 38 significant digits
                    788: ? bnfnarrow(bnf)
                    789: [3, [3], [[3, 2; 0, 1]]]
                    790: ? bnfreg(x^2-x-57)
                    791: 2.7124653051843439746808795106061300699
                    792: ? bnfsignunit(bnf)
                    793:
                    794: [-1]
                    795:
                    796: [1]
                    797:
                    798: ? bnfunit(bnf)
                    799: [[x + 7], 185]
                    800: ? bnrclass(bnf,[[5,3;0,1],[1,0]])
                    801: [12, [12], [[3, 2; 0, 1]]]
                    802: ? bnr2=bnrclass(bnf,[[25,13;0,1],[1,1]],2)
                    803: [[Mat(3), Mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.7124653051843439746808795106
                    804: 061300699 + 3.1415926535897932384626433832795028842*I; 2.7124653051843439746
                    805: 808795106061300699 - 6.2831853071795864769252867665590057684*I], [9.92773767
                    806: 22507613003718504524486100858 + 3.1415926535897932384626433832795028842*I, 1
                    807: .2897619530652735025030086072395031017 + 0.E-57*I, -2.0109798024989157562122
                    808: 634098917610612 + 3.1415926535897932384626433832795028842*I, 24.412187746659
                    809: 095772127915595455170629 + 6.2831853071795864769252867665590057684*I, 30.337
                    810: 698160660239595315877930058147543 + 9.4247779607693797153879301498385086526*
                    811: I, -20.610866187462450639586440264933189691 + 9.4247779607693797153879301498
                    812: 385086526*I, 29.258282452818196217527894893424939793 + 9.4247779607693797153
                    813: 879301498385086526*I, -0.34328764427702709438988786673341921876 + 3.14159265
                    814: 35897932384626433832795028842*I, -14.550628376291080203941433635329724736 +
                    815: 0.E-56*I, 24.478366048541841504313284087778334822 + 3.1415926535897932384626
                    816: 433832795028842*I; -9.9277376722507613003718504524486100858 + 6.283185307179
                    817: 5864769252867665590057684*I, -1.2897619530652735025030086072395031017 + 9.42
                    818: 47779607693797153879301498385086526*I, 2.01097980249891575621226340989176106
                    819: 12 + 0.E-57*I, -24.412187746659095772127915595455170629 + 3.1415926535897932
                    820: 384626433832795028842*I, -30.337698160660239595315877930058147543 + 3.141592
                    821: 6535897932384626433832795028842*I, 20.610866187462450639586440264933189691 +
                    822:  3.1415926535897932384626433832795028842*I, -29.2582824528181962175278948934
                    823: 24939793 + 6.2831853071795864769252867665590057684*I, 0.34328764427702709438
                    824: 988786673341921876 + 0.E-57*I, 14.550628376291080203941433635329724736 + 3.1
                    825: 415926535897932384626433832795028842*I, -24.47836604854184150431328408777833
                    826: 4822 + 3.1415926535897932384626433832795028842*I], [[3, [-1, 1]~, 1, 1, [0,
                    827: 1]~], [3, [0, 1]~, 1, 1, [-1, 1]~], [5, [-2, 1]~, 1, 1, [1, 1]~], [5, [1, 1]
                    828: ~, 1, 1, [-2, 1]~], [11, [-2, 1]~, 1, 1, [1, 1]~], [11, [1, 1]~, 1, 1, [-2,
                    829: 1]~], [17, [-3, 1]~, 1, 1, [2, 1]~], [17, [2, 1]~, 1, 1, [-3, 1]~], [19, [-1
                    830: , 1]~, 1, 1, [0, 1]~], [19, [0, 1]~, 1, 1, [-1, 1]~]]~, [1, 3, 5, 2, 4, 6, 7
                    831: , 8, 10, 9], [x^2 - x - 57, [2, 0], 229, 1, [[1, -7.066372975210777963595931
                    832: 0246705326058; 1, 8.0663729752107779635959310246705326058], [1, 1; -7.066372
                    833: 9752107779635959310246705326058, 8.0663729752107779635959310246705326058], [
                    834: 2, 1.0000000000000000000000000000000000000; 1.000000000000000000000000000000
                    835: 0000000, 115.00000000000000000000000000000000000], [2, 1; 1, 115], [229, 114
                    836: ; 0, 1], [115, -1; -1, 2], [229, [114, 1]~]], [-7.06637297521077796359593102
                    837: 46705326058, 8.0663729752107779635959310246705326058], [1, x], [1, 0; 0, 1],
                    838:  [1, 0, 0, 57; 0, 1, 1, 1]], [[3, [3], [[3, 2; 0, 1]]], 2.712465305184343974
                    839: 6808795106061300699, 0.8814422512654579369, [2, -1], [x + 7], 185], [Mat(1),
                    840:  [[0, 0]], [[9.9277376722507613003718504524486100858 + 3.1415926535897932384
                    841: 626433832795028842*I, -9.9277376722507613003718504524486100858 + 6.283185307
                    842: 1795864769252867665590057684*I]]], [0, [Mat([[5, 1]~, 1])]]], [[[25, 13; 0,
                    843: 1], [1, 1]], [80, [20, 2, 2], [[2, 0]~, [0, -2]~, [2, 2]~]], Mat([[5, [-2, 1
                    844: ]~, 1, 1, [1, 1]~], 2]), [[[[4], [[2, 0]~], [[2, 0]~], [[Mod(0, 2), Mod(0, 2
                    845: )]~], 1], [[5], [[6, 0]~], [[6, 0]~], [[Mod(0, 2), Mod(0, 2)]~], Mat([1/5, -
                    846: 13/5])]], [[2, 2], [[0, -2]~, [2, 2]~], [0, 1; 1, 0]]], [1, -12, 0, 0; 0, 0,
                    847:  1, 0; 0, 0, 0, 1]], [1], [1, -3, 0, -6; 0, 0, 1, 0; 0, 0, 0, 1; 0, 1, 0, 0]
                    848: , [12, [12], [[3, 2; 0, 1]]], [[1, 9, -18; -1/2, -5, 10], [-2, 0; 0, 10]]]
                    849: ? bnrclassno(bnf,[[5,3;0,1],[1,0]])
                    850: 12
                    851: ? lu=ideallist(bnf,55,3);
                    852: ? bnrclassnolist(bnf,lu)
                    853: [[3], [], [3, 3], [3], [6, 6], [], [], [], [3, 3, 3], [], [3, 3], [3, 3], []
                    854: , [], [12, 6, 6, 12], [3], [3, 3], [], [9, 9], [6, 6], [], [], [], [], [6, 1
                    855: 2, 6], [], [3, 3, 3, 3], [], [], [], [], [], [3, 6, 6, 3], [], [], [9, 3, 9]
                    856: , [6, 6], [], [], [], [], [], [3, 3], [3, 3], [12, 12, 6, 6, 12, 12], [], []
                    857: , [6, 6], [9], [], [3, 3, 3, 3], [], [3, 3], [], [6, 12, 12, 6]]
                    858: ? bnrdisc(bnr,Mat(6))
                    859: [12, 12, 18026977100265125]
                    860: ? bnrdisc(bnr)
                    861: [24, 12, 40621487921685401825918161408203125]
                    862: ? bnrdisc(bnr2,,,2)
                    863: 0
                    864: ? bnrdisc(bnr,Mat(6),,1)
                    865: [6, 2, [125, 13; 0, 1]]
                    866: ? bnrdisc(bnr,,,1)
                    867: [12, 1, [1953125, 1160888; 0, 1]]
                    868: ? bnrdisc(bnr2,,,3)
                    869: 0
                    870: ? bnrdisclist(bnf,lu)
                    871: [[[6, 6, Mat([229, 3])]], [], [[], []], [[]], [[12, 12, [5, 3; 229, 6]], [12
                    872: , 12, [5, 3; 229, 6]]], [], [], [], [[], [], []], [], [[], []], [[], []], []
                    873: , [], [[24, 24, [3, 6; 5, 9; 229, 12]], [], [], [24, 24, [3, 6; 5, 9; 229, 1
                    874: 2]]], [[]], [[], []], [], [[18, 18, [19, 6; 229, 9]], [18, 18, [19, 6; 229,
                    875: 9]]], [[], []], [], [], [], [], [[], [24, 24, [5, 12; 229, 12]], []], [], [[
                    876: ], [], [], []], [], [], [], [], [], [[], [12, 12, [3, 3; 11, 3; 229, 6]], [1
                    877: 2, 12, [3, 3; 11, 3; 229, 6]], []], [], [], [[18, 18, [2, 12; 3, 12; 229, 9]
                    878: ], [], [18, 18, [2, 12; 3, 12; 229, 9]]], [[12, 12, [37, 3; 229, 6]], [12, 1
                    879: 2, [37, 3; 229, 6]]], [], [], [], [], [], [[], []], [[], []], [[], [], [], [
                    880: ], [], []], [], [], [[12, 12, [2, 12; 3, 3; 229, 6]], [12, 12, [2, 12; 3, 3;
                    881:  229, 6]]], [[18, 18, [7, 12; 229, 9]]], [], [[], [], [], []], [], [[], []],
                    882:  [], [[], [24, 24, [5, 9; 11, 6; 229, 12]], [24, 24, [5, 9; 11, 6; 229, 12]]
                    883: , []]]
                    884: ? bnrdisclist(bnf,20,,1)
                    885: [[[[matrix(0,2), [[6, 6, Mat([229, 3])], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]],
                    886:  [], [[Mat([12, 1]), [[0, 0, 0], [0, 0, 0], [0, 0, 0], [12, 0, [3, 3; 229, 6
                    887: ]]]], [Mat([13, 1]), [[0, 0, 0], [0, 0, 0], [12, 6, [-1, 1; 3, 3; 229, 6]],
                    888: [0, 0, 0]]]], [[Mat([10, 1]), [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]]
                    889: , [[Mat([20, 1]), [[12, 12, [5, 3; 229, 6]], [0, 0, 0], [0, 0, 0], [24, 0, [
                    890: 5, 9; 229, 12]]]], [Mat([21, 1]), [[12, 12, [5, 3; 229, 6]], [0, 0, 0], [24,
                    891:  12, [5, 9; 229, 12]], [0, 0, 0]]]], [], [], [], [[Mat([12, 2]), [[0, 0, 0],
                    892:  [0, 0, 0], [0, 0, 0], [0, 0, 0]]], [[12, 1; 13, 1], [[0, 0, 0], [12, 6, [-1
                    893: , 1; 3, 6; 229, 6]], [0, 0, 0], [24, 0, [3, 12; 229, 12]]]], [Mat([13, 2]),
                    894: [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]], [], [[Mat([44, 1]), [[0, 0,
                    895: 0], [0, 0, 0], [12, 6, [-1, 1; 11, 3; 229, 6]], [0, 0, 0]]], [Mat([45, 1]),
                    896: [[0, 0, 0], [0, 0, 0], [0, 0, 0], [12, 0, [11, 3; 229, 6]]]]], [[[10, 1; 12,
                    897:  1], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]], [[10, 1; 13, 1], [[0, 0,
                    898:  0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]], [], [], [[[12, 1; 20, 1], [[24, 24,
                    899:  [3, 6; 5, 9; 229, 12]], [0, 0, 0], [0, 0, 0], [48, 0, [3, 12; 5, 18; 229, 2
                    900: 4]]]], [[13, 1; 20, 1], [[0, 0, 0], [24, 12, [3, 6; 5, 9; 229, 12]], [24, 12
                    901: , [3, 6; 5, 6; 229, 12]], [48, 0, [3, 12; 5, 18; 229, 24]]]], [[12, 1; 21, 1
                    902: ], [[0, 0, 0], [24, 12, [3, 6; 5, 9; 229, 12]], [0, 0, 0], [48, 0, [3, 12; 5
                    903: , 18; 229, 24]]]], [[13, 1; 21, 1], [[24, 24, [3, 6; 5, 9; 229, 12]], [0, 0,
                    904:  0], [48, 24, [3, 12; 5, 18; 229, 24]], [0, 0, 0]]]], [[Mat([10, 2]), [[0, 0
                    905: , 0], [12, 6, [-1, 1; 2, 12; 229, 6]], [12, 6, [-1, 1; 2, 12; 229, 6]], [24,
                    906:  0, [2, 36; 229, 12]]]]], [[Mat([68, 1]), [[0, 0, 0], [12, 6, [-1, 1; 17, 3;
                    907:  229, 6]], [0, 0, 0], [0, 0, 0]]], [Mat([69, 1]), [[0, 0, 0], [12, 6, [-1, 1
                    908: ; 17, 3; 229, 6]], [0, 0, 0], [0, 0, 0]]]], [], [[Mat([76, 1]), [[18, 18, [1
                    909: 9, 6; 229, 9]], [0, 0, 0], [0, 0, 0], [36, 0, [19, 15; 229, 18]]]], [Mat([77
                    910: , 1]), [[18, 18, [19, 6; 229, 9]], [0, 0, 0], [36, 18, [-1, 1; 19, 15; 229,
                    911: 18]], [0, 0, 0]]]], [[[10, 1; 20, 1], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0,
                    912: 0, 0]]], [[10, 1; 21, 1], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]]]]
                    913: ? bnrisprincipal(bnr,idealprimedec(bnf,7)[1])
                    914: [[9]~, [-2170/6561, -931/19683]~, 256]
                    915: ? dirzetak(nf4,30)
                    916: [1, 2, 0, 3, 1, 0, 0, 4, 0, 2, 1, 0, 0, 0, 0, 5, 1, 0, 0, 3, 0, 2, 0, 0, 2,
                    917: 0, 1, 0, 1, 0]
                    918: ? factornf(x^3+x^2-2*x-1,t^3+t^2-2*t-1)
                    919:
                    920: [Mod(1, t^3 + t^2 - 2*t - 1)*x + Mod(-t, t^3 + t^2 - 2*t - 1) 1]
                    921:
                    922: [Mod(1, t^3 + t^2 - 2*t - 1)*x + Mod(-t^2 + 2, t^3 + t^2 - 2*t - 1) 1]
                    923:
                    924: [Mod(1, t^3 + t^2 - 2*t - 1)*x + Mod(t^2 + t - 1, t^3 + t^2 - 2*t - 1) 1]
                    925:
                    926: ? vp=idealprimedec(nf,3)[1]
                    927: [3, [1, 1, 0, 0, 0]~, 1, 1, [1, -1, -1, 0, 0]~]
                    928: ? idx=idealmul(nf,matid(5),vp)
                    929:
                    930: [3 1 2 2 2]
                    931:
                    932: [0 1 0 0 0]
                    933:
                    934: [0 0 1 0 0]
                    935:
                    936: [0 0 0 1 0]
                    937:
                    938: [0 0 0 0 1]
                    939:
                    940: ? idealinv(nf,idx)
                    941:
                    942: [1 0 2/3 0 0]
                    943:
                    944: [0 1 1/3 0 0]
                    945:
                    946: [0 0 1/3 0 0]
                    947:
                    948: [0 0 0 1 0]
                    949:
                    950: [0 0 0 0 1]
                    951:
                    952: ? idy=idealred(nf,idx,[1,5,6])
                    953:
                    954: [5 0 0 2 0]
                    955:
                    956: [0 5 0 0 0]
                    957:
                    958: [0 0 5 2 0]
                    959:
                    960: [0 0 0 1 0]
                    961:
                    962: [0 0 0 0 5]
                    963:
                    964: ? idx2=idealmul(nf,idx,idx)
                    965:
                    966: [9 7 5 8 2]
                    967:
                    968: [0 1 0 0 0]
                    969:
                    970: [0 0 1 0 0]
                    971:
                    972: [0 0 0 1 0]
                    973:
                    974: [0 0 0 0 1]
                    975:
                    976: ? idt=idealmul(nf,idx,idx,1)
                    977:
                    978: [2 0 0 0 1]
                    979:
                    980: [0 2 0 0 1]
                    981:
                    982: [0 0 2 0 0]
                    983:
                    984: [0 0 0 2 1]
                    985:
                    986: [0 0 0 0 1]
                    987:
                    988: ? idz=idealintersect(nf,idx,idy)
                    989:
                    990: [15 5 10 12 10]
                    991:
                    992: [0 5 0 0 0]
                    993:
                    994: [0 0 5 2 0]
                    995:
                    996: [0 0 0 1 0]
                    997:
                    998: [0 0 0 0 5]
                    999:
                   1000: ? aid=[idx,idy,idz,matid(5),idx]
                   1001: [[3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]
                   1002: , [5, 0, 0, 2, 0; 0, 5, 0, 0, 0; 0, 0, 5, 2, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 5
                   1003: ], [15, 5, 10, 12, 10; 0, 5, 0, 0, 0; 0, 0, 5, 2, 0; 0, 0, 0, 1, 0; 0, 0, 0,
                   1004:  0, 5], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0
                   1005: , 0, 1], [3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0,
                   1006: 0, 0, 1]]
                   1007: ? bid=idealstar(nf2,54,1)
                   1008: [[[54, 0, 0; 0, 54, 0; 0, 0, 54], [0]], [132678, [1638, 9, 9]], [[2, [2, 0,
                   1009: 0]~, 1, 3, [1, 0, 0]~], 1; [3, [3, 0, 0]~, 1, 3, [1, 0, 0]~], 3], [[[[7], [[
                   1010: 0, 1, 0]~], [[-26, -27, 0]~], [[]~], 1]], [[[26], [[0, 2, 0]~], [[-27, 2, 0]
                   1011: ~], [[]~], 1], [[3, 3, 3], [[1, 3, 0]~, [1, 0, 3]~, [4, 0, 0]~], [[1, -24, 0
                   1012: ]~, [1, 0, -24]~, [-23, 0, 0]~], [[]~, []~, []~], [0, 1/3, 0; 0, 0, 1/3; 1/3
                   1013: , 0, 0]], [[3, 3, 3], [[1, 9, 0]~, [1, 0, 9]~, [10, 0, 0]~], [[1, -18, 0]~,
                   1014: [1, 0, -18]~, [-17, 0, 0]~], [[]~, []~, []~], [0, 1/9, 0; 0, 0, 1/9; 1/9, 0,
                   1015:  0]]], [[], [], [;]]], [468, 469, 0, 0, -48776, 0, 0, -36582; 0, 0, 1, 0, -7
                   1016: , -6, 0, -3; 0, 0, 0, 1, -3, 0, -6, 0]]
                   1017: ? vaid=[idx,idy,matid(5)]
                   1018: [[3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]
                   1019: , [5, 0, 0, 2, 0; 0, 5, 0, 0, 0; 0, 0, 5, 2, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 5
                   1020: ], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0,
                   1021: 1]]
                   1022: ? haid=[matid(5),matid(5),matid(5)]
                   1023: [[1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]
                   1024: , [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1
                   1025: ], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0,
                   1026: 1]]
                   1027: ? idealadd(nf,idx,idy)
                   1028:
                   1029: [1 0 0 0 0]
                   1030:
                   1031: [0 1 0 0 0]
                   1032:
                   1033: [0 0 1 0 0]
                   1034:
                   1035: [0 0 0 1 0]
                   1036:
                   1037: [0 0 0 0 1]
                   1038:
                   1039: ? idealaddtoone(nf,idx,idy)
                   1040: [[3, 0, 2, 1, 0]~, [-2, 0, -2, -1, 0]~]
                   1041: ? idealaddtoone(nf,[idy,idx])
                   1042: [[-5, 0, 0, 0, 0]~, [6, 0, 0, 0, 0]~]
                   1043: ? idealappr(nf,idy)
                   1044: [-2, 0, -2, 4, 0]~
                   1045: ? idealappr(nf,idealfactor(nf,idy),1)
                   1046: [-2, 0, -2, 4, 0]~
                   1047: ? idealcoprime(nf,idx,idx)
                   1048: [-2/3, 2/3, -1/3, 0, 0]~
                   1049: ? idealdiv(nf,idy,idt)
                   1050:
                   1051: [5 5/2 5/2 7/2 0]
                   1052:
                   1053: [0 5/2 0 0 0]
                   1054:
                   1055: [0 0 5/2 1 0]
                   1056:
                   1057: [0 0 0 1/2 0]
                   1058:
                   1059: [0 0 0 0 5/2]
                   1060:
                   1061: ? idealdiv(nf,idx2,idx,1)
                   1062:
                   1063: [3 1 2 2 2]
                   1064:
                   1065: [0 1 0 0 0]
                   1066:
                   1067: [0 0 1 0 0]
                   1068:
                   1069: [0 0 0 1 0]
                   1070:
                   1071: [0 0 0 0 1]
                   1072:
                   1073: ? idf=idealfactor(nf,idz)
                   1074:
                   1075: [[3, [1, 1, 0, 0, 0]~, 1, 1, [1, -1, -1, 0, 0]~] 1]
                   1076:
                   1077: [[5, [-2, 0, 0, 0, 1]~, 1, 1, [2, 2, 1, 1, 4]~] 1]
                   1078:
                   1079: [[5, [0, 0, -1, 0, 1]~, 4, 1, [4, 5, 4, 2, 0]~] 3]
                   1080:
                   1081: ? idealhnf(nf,vp)
                   1082:
                   1083: [3 1 2 2 2]
                   1084:
                   1085: [0 1 0 0 0]
                   1086:
                   1087: [0 0 1 0 0]
                   1088:
                   1089: [0 0 0 1 0]
                   1090:
                   1091: [0 0 0 0 1]
                   1092:
                   1093: ? idealhnf(nf,vp[2],3)
                   1094:
                   1095: [3 1 2 2 2]
                   1096:
                   1097: [0 1 0 0 0]
                   1098:
                   1099: [0 0 1 0 0]
                   1100:
                   1101: [0 0 0 1 0]
                   1102:
                   1103: [0 0 0 0 1]
                   1104:
                   1105: ? ideallist(bnf,20)
                   1106: [[[1, 0; 0, 1]], [], [[3, 2; 0, 1], [3, 0; 0, 1]], [[2, 0; 0, 2]], [[5, 3; 0
                   1107: , 1], [5, 1; 0, 1]], [], [], [], [[9, 5; 0, 1], [3, 0; 0, 3], [9, 3; 0, 1]],
                   1108:  [], [[11, 9; 0, 1], [11, 1; 0, 1]], [[6, 4; 0, 2], [6, 0; 0, 2]], [], [], [
                   1109: [15, 8; 0, 1], [15, 3; 0, 1], [15, 11; 0, 1], [15, 6; 0, 1]], [[4, 0; 0, 4]]
                   1110: , [[17, 14; 0, 1], [17, 2; 0, 1]], [], [[19, 18; 0, 1], [19, 0; 0, 1]], [[10
                   1111: , 6; 0, 2], [10, 2; 0, 2]]]
                   1112: ? ideallog(nf2,w,bid)
                   1113: [1574, 8, 6]~
                   1114: ? idealmin(nf,idx,[1,2,3])
                   1115: [[-1; 0; 0; 1; 0], [2.0885812311199768913287869744681966008 + 3.141592653589
                   1116: 7932384626433832795028842*I, 1.5921096812520196555597562531657929785 + 4.244
                   1117: 7196639216499665715751642189271112*I, -0.79031915447583185468082063233076160
                   1118: 203 + 2.5437460822678889883600220330800078854*I]]
                   1119: ? idealnorm(nf,idt)
                   1120: 16
                   1121: ? idp=idealpow(nf,idx,7)
                   1122:
                   1123: [2187 1807 2129 692 1379]
                   1124:
                   1125: [0 1 0 0 0]
                   1126:
                   1127: [0 0 1 0 0]
                   1128:
                   1129: [0 0 0 1 0]
                   1130:
                   1131: [0 0 0 0 1]
                   1132:
                   1133: ? idealpow(nf,idx,7,1)
                   1134:
                   1135: [5 0 0 2 0]
                   1136:
                   1137: [0 5 0 0 0]
                   1138:
                   1139: [0 0 5 2 0]
                   1140:
                   1141: [0 0 0 1 0]
                   1142:
                   1143: [0 0 0 0 5]
                   1144:
                   1145: ? idealprimedec(nf,2)
                   1146: [[2, [3, 1, 0, 0, 0]~, 1, 1, [1, 1, 0, 1, 1]~], [2, [-3, -5, -4, 3, 15]~, 1,
                   1147:  4, [1, 1, 0, 0, 0]~]]
                   1148: ? idealprimedec(nf,3)
                   1149: [[3, [1, 1, 0, 0, 0]~, 1, 1, [1, -1, -1, 0, 0]~], [3, [-1, 1, -1, 0, 1]~, 2,
                   1150:  2, [1, 2, 3, 1, 0]~]]
                   1151: ? idealprimedec(nf,11)
                   1152: [[11, [11, 0, 0, 0, 0]~, 1, 5, [1, 0, 0, 0, 0]~]]
                   1153: ? idealprincipal(nf,Mod(x^3+5,nfpol))
                   1154:
                   1155: [6]
                   1156:
                   1157: [0]
                   1158:
                   1159: [1]
                   1160:
                   1161: [3]
                   1162:
                   1163: [0]
                   1164:
                   1165: ? idealtwoelt(nf,idy)
                   1166: [5, [2, 0, 2, 1, 0]~]
                   1167: ? idealtwoelt(nf,idy,10)
                   1168: [-2, 0, -2, -1, 0]~
                   1169: ? idealstar(nf2,54)
                   1170: [[[54, 0, 0; 0, 54, 0; 0, 0, 54], [0]], [132678, [1638, 9, 9]], [[2, [2, 0,
                   1171: 0]~, 1, 3, [1, 0, 0]~], 1; [3, [3, 0, 0]~, 1, 3, [1, 0, 0]~], 3], [[[[7], [[
                   1172: 0, 1, 0]~], [[-26, -27, 0]~], [[]~], 1]], [[[26], [[0, 2, 0]~], [[-27, 2, 0]
                   1173: ~], [[]~], 1], [[3, 3, 3], [[1, 3, 0]~, [1, 0, 3]~, [4, 0, 0]~], [[1, -24, 0
                   1174: ]~, [1, 0, -24]~, [-23, 0, 0]~], [[]~, []~, []~], [0, 1/3, 0; 0, 0, 1/3; 1/3
                   1175: , 0, 0]], [[3, 3, 3], [[1, 9, 0]~, [1, 0, 9]~, [10, 0, 0]~], [[1, -18, 0]~,
                   1176: [1, 0, -18]~, [-17, 0, 0]~], [[]~, []~, []~], [0, 1/9, 0; 0, 0, 1/9; 1/9, 0,
                   1177:  0]]], [[], [], [;]]], [468, 469, 0, 0, -48776, 0, 0, -36582; 0, 0, 1, 0, -7
                   1178: , -6, 0, -3; 0, 0, 0, 1, -3, 0, -6, 0]]
                   1179: ? idealval(nf,idp,vp)
                   1180: 7
                   1181: ? ideleprincipal(nf,Mod(x^3+5,nfpol))
                   1182: [[6; 0; 1; 3; 0], [2.2324480827796254080981385584384939684 + 3.1415926535897
                   1183: 932384626433832795028842*I, 5.0387659675158716386435353106610489968 + 1.5851
                   1184: 760343512250049897278861965702423*I, 4.2664040272651028743625910797589683173
                   1185:  - 0.0083630478144368246110910258645462996191*I]]
                   1186: ? ba=nfalgtobasis(nf,Mod(x^3+5,nfpol))
                   1187: [6, 0, 1, 3, 0]~
                   1188: ? bb=nfalgtobasis(nf,Mod(x^3+x,nfpol))
                   1189: [1, 1, 1, 3, 0]~
                   1190: ? bc=matalgtobasis(nf,[Mod(x^2+x,nfpol);Mod(x^2+1,nfpol)])
                   1191:
                   1192: [[0, 1, 1, 0, 0]~]
                   1193:
                   1194: [[1, 0, 1, 0, 0]~]
                   1195:
                   1196: ? matbasistoalg(nf,bc)
                   1197:
                   1198: [Mod(x^2 + x, x^5 - 5*x^3 + 5*x + 25)]
                   1199:
                   1200: [Mod(x^2 + 1, x^5 - 5*x^3 + 5*x + 25)]
                   1201:
                   1202: ? nfbasis(x^3+4*x+5)
                   1203: [1, x, 1/7*x^2 - 1/7*x - 2/7]
                   1204: ? nfbasis(x^3+4*x+5,2)
                   1205: [1, x, 1/7*x^2 - 1/7*x - 2/7]
                   1206: ? nfbasis(x^3+4*x+12,1)
                   1207: [1, x, 1/2*x^2]
                   1208: ? nfbasistoalg(nf,ba)
                   1209: Mod(x^3 + 5, x^5 - 5*x^3 + 5*x + 25)
                   1210: ? nfbasis(p2,0,fa)
                   1211: [1, x, x^2, 1/11699*x^3 + 1847/11699*x^2 - 132/11699*x - 2641/11699, 1/13962
                   1212: 3738889203638909659*x^4 - 1552451622081122020/139623738889203638909659*x^3 +
                   1213:  418509858130821123141/139623738889203638909659*x^2 - 6810913798507599407313
                   1214: 4/139623738889203638909659*x - 13185339461968406/58346808996920447]
                   1215: ? da=nfdetint(nf,[a,aid])
                   1216:
                   1217: [30 5 25 27 10]
                   1218:
                   1219: [0 5 0 0 0]
                   1220:
                   1221: [0 0 5 2 0]
                   1222:
                   1223: [0 0 0 1 0]
                   1224:
                   1225: [0 0 0 0 5]
                   1226:
                   1227: ? nfdisc(x^3+4*x+12)
                   1228: -1036
                   1229: ? nfdisc(x^3+4*x+12,1)
                   1230: -1036
                   1231: ? nfdisc(p2,0,fa)
                   1232: 136866601
                   1233: ? nfeltdiv(nf,ba,bb)
                   1234: [755/373, -152/373, 159/373, 120/373, -264/373]~
                   1235: ? nfeltdiveuc(nf,ba,bb)
                   1236: [2, 0, 0, 0, -1]~
                   1237: ? nfeltdivrem(nf,ba,bb)
                   1238: [[2, 0, 0, 0, -1]~, [-12, -7, 0, 9, 5]~]
                   1239: ? nfeltmod(nf,ba,bb)
                   1240: [-12, -7, 0, 9, 5]~
                   1241: ? nfeltmul(nf,ba,bb)
                   1242: [-25, -50, -30, 15, 90]~
                   1243: ? nfeltpow(nf,bb,5)
                   1244: [23455, 156370, 115855, 74190, -294375]~
                   1245: ? nfeltreduce(nf,ba,idx)
                   1246: [1, 0, 0, 0, 0]~
                   1247: ? nfeltval(nf,ba,vp)
                   1248: 0
                   1249: ? nffactor(nf2,x^3+x)
                   1250:
                   1251: [Mod(1, y^3 - y - 1)*x 1]
                   1252:
                   1253: [Mod(1, y^3 - y - 1)*x^2 + Mod(1, y^3 - y - 1) 1]
                   1254:
                   1255: ? aut=nfgaloisconj(nf3)
                   1256: [x, 1/12*x^4 - 1/2*x, -1/12*x^4 - 1/2*x, 1/12*x^4 + 1/2*x, -1/12*x^4 + 1/2*x
                   1257: , -x]~
                   1258: ? nfgaloisapply(nf3,aut[5],Mod(x^5,x^6+108))
                   1259: Mod(1/2*x^5 - 9*x^2, x^6 + 108)
                   1260: ? nfhilbert(nf,3,5)
                   1261: -1
                   1262: ? nfhilbert(nf,3,5,idf[1,1])
                   1263: -1
                   1264: ? nfhnf(nf,[a,aid])
                   1265: [[[1, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [1
                   1266: , 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [1, 0,
                   1267:  0, 0, 0]~], [[2, 1, 1, 1, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0
                   1268: , 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
                   1269: 0, 0, 0, 0, 1], [3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
                   1270:  0, 0, 0, 0, 1]]]
                   1271: ? nfhnfmod(nf,[a,aid],da)
                   1272: [[[1, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [1
                   1273: , 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [1, 0,
                   1274:  0, 0, 0]~], [[2, 1, 1, 1, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0
                   1275: , 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
                   1276: 0, 0, 0, 0, 1], [3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
                   1277:  0, 0, 0, 0, 1]]]
                   1278: ? nfisideal(bnf[7],[5,1;0,1])
                   1279: 1
                   1280: ? nfisincl(x^2+1,x^4+1)
                   1281: [-x^2, x^2]
                   1282: ? nfisincl(x^2+1,nfinit(x^4+1))
                   1283: [-x^2, x^2]
                   1284: ? nfisisom(x^3+x^2-2*x-1,x^3+x^2-2*x-1)
                   1285: [x, -x^2 - x + 1, x^2 - 2]
                   1286: ? nfisisom(x^3-2,nfinit(x^3-6*x^2-6*x-30))
                   1287: [-1/25*x^2 + 13/25*x - 2/5]
                   1288: ? nfroots(nf2,x+2)
                   1289: [Mod(-2, y^3 - y - 1)]
                   1290: ? nfrootsof1(nf)
                   1291: [2, [-1, 0, 0, 0, 0]~]
                   1292: ? nfsnf(nf,[as,haid,vaid])
                   1293: [[10951073973332888246310, 5442457637639729109215, 2693780223637146570055, 3
                   1294: 910837124677073032737, 3754666252923836621170; 0, 5, 0, 0, 0; 0, 0, 5, 2, 0;
                   1295:  0, 0, 0, 1, 0; 0, 0, 0, 0, 5], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0
                   1296: ; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0,
                   1297: 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]]
                   1298: ? nfsubfields(nf)
                   1299: [[x^5 - 5*x^3 + 5*x + 25, x], [x, x^5 - 5*x^3 + 5*x + 25]]
                   1300: ? polcompositum(x^4-4*x+2,x^3-x-1)
                   1301: [x^12 - 4*x^10 + 8*x^9 + 12*x^8 + 12*x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*x
                   1302: ^2 - 128*x - 5]
                   1303: ? polcompositum(x^4-4*x+2,x^3-x-1,1)
                   1304: [[x^12 - 4*x^10 + 8*x^9 + 12*x^8 + 12*x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*
                   1305: x^2 - 128*x - 5, Mod(-279140305176/29063006931199*x^11 + 129916611552/290630
                   1306: 06931199*x^10 + 1272919322296/29063006931199*x^9 - 2813750209005/29063006931
                   1307: 199*x^8 - 2859411937992/29063006931199*x^7 - 414533880536/29063006931199*x^6
                   1308:  - 35713977492936/29063006931199*x^5 - 17432607267590/29063006931199*x^4 + 4
                   1309: 9785595543672/29063006931199*x^3 + 9423768373204/29063006931199*x^2 - 427797
                   1310: 76146743/29063006931199*x + 37962587857138/29063006931199, x^12 - 4*x^10 + 8
                   1311: *x^9 + 12*x^8 + 12*x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*x^2 - 128*x - 5), M
                   1312: od(-279140305176/29063006931199*x^11 + 129916611552/29063006931199*x^10 + 12
                   1313: 72919322296/29063006931199*x^9 - 2813750209005/29063006931199*x^8 - 28594119
                   1314: 37992/29063006931199*x^7 - 414533880536/29063006931199*x^6 - 35713977492936/
                   1315: 29063006931199*x^5 - 17432607267590/29063006931199*x^4 + 49785595543672/2906
                   1316: 3006931199*x^3 + 9423768373204/29063006931199*x^2 - 13716769215544/290630069
                   1317: 31199*x + 37962587857138/29063006931199, x^12 - 4*x^10 + 8*x^9 + 12*x^8 + 12
                   1318: *x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*x^2 - 128*x - 5), -1]]
                   1319: ? polgalois(x^6-3*x^2-1)
                   1320: [12, 1, 1]
                   1321: ? polred(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
                   1322: [x - 1, x^5 - x^4 - 6*x^3 + 6*x^2 + 13*x - 5, x^5 - x^4 + 2*x^3 - 4*x^2 + x
                   1323: - 1, x^5 - x^4 + 4*x^3 - 2*x^2 + x - 1, x^5 + 4*x^3 - 4*x^2 + 8*x - 8]
                   1324: ? polred(x^4-28*x^3-458*x^2+9156*x-25321,3)
                   1325:
                   1326: [1 x - 1]
                   1327:
                   1328: [1/115*x^2 - 14/115*x - 327/115 x^2 - 10]
                   1329:
                   1330: [3/1495*x^3 - 63/1495*x^2 - 1607/1495*x + 13307/1495 x^4 - 32*x^2 + 216]
                   1331:
                   1332: [1/4485*x^3 - 7/1495*x^2 - 1034/4485*x + 7924/4485 x^4 - 8*x^2 + 6]
                   1333:
                   1334: ? polred(x^4+576,1)
                   1335: [x - 1, x^2 - x + 1, x^2 + 1, x^4 - x^2 + 1]
                   1336: ? polred(x^4+576,3)
                   1337:
                   1338: [1 x - 1]
                   1339:
                   1340: [1/192*x^3 + 1/8*x + 1/2 x^2 - x + 1]
                   1341:
                   1342: [-1/24*x^2 x^2 + 1]
                   1343:
                   1344: [-1/192*x^3 + 1/48*x^2 + 1/8*x x^4 - x^2 + 1]
                   1345:
                   1346: ? polred(p2,0,fa)
                   1347: [x - 1, x^5 - 2*x^4 - 62*x^3 + 85*x^2 + 818*x + 1, x^5 - 2*x^4 - 53*x^3 - 46
                   1348: *x^2 + 508*x + 913, x^5 - 2*x^4 - 13*x^3 + 37*x^2 - 21*x - 1, x^5 - x^4 - 52
                   1349: *x^3 - 197*x^2 - 273*x - 127]
                   1350: ? polred(p2,1,fa)
                   1351: [x - 1, x^5 - 2*x^4 - 62*x^3 + 85*x^2 + 818*x + 1, x^5 - 2*x^4 - 53*x^3 - 46
                   1352: *x^2 + 508*x + 913, x^5 - 2*x^4 - 13*x^3 + 37*x^2 - 21*x - 1, x^5 - x^4 - 52
                   1353: *x^3 - 197*x^2 - 273*x - 127]
                   1354: ? polredabs(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
                   1355: x^5 - x^4 + 2*x^3 - 4*x^2 + x - 1
                   1356: ? polredabs(x^5-2*x^4-4*x^3-96*x^2-352*x-568,1)
                   1357: [x^5 - x^4 + 2*x^3 - 4*x^2 + x - 1, Mod(2*x^4 - x^3 + 3*x^2 - 3*x - 1, x^5 -
                   1358:  x^4 + 2*x^3 - 4*x^2 + x - 1)]
                   1359: ? polredord(x^3-12*x+45*x-1)
                   1360: [x - 1, x^3 - 363*x - 2663, x^3 + 33*x - 1]
                   1361: ? polsubcyclo(31,5)
                   1362: x^5 + x^4 - 12*x^3 - 21*x^2 + x + 5
                   1363: ? setrand(1);poltschirnhaus(x^5-x-1)
                   1364: x^5 - 15*x^4 + 88*x^3 - 278*x^2 + 452*x - 289
                   1365: ? aa=rnfpseudobasis(nf2,p)
                   1366: [[[1, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [-2, 0, 0]~, [11, 0, 0]~; [0, 0, 0]~,
                   1367: [1, 0, 0]~, [0, 0, 0]~, [2, 0, 0]~, [-8, 0, 0]~; [0, 0, 0]~, [0, 0, 0]~, [1,
                   1368:  0, 0]~, [1, 0, 0]~, [4, 0, 0]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [1, 0,
                   1369: 0]~, [-2, 0, 0]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [1, 0, 0]~
                   1370: ], [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1
                   1371: , 0; 0, 0, 1], [1, 0, 3/5; 0, 1, 2/5; 0, 0, 1/5], [1, 0, 8/25; 0, 1, 22/25;
                   1372: 0, 0, 1/25]], [416134375, 212940625, 388649575; 0, 3125, 550; 0, 0, 25], [-1
                   1373: 280, 5, 5]~]
                   1374: ? rnfbasis(bnf2,aa)
                   1375:
                   1376: [[1, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [38/25, -33/25, 11/25]~ [-11, -4, 9]~]
                   1377:
                   1378: [[0, 0, 0]~ [1, 0, 0]~ [0, 0, 0]~ [-14/25, 24/25, -8/25]~ [28/5, 2/5, -24/5]
                   1379: ~]
                   1380:
                   1381: [[0, 0, 0]~ [0, 0, 0]~ [1, 0, 0]~ [57/25, -12/25, 4/25]~ [-58/5, -47/5, 44/5
                   1382: ]~]
                   1383:
                   1384: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [9/25, 6/25, -2/25]~ [-4/5, -11/5, 2/5]~]
                   1385:
                   1386: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [8/25, -3/25, 1/25]~ [-9/5, -6/5, 7/5]~]
                   1387:
                   1388: ? rnfdisc(nf2,p)
                   1389: [[416134375, 212940625, 388649575; 0, 3125, 550; 0, 0, 25], [-1280, 5, 5]~]
                   1390: ? rnfequation(nf2,p)
                   1391: x^15 - 15*x^11 + 75*x^7 - x^5 - 125*x^3 + 5*x + 1
                   1392: ? rnfequation(nf2,p,1)
                   1393: [x^15 - 15*x^11 + 75*x^7 - x^5 - 125*x^3 + 5*x + 1, Mod(-x^5 + 5*x, x^15 - 1
                   1394: 5*x^11 + 75*x^7 - x^5 - 125*x^3 + 5*x + 1), 0]
                   1395: ? rnfhnfbasis(bnf2,aa)
                   1396:
                   1397: [[1, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [-2/5, 2/5, -4/5]~ [11/25, 99/25, -33/25]~
                   1398: ]
                   1399:
                   1400: [[0, 0, 0]~ [1, 0, 0]~ [0, 0, 0]~ [2/5, -2/5, 4/5]~ [-8/25, -72/25, 24/25]~]
                   1401:
                   1402: [[0, 0, 0]~ [0, 0, 0]~ [1, 0, 0]~ [1/5, -1/5, 2/5]~ [4/25, 36/25, -12/25]~]
                   1403:
                   1404: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [1/5, -1/5, 2/5]~ [-2/25, -18/25, 6/25]~]
                   1405:
                   1406: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [1/25, 9/25, -3/25]~]
                   1407:
                   1408: ? rnfisfree(bnf2,aa)
                   1409: 1
                   1410: ? rnfsteinitz(nf2,aa)
                   1411: [[[1, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [38/25, -33/25, 11/25]~, [-27/125, 33/
                   1412: 125, -11/125]~; [0, 0, 0]~, [1, 0, 0]~, [0, 0, 0]~, [-14/25, 24/25, -8/25]~,
                   1413:  [6/125, -24/125, 8/125]~; [0, 0, 0]~, [0, 0, 0]~, [1, 0, 0]~, [57/25, -12/2
                   1414: 5, 4/25]~, [-53/125, 12/125, -4/125]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [
                   1415: 9/25, 6/25, -2/25]~, [-11/125, -6/125, 2/125]~; [0, 0, 0]~, [0, 0, 0]~, [0,
                   1416: 0, 0]~, [8/25, -3/25, 1/25]~, [-7/125, 3/125, -1/125]~], [[1, 0, 0; 0, 1, 0;
                   1417:  0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0,
                   1418: 0; 0, 1, 0; 0, 0, 1], [125, 0, 108; 0, 125, 22; 0, 0, 1]], [416134375, 21294
                   1419: 0625, 388649575; 0, 3125, 550; 0, 0, 25], [-1280, 5, 5]~]
                   1420: ? nfz=zetakinit(x^2-2);
                   1421: ? zetak(nfz,-3)
                   1422: 0.091666666666666666666666666666666666666
                   1423: ? zetak(nfz,1.5+3*I)
                   1424: 0.88324345992059326405525724366416928890 - 0.2067536250233895222724230899142
                   1425: 7938845*I
                   1426: ? setrand(1);quadclassunit(1-10^7,,[1,1])
                   1427:   ***   Warning: not a fundamental discriminant in quadclassunit.
                   1428: [2416, [1208, 2], [Qfb(277, 55, 9028), Qfb(1700, 1249, 1700)], 1, 0.99984980
                   1429: 75377600233]
                   1430: ? setrand(1);quadclassunit(10^9-3,,[0.5,0.5])
                   1431: [4, [4], [Qfb(3, 1, -83333333, 0.E-57)], 2800.625251907016076486370621737074
                   1432: 5514, 0.9990369458964383232]
                   1433: ? sizebyte(%)
                   1434: 328
                   1435: ? getheap
                   1436: [198, 120613]
                   1437: ? print("Total time spent: ",gettime);
                   1438: Total time spent: 4836
                   1439: ? \q

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>