[BACK]Return to nfields CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari-2.2 / src / test / 64

Annotation of OpenXM_contrib/pari-2.2/src/test/64/nfields, Revision 1.2

1.1       noro        1:    echo = 1 (on)
                      2: ? nfpol=x^5-5*x^3+5*x+25
                      3: x^5 - 5*x^3 + 5*x + 25
                      4: ? qpol=y^3-y-1;un=Mod(1,qpol);w=Mod(y,qpol);p=un*(x^5-5*x+w)
                      5: Mod(1, y^3 - y - 1)*x^5 + Mod(-5, y^3 - y - 1)*x + Mod(y, y^3 - y - 1)
                      6: ? p2=x^5+3021*x^4-786303*x^3-6826636057*x^2-546603588746*x+3853890514072057
                      7: x^5 + 3021*x^4 - 786303*x^3 - 6826636057*x^2 - 546603588746*x + 385389051407
                      8: 2057
                      9: ? fa=[11699,6;2392997,2;4987333019653,2]
                     10:
                     11: [11699 6]
                     12:
                     13: [2392997 2]
                     14:
                     15: [4987333019653 2]
                     16:
                     17: ? setrand(1);a=matrix(3,5,j,k,vectorv(5,l,random\10^8));
                     18: ? setrand(1);as=matrix(3,3,j,k,vectorv(5,l,random\10^8));
                     19: ? nf=nfinit(nfpol)
1.2     ! noro       20: [x^5 - 5*x^3 + 5*x + 25, [1, 2], 595125, 45, [[1, -1.08911514572050482502495
        !            21: 27946671612684, -2.4285174907194186068992069565359418364, 0.7194669112891317
        !            22: 8943997506477288225733, -2.5558200350691694950646071159426779971; 1, -0.1383
        !            23: 8372073406036365047976417441696637 - 0.4918163765776864349975328551474152510
        !            24: 7*I, 1.9647119211288133163138753392090569931 + 0.809714924188978951282940822
        !            25: 19556466857*I, -0.072312766896812300380582649294307897121 + 2.19808037538462
        !            26: 76641195195160383234877*I, -0.98796319352507039803950539735452837194 + 1.570
        !            27: 1452385894131769052374806001981108*I; 1, 1.682941293594312776162956161507997
        !            28: 6005 + 2.0500351226010726172974286983598602163*I, -0.75045317576910401286427
        !            29: 186094108607489 + 1.3101462685358123283560773619310445915*I, -0.787420688747
        !            30: 75359433940488309213323154 + 2.1336633893126618034168454610457936017*I, 1.26
        !            31: 58732110596551455718089553258673705 - 2.716479010374315056657802803578983483
        !            32: 4*I], [1, -1.0891151457205048250249527946671612684, -2.428517490719418606899
        !            33: 2069565359418364, 0.71946691128913178943997506477288225733, -2.5558200350691
        !            34: 694950646071159426779971; 1.4142135623730950488016887242096980785, -0.195704
        !            35: 13467375904264179382543977540673, 2.7785222450164664309920925654093065576, -
        !            36: 0.10226569567819614506098907018896260035, -1.3971909474085893198147151262541
        !            37: 540506; 0, -0.69553338995335755797766403996841143190, 1.14510982744395651299
        !            38: 26149974389115722, 3.1085550780550843138423672171643499921, 2.22052069130868
        !            39: 72788181483285734827868; 1.4142135623730950488016887242096980785, 2.38003840
        !            40: 20787979181834702019470475018, -1.0613010590986270398182318786558994412, -1.
        !            41: 1135810173202366904448352912286604470, 1.79021506332534372536778891648110361
        !            42: 60; 0, 2.8991874737236275652408825679737171586, 1.85282662165584876344468105
        !            43: 12816401036, 3.0174557027049114270734649132936867272, -3.8416814583731999185
        !            44: 306312841432940661], 0, [5, 2, 0, -1, -2; 2, -2, -5, -10, 20; 0, -5, 10, -10
        !            45: , 5; -1, -10, -10, -17, 1; -2, 20, 5, 1, -8], [345, 0, 200, 110, 177; 0, 345
        !            46: , 95, 1, 145; 0, 0, 5, 4, 3; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [108675, 5175, 0
        !            47: , -10350, -15525; 5175, 13800, -8625, -1725, 27600; 0, -8625, 37950, -17250,
        !            48:  0; -10350, -1725, -17250, -24150, -15525; -15525, 27600, 0, -15525, -3450],
        !            49:  [595125, [238050, -296700, 91425, 1725, 0]~]], [-2.428517490719418606899206
        !            50: 9565359418364, 1.9647119211288133163138753392090569931 + 0.80971492418897895
        !            51: 128294082219556466857*I, -0.75045317576910401286427186094108607489 + 1.31014
        !            52: 62685358123283560773619310445915*I], [1, 1/15*x^4 - 2/3*x^2 + 1/3*x + 4/3, x
        !            53: , 2/15*x^4 - 1/3*x^2 + 2/3*x - 1/3, -1/15*x^4 + 1/3*x^3 + 1/3*x^2 - 4/3*x -
        !            54: 2/3], [1, 0, 3, 1, 10; 0, 0, -2, 1, -5; 0, 1, 0, 3, -5; 0, 0, 1, 1, 10; 0, 0
        !            55: , 0, 3, 0], [1, 0, 0, 0, 0, 0, -1, -1, -2, 4, 0, -1, 3, -1, 1, 0, -2, -1, -3
        !            56: , -1, 0, 4, 1, -1, -1; 0, 1, 0, 0, 0, 1, 1, -1, -1, 1, 0, -1, -2, -1, 1, 0,
        !            57: -1, -1, -1, 3, 0, 1, 1, 3, -3; 0, 0, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, -2
        !            58: , 0, 1, 0, -1, -1, 0, -1, -2, -1, -1; 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1,
        !            59:  1, 2, 1, 0, 1, 0, 0, 0, 0, 2, 0, -1; 0, 0, 0, 0, 1, 0, -1, -1, -1, 1, 0, -1
        !            60: , 0, 1, 0, 0, -1, 1, 0, 0, 1, 1, 0, 0, -1]]
1.1       noro       61: ? nf1=nfinit(nfpol,2)
                     62: [x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2, [1, 2], 595125, 4, [[1, -1.089115145
1.2     ! noro       63: 7205048250249527946671612684, 2.4285174907194186068992069565359418364, -0.71
        !            64: 946691128913178943997506477288225733, 2.555820035069169495064607115942677997
        !            65: 1; 1, -0.13838372073406036365047976417441696637 + 0.491816376577686434997532
        !            66: 85514741525107*I, -1.9647119211288133163138753392090569931 + 0.8097149241889
        !            67: 7895128294082219556466856*I, 0.072312766896812300380582649294307897121 + 2.1
        !            68: 980803753846276641195195160383234877*I, 0.9879631935250703980395053973545283
        !            69: 7194 + 1.5701452385894131769052374806001981108*I; 1, 1.682941293594312776162
        !            70: 9561615079976005 + 2.0500351226010726172974286983598602163*I, 0.750453175769
        !            71: 10401286427186094108607489 - 1.3101462685358123283560773619310445915*I, 0.78
        !            72: 742068874775359433940488309213323154 - 2.13366338931266180341684546104579360
        !            73: 17*I, -1.2658732110596551455718089553258673705 + 2.7164790103743150566578028
        !            74: 035789834834*I], [1, -1.0891151457205048250249527946671612684, 2.42851749071
        !            75: 94186068992069565359418364, -0.71946691128913178943997506477288225733, 2.555
        !            76: 8200350691694950646071159426779971; 1.4142135623730950488016887242096980785,
        !            77:  -0.19570413467375904264179382543977540674, -2.77852224501646643099209256540
        !            78: 93065576, 0.10226569567819614506098907018896260035, 1.3971909474085893198147
        !            79: 151262541540506; 0, 0.69553338995335755797766403996841143190, 1.145109827443
        !            80: 9565129926149974389115722, 3.1085550780550843138423672171643499922, 2.220520
        !            81: 6913086872788181483285734827868; 1.4142135623730950488016887242096980785, 2.
        !            82: 3800384020787979181834702019470475018, 1.06130105909862703981823187865589944
        !            83: 12, 1.1135810173202366904448352912286604470, -1.7902150633253437253677889164
        !            84: 811036160; 0, 2.8991874737236275652408825679737171587, -1.852826621655848763
        !            85: 4446810512816401036, -3.0174557027049114270734649132936867272, 3.84168145837
        !            86: 31999185306312841432940661], 0, [5, 2, 0, 1, 2; 2, -2, 5, 10, -20; 0, 5, 10,
        !            87:  -10, 5; 1, 10, -10, -17, 1; 2, -20, 5, 1, -8], [345, 0, 145, 235, 168; 0, 3
        !            88: 45, 250, 344, 200; 0, 0, 5, 4, 3; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [108675, 51
        !            89: 75, 0, 10350, 15525; 5175, 13800, 8625, 1725, -27600; 0, 8625, 37950, -17250
        !            90: , 0; 10350, 1725, -17250, -24150, -15525; 15525, -27600, 0, -15525, -3450],
        !            91: [595125, [-238050, 296700, 91425, 1725, 0]~]], [-1.0891151457205048250249527
        !            92: 946671612684, -0.13838372073406036365047976417441696637 + 0.4918163765776864
        !            93: 3499753285514741525107*I, 1.6829412935943127761629561615079976005 + 2.050035
        !            94: 1226010726172974286983598602163*I], [1, x, 1/2*x^4 - 3/2*x^3 + 5/2*x^2 + 2*x
        !            95:  - 1, 1/2*x^4 - x^3 + x^2 + 9/2*x + 1, 1/2*x^4 - x^3 + 2*x^2 + 7/2*x + 2], [
        !            96: 1, 0, -1, -7, -14; 0, 1, 1, -2, -15; 0, 0, 0, -2, -4; 0, 0, -1, -1, 2; 0, 0,
        !            97:  1, 3, 4], [1, 0, 0, 0, 0, 0, -1, 1, 2, -4, 0, 1, 3, -1, 1, 0, 2, -1, -3, -1
        !            98: , 0, -4, 1, -1, -1; 0, 1, 0, 0, 0, 1, 1, 1, 1, -1, 0, 1, -2, -1, 1, 0, 1, -1
        !            99: , -1, 3, 0, -1, 1, 3, -3; 0, 0, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 2, 0, 1
        !           100: , 0, 1, 1, 0, -1, 2, 1, 1; 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, -1, -1, -2,
        !           101: 1, 0, -1, 0, 0, 0, 0, -2, 0, 1; 0, 0, 0, 0, 1, 0, 1, -1, -1, 1, 0, -1, 0, -1
        !           102: , 0, 0, -1, -1, 0, 0, 1, 1, 0, 0, 1]]
1.1       noro      103: ? nfinit(nfpol,3)
                    104: [[x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2, [1, 2], 595125, 4, [[1, -1.08911514
1.2     ! noro      105: 57205048250249527946671612684, 2.4285174907194186068992069565359418364, -0.7
        !           106: 1946691128913178943997506477288225733, 2.55582003506916949506460711594267799
        !           107: 71; 1, -0.13838372073406036365047976417441696637 + 0.49181637657768643499753
        !           108: 285514741525107*I, -1.9647119211288133163138753392090569931 + 0.809714924188
        !           109: 97895128294082219556466856*I, 0.072312766896812300380582649294307897121 + 2.
        !           110: 1980803753846276641195195160383234877*I, 0.987963193525070398039505397354528
        !           111: 37194 + 1.5701452385894131769052374806001981108*I; 1, 1.68294129359431277616
        !           112: 29561615079976005 + 2.0500351226010726172974286983598602163*I, 0.75045317576
        !           113: 910401286427186094108607489 - 1.3101462685358123283560773619310445915*I, 0.7
        !           114: 8742068874775359433940488309213323154 - 2.1336633893126618034168454610457936
        !           115: 017*I, -1.2658732110596551455718089553258673705 + 2.716479010374315056657802
        !           116: 8035789834834*I], [1, -1.0891151457205048250249527946671612684, 2.4285174907
        !           117: 194186068992069565359418364, -0.71946691128913178943997506477288225733, 2.55
        !           118: 58200350691694950646071159426779971; 1.4142135623730950488016887242096980785
        !           119: , -0.19570413467375904264179382543977540674, -2.7785222450164664309920925654
        !           120: 093065576, 0.10226569567819614506098907018896260035, 1.397190947408589319814
        !           121: 7151262541540506; 0, 0.69553338995335755797766403996841143190, 1.14510982744
        !           122: 39565129926149974389115722, 3.1085550780550843138423672171643499922, 2.22052
        !           123: 06913086872788181483285734827868; 1.4142135623730950488016887242096980785, 2
        !           124: .3800384020787979181834702019470475018, 1.0613010590986270398182318786558994
        !           125: 412, 1.1135810173202366904448352912286604470, -1.790215063325343725367788916
        !           126: 4811036160; 0, 2.8991874737236275652408825679737171587, -1.85282662165584876
        !           127: 34446810512816401036, -3.0174557027049114270734649132936867272, 3.8416814583
        !           128: 731999185306312841432940661], 0, [5, 2, 0, 1, 2; 2, -2, 5, 10, -20; 0, 5, 10
        !           129: , -10, 5; 1, 10, -10, -17, 1; 2, -20, 5, 1, -8], [345, 0, 145, 235, 168; 0,
        !           130: 345, 250, 344, 200; 0, 0, 5, 4, 3; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [108675, 5
        !           131: 175, 0, 10350, 15525; 5175, 13800, 8625, 1725, -27600; 0, 8625, 37950, -1725
        !           132: 0, 0; 10350, 1725, -17250, -24150, -15525; 15525, -27600, 0, -15525, -3450],
        !           133:  [595125, [-238050, 296700, 91425, 1725, 0]~]], [-1.089115145720504825024952
        !           134: 7946671612684, -0.13838372073406036365047976417441696637 + 0.491816376577686
        !           135: 43499753285514741525107*I, 1.6829412935943127761629561615079976005 + 2.05003
        !           136: 51226010726172974286983598602163*I], [1, x, 1/2*x^4 - 3/2*x^3 + 5/2*x^2 + 2*
        !           137: x - 1, 1/2*x^4 - x^3 + x^2 + 9/2*x + 1, 1/2*x^4 - x^3 + 2*x^2 + 7/2*x + 2],
        !           138: [1, 0, -1, -7, -14; 0, 1, 1, -2, -15; 0, 0, 0, -2, -4; 0, 0, -1, -1, 2; 0, 0
        !           139: , 1, 3, 4], [1, 0, 0, 0, 0, 0, -1, 1, 2, -4, 0, 1, 3, -1, 1, 0, 2, -1, -3, -
        !           140: 1, 0, -4, 1, -1, -1; 0, 1, 0, 0, 0, 1, 1, 1, 1, -1, 0, 1, -2, -1, 1, 0, 1, -
        !           141: 1, -1, 3, 0, -1, 1, 3, -3; 0, 0, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 2, 0,
        !           142: 1, 0, 1, 1, 0, -1, 2, 1, 1; 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, -1, -1, -2,
        !           143:  1, 0, -1, 0, 0, 0, 0, -2, 0, 1; 0, 0, 0, 0, 1, 0, 1, -1, -1, 1, 0, -1, 0, -
        !           144: 1, 0, 0, -1, -1, 0, 0, 1, 1, 0, 0, 1]], Mod(-1/2*x^4 + 3/2*x^3 - 5/2*x^2 - 2
        !           145: *x + 1, x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2)]
1.1       noro      146: ? nfinit(nfpol,4)
                    147: [x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2, [1, 2], 595125, 4, [[1, -1.089115145
1.2     ! noro      148: 7205048250249527946671612684, 2.4285174907194186068992069565359418364, -0.71
        !           149: 946691128913178943997506477288225733, 2.555820035069169495064607115942677997
        !           150: 1; 1, -0.13838372073406036365047976417441696637 + 0.491816376577686434997532
        !           151: 85514741525107*I, -1.9647119211288133163138753392090569931 + 0.8097149241889
        !           152: 7895128294082219556466856*I, 0.072312766896812300380582649294307897121 + 2.1
        !           153: 980803753846276641195195160383234877*I, 0.9879631935250703980395053973545283
        !           154: 7194 + 1.5701452385894131769052374806001981108*I; 1, 1.682941293594312776162
        !           155: 9561615079976005 + 2.0500351226010726172974286983598602163*I, 0.750453175769
        !           156: 10401286427186094108607489 - 1.3101462685358123283560773619310445915*I, 0.78
        !           157: 742068874775359433940488309213323154 - 2.13366338931266180341684546104579360
        !           158: 17*I, -1.2658732110596551455718089553258673705 + 2.7164790103743150566578028
        !           159: 035789834834*I], [1, -1.0891151457205048250249527946671612684, 2.42851749071
        !           160: 94186068992069565359418364, -0.71946691128913178943997506477288225733, 2.555
        !           161: 8200350691694950646071159426779971; 1.4142135623730950488016887242096980785,
        !           162:  -0.19570413467375904264179382543977540674, -2.77852224501646643099209256540
        !           163: 93065576, 0.10226569567819614506098907018896260035, 1.3971909474085893198147
        !           164: 151262541540506; 0, 0.69553338995335755797766403996841143190, 1.145109827443
        !           165: 9565129926149974389115722, 3.1085550780550843138423672171643499922, 2.220520
        !           166: 6913086872788181483285734827868; 1.4142135623730950488016887242096980785, 2.
        !           167: 3800384020787979181834702019470475018, 1.06130105909862703981823187865589944
        !           168: 12, 1.1135810173202366904448352912286604470, -1.7902150633253437253677889164
        !           169: 811036160; 0, 2.8991874737236275652408825679737171587, -1.852826621655848763
        !           170: 4446810512816401036, -3.0174557027049114270734649132936867272, 3.84168145837
        !           171: 31999185306312841432940661], 0, [5, 2, 0, 1, 2; 2, -2, 5, 10, -20; 0, 5, 10,
        !           172:  -10, 5; 1, 10, -10, -17, 1; 2, -20, 5, 1, -8], [345, 0, 145, 235, 168; 0, 3
        !           173: 45, 250, 344, 200; 0, 0, 5, 4, 3; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [108675, 51
        !           174: 75, 0, 10350, 15525; 5175, 13800, 8625, 1725, -27600; 0, 8625, 37950, -17250
        !           175: , 0; 10350, 1725, -17250, -24150, -15525; 15525, -27600, 0, -15525, -3450],
        !           176: [595125, [-238050, 296700, 91425, 1725, 0]~]], [-1.0891151457205048250249527
        !           177: 946671612684, -0.13838372073406036365047976417441696637 + 0.4918163765776864
        !           178: 3499753285514741525107*I, 1.6829412935943127761629561615079976005 + 2.050035
        !           179: 1226010726172974286983598602163*I], [1, x, 1/2*x^4 - 3/2*x^3 + 5/2*x^2 + 2*x
        !           180:  - 1, 1/2*x^4 - x^3 + x^2 + 9/2*x + 1, 1/2*x^4 - x^3 + 2*x^2 + 7/2*x + 2], [
        !           181: 1, 0, -1, -7, -14; 0, 1, 1, -2, -15; 0, 0, 0, -2, -4; 0, 0, -1, -1, 2; 0, 0,
        !           182:  1, 3, 4], [1, 0, 0, 0, 0, 0, -1, 1, 2, -4, 0, 1, 3, -1, 1, 0, 2, -1, -3, -1
        !           183: , 0, -4, 1, -1, -1; 0, 1, 0, 0, 0, 1, 1, 1, 1, -1, 0, 1, -2, -1, 1, 0, 1, -1
        !           184: , -1, 3, 0, -1, 1, 3, -3; 0, 0, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 2, 0, 1
        !           185: , 0, 1, 1, 0, -1, 2, 1, 1; 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, -1, -1, -2,
        !           186: 1, 0, -1, 0, 0, 0, 0, -2, 0, 1; 0, 0, 0, 0, 1, 0, 1, -1, -1, 1, 0, -1, 0, -1
        !           187: , 0, 0, -1, -1, 0, 0, 1, 1, 0, 0, 1]]
1.1       noro      188: ? nf3=nfinit(x^6+108);
                    189: ? nf4=nfinit(x^3-10*x+8)
1.2     ! noro      190: [x^3 - 10*x + 8, [3, 0], 568, 2, [[1, -0.36332823793268357037416860931988791
        !           191: 960, -3.1413361156553641347759399165844441383; 1, -1.76155718183189058754537
        !           192: 11274124874988, 2.6261980685272936133764995500786243868; 1, 3.12488541976457
        !           193: 41579195397367323754183, -0.48486195287192947860055963349418024846], [1, -0.
        !           194: 36332823793268357037416860931988791960, -3.141336115655364134775939916584444
        !           195: 1383; 1, -1.7615571818318905875453711274124874988, 2.62619806852729361337649
        !           196: 95500786243868; 1, 3.1248854197645741579195397367323754183, -0.4848619528719
        !           197: 2947860055963349418024846], 0, [3, 1, -1; 1, 13, -5; -1, -5, 17], [284, 76,
        !           198: 46; 0, 2, 0; 0, 0, 1], [196, -12, 8; -12, 50, 14; 8, 14, 38], [568, [120, 21
        !           199: 0, 2]~]], [-3.5046643535880477051501085259043320579, 0.864640886695403025831
        !           200: 12842266613688800, 2.6400234668926446793189801032381951699], [1, 1/2*x^2 + x
        !           201:  - 3, -1/2*x^2 + 3], [1, 0, 6; 0, 1, 0; 0, 1, -2], [1, 0, 0, 0, 4, -2, 0, -2
        !           202: , 6; 0, 1, 0, 1, 2, 0, 0, 0, -2; 0, 0, 1, 0, 1, -1, 1, -1, -1]]
1.1       noro      203: ? setrand(1);bnf2=bnfinit(qpol);nf2=bnf2[7];
                    204: ? setrand(1);bnf=bnfinit(x^2-x-57,,[0.2,0.2])
                    205: [Mat(3), Mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.71246530518434397468087951060
1.2     ! noro      206: 61300698 + 3.1415926535897932384626433832795028842*I; 2.71246530518434397468
        !           207: 08795106061300699], [1.7903417566977293763292119206302198761, 1.289761953065
        !           208: 2735025030086072395031017 + 3.1415926535897932384626433832795028842*I, 0.701
        !           209: 48550268542821846861610071436900868, 0.E-57, 0.50057980363245587382620331339
        !           210: 071677436 + 3.1415926535897932384626433832795028842*I, 1.0888562540123011578
        !           211: 605958199158508674, 1.7241634548149836441438434283070556826 + 3.141592653589
        !           212: 7932384626433832795028842*I, -0.34328764427702709438988786673341921876 + 3.1
        !           213: 415926535897932384626433832795028842*I, 2.1336294009747564707190997873636390
        !           214: 948 + 3.1415926535897932384626433832795028842*I, 0.0661783018827457321853684
        !           215: 92323164193433 + 3.1415926535897932384626433832795028842*I; -1.7903417566977
        !           216: 293763292119206302198760, -1.2897619530652735025030086072395031017, -0.70148
        !           217: 550268542821846861610071436900868, 0.E-57, -0.500579803632455873826203313390
        !           218: 71677436, -1.0888562540123011578605958199158508674, -1.724163454814983644143
        !           219: 8434283070556826, 0.34328764427702709438988786673341921876, -2.1336294009747
        !           220: 564707190997873636390948, -0.066178301882745732185368492323164193433], [[3,
        !           221: [0, 1]~, 1, 1, [1, 1]~], [5, [-1, 1]~, 1, 1, [2, 1]~], [11, [-1, 1]~, 1, 1,
        !           222: [2, 1]~], [3, [1, 1]~, 1, 1, [0, 1]~], [5, [2, 1]~, 1, 1, [-1, 1]~], [11, [2
        !           223: , 1]~, 1, 1, [-1, 1]~], [19, [1, 1]~, 1, 1, [0, 1]~], [17, [3, 1]~, 1, 1, [-
        !           224: 2, 1]~], [17, [-2, 1]~, 1, 1, [3, 1]~], [19, [0, 1]~, 1, 1, [1, 1]~]], 0, [x
        !           225: ^2 - x - 57, [2, 0], 229, 1, [[1, -8.0663729752107779635959310246705326058;
        !           226: 1, 7.0663729752107779635959310246705326058], [1, -8.066372975210777963595931
        !           227: 0246705326058; 1, 7.0663729752107779635959310246705326058], 0, [2, -1; -1, 1
        !           228: 15], [229, 115; 0, 1], [115, 1; 1, 2], [229, [115, 1]~]], [-7.06637297521077
        !           229: 79635959310246705326058, 8.0663729752107779635959310246705326058], [1, x - 1
        !           230: ], [1, 1; 0, 1], [1, 0, 0, 57; 0, 1, 1, -1]], [[3, [3], [[3, 0; 0, 1]]], 2.7
        !           231: 124653051843439746808795106061300699, 0.8814422512654579364, [2, -1], [x + 7
        !           232: ], 187], [Mat(1), [[0, 0]], [[1.7903417566977293763292119206302198761, -1.79
        !           233: 03417566977293763292119206302198760]]], 0]
1.1       noro      234: ? setrand(1);bnfinit(x^2-x-100000,1)
1.2     ! noro      235: [Mat(5), Mat([3, 2, 1, 2, 0, 3, 0, 2, 2, 3, 1, 4, 3, 2, 2, 3, 3, 0]), [-129.
        !           236: 82045011403975460991182396195022419 + 6.283185307179586476925286766559005768
        !           237: 4*I; 129.82045011403975460991182396195022419], [-41.811264589129943393339502
        !           238: 258694361489 + 6.2831853071795864769252867665590057684*I, 9.2399004147902289
        !           239: 816376260438840931575 + 3.1415926535897932384626433832795028842*I, -11.87460
        !           240: 9881075406725097315997431161032 + 3.1415926535897932384626433832795028842*I,
        !           241:  0.E-115, -51.051165003920172374977128302578454646 + 3.141592653589793238462
        !           242: 6433832795028842*I, -64.910225057019877304955911980975112095 + 3.14159265358
        !           243: 97932384626433832795028842*I, -29.936654708054536668242186261263200456 + 3.1
        !           244: 415926535897932384626433832795028842*I, -47.66831907156823399733291848270768
        !           245: 7878 + 6.2831853071795864769252867665590057684*I, 3.876293646477882506748482
        !           246: 4790355076166, -6.7377511782956880607802359510546381087 + 3.1415926535897932
        !           247: 384626433832795028842*I, -35.073513410834255332559266307639723380 + 3.141592
        !           248: 6535897932384626433832795028842*I, 33.130781426597481571750300827582717074 +
        !           249:  2.030353469852519378 E-115*I, 54.878404098312329644822020875673145627 + 4.0
        !           250: 60706939705038757 E-115*I, -14.980188104648613073630759189293219180 + 3.1415
        !           251: 926535897932384626433832795028842*I, -26.83107648448133031970874306940114230
        !           252: 8 + 3.1415926535897932384626433832795028842*I, -19.7067490665160655124889078
        !           253: 34878146944 + 3.1415926535897932384626433832795028842*I, -22.104515522613877
        !           254: 880850594423816214544 + 3.1415926535897932384626433832795028842*I, -45.68755
        !           255: 8235607825900087984737729869105 + 6.2831853071795864769252867665590057684*I,
        !           256:  47.668319071568233997332918482707687879 + 8.121413879410077514 E-115*I; 41.
        !           257: 811264589129943393339502258694361489, -9.23990041479022898163762604388409315
        !           258: 75, 11.874609881075406725097315997431161032, 0.E-115, 51.0511650039201723749
        !           259: 77128302578454646, 64.910225057019877304955911980975112095, 29.9366547080545
        !           260: 36668242186261263200456, 47.668319071568233997332918482707687879, -3.8762936
        !           261: 464778825067484824790355076166, 6.7377511782956880607802359510546381087, 35.
        !           262: 073513410834255332559266307639723380, -33.1307814265974815717503008275827170
        !           263: 74, -54.878404098312329644822020875673145627, 14.980188104648613073630759189
        !           264: 293219180, 26.831076484481330319708743069401142309, 19.706749066516065512488
        !           265: 907834878146944, 22.104515522613877880850594423816214544, 45.687558235607825
        !           266: 900087984737729869105, -47.668319071568233997332918482707687878], [[2, [2, 1
        !           267: ]~, 1, 1, [1, 1]~], [5, [5, 1]~, 1, 1, [1, 1]~], [13, [-5, 1]~, 1, 1, [6, 1]
        !           268: ~], [2, [3, 1]~, 1, 1, [0, 1]~], [5, [6, 1]~, 1, 1, [0, 1]~], [7, [4, 1]~, 2
        !           269: , 1, [-3, 1]~], [13, [6, 1]~, 1, 1, [-5, 1]~], [23, [7, 1]~, 1, 1, [-6, 1]~]
        !           270: , [43, [-15, 1]~, 1, 1, [16, 1]~], [17, [20, 1]~, 1, 1, [-2, 1]~], [17, [15,
        !           271:  1]~, 1, 1, [3, 1]~], [29, [14, 1]~, 1, 1, [-13, 1]~], [29, [-13, 1]~, 1, 1,
        !           272:  [14, 1]~], [31, [39, 1]~, 1, 1, [-7, 1]~], [31, [24, 1]~, 1, 1, [8, 1]~], [
        !           273: 41, [7, 1]~, 1, 1, [-6, 1]~], [41, [-6, 1]~, 1, 1, [7, 1]~], [43, [16, 1]~,
        !           274: 1, 1, [-15, 1]~], [23, [-6, 1]~, 1, 1, [7, 1]~]], 0, [x^2 - x - 100000, [2,
        !           275: 0], 400001, 1, [[1, -316.72816130129840161392089489603747004; 1, 315.7281613
        !           276: 0129840161392089489603747004], [1, -316.72816130129840161392089489603747004;
        !           277:  1, 315.72816130129840161392089489603747004], 0, [2, -1; -1, 200001], [40000
        !           278: 1, 200001; 0, 1], [200001, 1; 1, 2], [400001, [200001, 1]~]], [-315.72816130
        !           279: 129840161392089489603747004, 316.72816130129840161392089489603747004], [1, x
        !           280:  - 1], [1, 1; 0, 1], [1, 0, 0, 100000; 0, 1, 1, -1]], [[5, [5], [[2, 0; 0, 1
        !           281: ]]], 129.82045011403975460991182396195022419, 0.9876536979069047228, [2, -1]
        !           282: , [379554884019013781006303254896369154068336082609238336*x + 11983616564425
        !           283: 0789990462835950022871665178127611316131167], 185], [Mat(1), [[0, 0]], [[-41
        !           284: .811264589129943393339502258694361489 + 6.2831853071795864769252867665590057
        !           285: 684*I, 41.811264589129943393339502258694361489]]], 0]
1.1       noro      286: ? \p19
                    287:    realprecision = 19 significant digits
                    288: ? setrand(1);sbnf=bnfinit(x^3-x^2-14*x-1,3)
1.2     ! noro      289: [x^3 - x^2 - 14*x - 1, 3, 10889, [1, x, x^2 - x - 9], [-3.233732695981516672
        !           290: , -0.07182350902743636344, 4.305556205008953036], [10889, 5698, 8994; 0, 1,
        !           291: 0; 0, 0, 1], Mat(2), Mat([1, 1, 0, 1, 1, 0, 1, 1]), [9, 15, 16, 17, 39, 10,
        !           292: 33, 57, 69], [2, [-1, 0, 0]~], [[0, 1, 0]~, [5, 3, 1]~], [-4, -1, 2, 3, 10,
        !           293: 3, 1, 7, 2; 1, 1, 1, 1, 5, 0, 1, 2, 1; 0, 0, 0, 0, 1, 0, 0, 0, -1]]
1.1       noro      294: ? \p38
                    295:    realprecision = 38 significant digits
1.2     ! noro      296: ? bnrinit(bnf,[[5,4;0,1],[1,0]],1)
1.1       noro      297: [[Mat(3), Mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.7124653051843439746808795106
1.2     ! noro      298: 061300698 + 3.1415926535897932384626433832795028842*I; 2.7124653051843439746
        !           299: 808795106061300699], [1.7903417566977293763292119206302198761, 1.28976195306
        !           300: 52735025030086072395031017 + 3.1415926535897932384626433832795028842*I, 0.70
        !           301: 148550268542821846861610071436900868, 0.E-57, 0.5005798036324558738262033133
        !           302: 9071677436 + 3.1415926535897932384626433832795028842*I, 1.088856254012301157
        !           303: 8605958199158508674, 1.7241634548149836441438434283070556826 + 3.14159265358
        !           304: 97932384626433832795028842*I, -0.34328764427702709438988786673341921876 + 3.
        !           305: 1415926535897932384626433832795028842*I, 2.133629400974756470719099787363639
        !           306: 0948 + 3.1415926535897932384626433832795028842*I, 0.066178301882745732185368
        !           307: 492323164193433 + 3.1415926535897932384626433832795028842*I; -1.790341756697
        !           308: 7293763292119206302198760, -1.2897619530652735025030086072395031017, -0.7014
        !           309: 8550268542821846861610071436900868, 0.E-57, -0.50057980363245587382620331339
        !           310: 071677436, -1.0888562540123011578605958199158508674, -1.72416345481498364414
        !           311: 38434283070556826, 0.34328764427702709438988786673341921876, -2.133629400974
        !           312: 7564707190997873636390948, -0.066178301882745732185368492323164193433], [[3,
        !           313:  [0, 1]~, 1, 1, [1, 1]~], [5, [-1, 1]~, 1, 1, [2, 1]~], [11, [-1, 1]~, 1, 1,
        !           314:  [2, 1]~], [3, [1, 1]~, 1, 1, [0, 1]~], [5, [2, 1]~, 1, 1, [-1, 1]~], [11, [
        !           315: 2, 1]~, 1, 1, [-1, 1]~], [19, [1, 1]~, 1, 1, [0, 1]~], [17, [3, 1]~, 1, 1, [
        !           316: -2, 1]~], [17, [-2, 1]~, 1, 1, [3, 1]~], [19, [0, 1]~, 1, 1, [1, 1]~]], 0, [
        !           317: x^2 - x - 57, [2, 0], 229, 1, [[1, -8.0663729752107779635959310246705326058;
        !           318:  1, 7.0663729752107779635959310246705326058], [1, -8.06637297521077796359593
        !           319: 10246705326058; 1, 7.0663729752107779635959310246705326058], 0, [2, -1; -1,
        !           320: 115], [229, 115; 0, 1], [115, 1; 1, 2], [229, [115, 1]~]], [-7.0663729752107
        !           321: 779635959310246705326058, 8.0663729752107779635959310246705326058], [1, x -
        !           322: 1], [1, 1; 0, 1], [1, 0, 0, 57; 0, 1, 1, -1]], [[3, [3], [[3, 0; 0, 1]]], 2.
        !           323: 7124653051843439746808795106061300699, 0.8814422512654579364, [2, -1], [x +
        !           324: 7], 187], [Mat(1), [[0, 0]], [[1.7903417566977293763292119206302198761, -1.7
        !           325: 903417566977293763292119206302198760]]], [0, [Mat([[6, 1]~, 1])]]], [[[5, 4;
        !           326:  0, 1], [1, 0]], [8, [4, 2], [[2, 0]~, [0, 1]~]], Mat([[5, [-1, 1]~, 1, 1, [
        !           327: 2, 1]~], 1]), [[[[4], [[2, 0]~], [[2, 0]~], [[Mod(0, 2)]~], 1]], [[2], [[0,
        !           328: 1]~], Mat(1)]], [1, 0; 0, 1]], [1], Mat([1, -3, -6]), [12, [12], [[3, 0; 0,
        !           329: 1]]], [[1/2, 0; 0, 0], [1, -1; 1, 1]]]
        !           330: ? bnr=bnrclass(bnf,[[5,4;0,1],[1,0]],2)
1.1       noro      331: [[Mat(3), Mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.7124653051843439746808795106
1.2     ! noro      332: 061300698 + 3.1415926535897932384626433832795028842*I; 2.7124653051843439746
        !           333: 808795106061300699], [1.7903417566977293763292119206302198761, 1.28976195306
        !           334: 52735025030086072395031017 + 3.1415926535897932384626433832795028842*I, 0.70
        !           335: 148550268542821846861610071436900868, 0.E-57, 0.5005798036324558738262033133
        !           336: 9071677436 + 3.1415926535897932384626433832795028842*I, 1.088856254012301157
        !           337: 8605958199158508674, 1.7241634548149836441438434283070556826 + 3.14159265358
        !           338: 97932384626433832795028842*I, -0.34328764427702709438988786673341921876 + 3.
        !           339: 1415926535897932384626433832795028842*I, 2.133629400974756470719099787363639
        !           340: 0948 + 3.1415926535897932384626433832795028842*I, 0.066178301882745732185368
        !           341: 492323164193433 + 3.1415926535897932384626433832795028842*I; -1.790341756697
        !           342: 7293763292119206302198760, -1.2897619530652735025030086072395031017, -0.7014
        !           343: 8550268542821846861610071436900868, 0.E-57, -0.50057980363245587382620331339
        !           344: 071677436, -1.0888562540123011578605958199158508674, -1.72416345481498364414
        !           345: 38434283070556826, 0.34328764427702709438988786673341921876, -2.133629400974
        !           346: 7564707190997873636390948, -0.066178301882745732185368492323164193433], [[3,
        !           347:  [0, 1]~, 1, 1, [1, 1]~], [5, [-1, 1]~, 1, 1, [2, 1]~], [11, [-1, 1]~, 1, 1,
        !           348:  [2, 1]~], [3, [1, 1]~, 1, 1, [0, 1]~], [5, [2, 1]~, 1, 1, [-1, 1]~], [11, [
        !           349: 2, 1]~, 1, 1, [-1, 1]~], [19, [1, 1]~, 1, 1, [0, 1]~], [17, [3, 1]~, 1, 1, [
        !           350: -2, 1]~], [17, [-2, 1]~, 1, 1, [3, 1]~], [19, [0, 1]~, 1, 1, [1, 1]~]], 0, [
        !           351: x^2 - x - 57, [2, 0], 229, 1, [[1, -8.0663729752107779635959310246705326058;
        !           352:  1, 7.0663729752107779635959310246705326058], [1, -8.06637297521077796359593
        !           353: 10246705326058; 1, 7.0663729752107779635959310246705326058], 0, [2, -1; -1,
        !           354: 115], [229, 115; 0, 1], [115, 1; 1, 2], [229, [115, 1]~]], [-7.0663729752107
        !           355: 779635959310246705326058, 8.0663729752107779635959310246705326058], [1, x -
        !           356: 1], [1, 1; 0, 1], [1, 0, 0, 57; 0, 1, 1, -1]], [[3, [3], [[3, 0; 0, 1]]], 2.
        !           357: 7124653051843439746808795106061300699, 0.8814422512654579364, [2, -1], [x +
        !           358: 7], 187], [Mat(1), [[0, 0]], [[1.7903417566977293763292119206302198761, -1.7
        !           359: 903417566977293763292119206302198760]]], [0, [Mat([[6, 1]~, 1])]]], [[[5, 4;
        !           360:  0, 1], [1, 0]], [8, [4, 2], [[2, 0]~, [0, 1]~]], Mat([[5, [-1, 1]~, 1, 1, [
        !           361: 2, 1]~], 1]), [[[[4], [[2, 0]~], [[2, 0]~], [[Mod(0, 2)]~], 1]], [[2], [[0,
        !           362: 1]~], Mat(1)]], [1, 0; 0, 1]], [1], Mat([1, -3, -6]), [12, [12], [[3, 0; 0,
        !           363: 1]]], [[1/2, 0; 0, 0], [1, -1; 1, 1]]]
1.1       noro      364: ? rnfinit(nf2,x^5-x-2)
                    365: [x^5 - x - 2, [[1, 2], [0, 5]], [[49744, 0, 0; 0, 49744, 0; 0, 0, 49744], [3
                    366: 109, 0, 0]~], [1, 0, 0; 0, 1, 0; 0, 0, 1], [[[1, 1.2671683045421243172528914
                    367: 279776896412, 1.6057155120361619195949075151301679393, 2.0347118029638523119
                    368: 874445717108994866, 2.5783223055935536544757871909285592749; 1, 0.2609638803
                    369: 8645528500256735072673484811 + 1.1772261533941944394700286585617926513*I, -1
                    370: .3177592693689352747870763902256347904 + 0.614427010164338838041906608641467
                    371: 31824*I, -1.0672071180669977537495893497477340535 - 1.3909574189920019216524
                    372: 673160314582604*I, 1.3589689411882615753626439480614001936 - 1.6193337759893
                    373: 970298359887428575174472*I; 1, -0.89454803265751744362901306471557966872 + 0
                    374: .53414854617473272670874609150394379949*I, 0.5149015133508543149896226326605
                    375: 5082078 - 0.95564306225496055080453352211847466685*I, 0.04985121658507159775
                    376: 5867063892284310224 + 1.1299025160425089918993024639913611785*I, -0.64813009
                    377: 398503840260053754352567983115 - 0.98412411795664774269323431620030610541*I]
                    378: , [1, 1.2671683045421243172528914279776896412 + 0.E-38*I, 1.6057155120361619
                    379: 195949075151301679393 + 0.E-38*I, 2.0347118029638523119874445717108994866 +
                    380: 0.E-37*I, 2.5783223055935536544757871909285592749 + 0.E-37*I; 1, 0.260963880
                    381: 38645528500256735072673484811 - 1.1772261533941944394700286585617926513*I, -
                    382: 1.3177592693689352747870763902256347904 - 0.61442701016433883804190660864146
                    383: 731824*I, -1.0672071180669977537495893497477340535 + 1.390957418992001921652
                    384: 4673160314582604*I, 1.3589689411882615753626439480614001936 + 1.619333775989
                    385: 3970298359887428575174472*I; 1, 0.26096388038645528500256735072673484811 + 1
                    386: .1772261533941944394700286585617926513*I, -1.3177592693689352747870763902256
                    387: 347904 + 0.61442701016433883804190660864146731824*I, -1.06720711806699775374
                    388: 95893497477340535 - 1.3909574189920019216524673160314582604*I, 1.35896894118
                    389: 82615753626439480614001936 - 1.6193337759893970298359887428575174472*I; 1, -
                    390: 0.89454803265751744362901306471557966872 - 0.5341485461747327267087460915039
                    391: 4379949*I, 0.51490151335085431498962263266055082078 + 0.95564306225496055080
                    392: 453352211847466685*I, 0.049851216585071597755867063892284310224 - 1.12990251
                    393: 60425089918993024639913611785*I, -0.64813009398503840260053754352567983115 +
                    394:  0.98412411795664774269323431620030610541*I; 1, -0.8945480326575174436290130
                    395: 6471557966872 + 0.53414854617473272670874609150394379949*I, 0.51490151335085
                    396: 431498962263266055082078 - 0.95564306225496055080453352211847466685*I, 0.049
                    397: 851216585071597755867063892284310224 + 1.12990251604250899189930246399136117
                    398: 85*I, -0.64813009398503840260053754352567983115 - 0.984124117956647742693234
                    399: 31620030610541*I]], [[1, 2, 2; 1.2671683045421243172528914279776896412, 0.52
                    400: 192776077291057000513470145346969622 - 2.35445230678838887894005731712358530
                    401: 26*I, -1.7890960653150348872580261294311593374 - 1.0682970923494654534174921
                    402: 830078875989*I; 1.6057155120361619195949075151301679393, -2.6355185387378705
                    403: 495741527804512695809 - 1.2288540203286776760838132172829346364*I, 1.0298030
                    404: 267017086299792452653211016415 + 1.9112861245099211016090670442369493337*I;
                    405: 2.0347118029638523119874445717108994866, -2.13441423613399550749917869949546
                    406: 81070 + 2.7819148379840038433049346320629165208*I, 0.09970243317014319551173
                    407: 4127784568620449 - 2.2598050320850179837986049279827223571*I; 2.578322305593
                    408: 5536544757871909285592749, 2.7179378823765231507252878961228003872 + 3.23866
                    409: 75519787940596719774857150348944*I, -1.2962601879700768052010750870513596623
                    410:  + 1.9682482359132954853864686324006122108*I], [1, 1, 1, 1, 1; 1.26716830454
                    411: 21243172528914279776896412 + 0.E-38*I, 0.26096388038645528500256735072673484
                    412: 811 + 1.1772261533941944394700286585617926513*I, 0.2609638803864552850025673
                    413: 5072673484811 - 1.1772261533941944394700286585617926513*I, -0.89454803265751
                    414: 744362901306471557966872 + 0.53414854617473272670874609150394379949*I, -0.89
                    415: 454803265751744362901306471557966872 - 0.53414854617473272670874609150394379
                    416: 949*I; 1.6057155120361619195949075151301679393 + 0.E-38*I, -1.31775926936893
                    417: 52747870763902256347904 + 0.61442701016433883804190660864146731824*I, -1.317
                    418: 7592693689352747870763902256347904 - 0.6144270101643388380419066086414673182
                    419: 4*I, 0.51490151335085431498962263266055082078 - 0.95564306225496055080453352
                    420: 211847466685*I, 0.51490151335085431498962263266055082078 + 0.955643062254960
                    421: 55080453352211847466685*I; 2.0347118029638523119874445717108994866 + 0.E-37*
                    422: I, -1.0672071180669977537495893497477340535 - 1.3909574189920019216524673160
                    423: 314582604*I, -1.0672071180669977537495893497477340535 + 1.390957418992001921
                    424: 6524673160314582604*I, 0.049851216585071597755867063892284310224 + 1.1299025
                    425: 160425089918993024639913611785*I, 0.049851216585071597755867063892284310224
                    426: - 1.1299025160425089918993024639913611785*I; 2.57832230559355365447578719092
                    427: 85592749 + 0.E-37*I, 1.3589689411882615753626439480614001936 - 1.61933377598
                    428: 93970298359887428575174472*I, 1.3589689411882615753626439480614001936 + 1.61
                    429: 93337759893970298359887428575174472*I, -0.6481300939850384026005375435256798
                    430: 3115 - 0.98412411795664774269323431620030610541*I, -0.6481300939850384026005
                    431: 3754352567983115 + 0.98412411795664774269323431620030610541*I]], [[5, -5.877
                    432: 471754111437539 E-39 + 3.4227493991378543323575495001314729016*I, 2.35098870
                    433: 1644575015 E-38 - 0.68243210418124342552525382695401469720*I, -2.35098870164
                    434: 4575015 E-38 - 0.52210980589898585950632970408019416371*I, 3.999999999999999
                    435: 9999999999999999999999 - 5.2069157878920895450584461181156471052*I; -5.87747
                    436: 1754111437539 E-39 - 3.4227493991378543323575495001314729016*I, 6.6847043424
                    437: 634879841147654217963674264 - 5.877471754111437539 E-39*I, 0.851456773407213
                    438: 76574333983502938573598 + 4.5829573180978430291541592600601794652*I, -0.1357
                    439: 4266252716976137461193821267520737 - 0.2880510854402577236173893646768205039
                    440: 1*I, 0.27203784387468568916539788233281013320 - 1.59171472799429477189656508
                    441: 59986677247*I; 2.350988701644575015 E-38 + 0.6824321041812434255252538269540
                    442: 1469720*I, 0.85145677340721376574333983502938573598 - 4.58295731809784302915
                    443: 41592600601794652*I, 9.1630968530221077951281598310681467898 + 0.E-38*I, 2.2
                    444: 622987652095629453403849736225691490 + 6.23619279135585067657240470631807068
                    445: 69*I, -0.21796409886496632254445901043974770643 + 0.345593689310632156861589
                    446: 39748833975810*I; -2.350988701644575015 E-38 + 0.522109805898985859506329704
                    447: 08019416371*I, -0.13574266252716976137461193821267520737 + 0.288051085440257
                    448: 72361738936467682050392*I, 2.2622987652095629453403849736225691490 - 6.23619
                    449: 27913558506765724047063180706869*I, 12.845768948832335511882696939380696155
                    450: + 1.175494350822287507 E-38*I, 4.5618400502378124720913214622468855074 + 8.6
                    451: 033930051068500425218923146793019614*I; 3.9999999999999999999999999999999999
                    452: 999 + 5.2069157878920895450584461181156471052*I, 0.2720378438746856891653978
                    453: 8233281013320 + 1.5917147279942947718965650859986677247*I, -0.21796409886496
                    454: 632254445901043974770643 - 0.34559368931063215686158939748833975810*I, 4.561
                    455: 8400502378124720913214622468855074 - 8.6033930051068500425218923146793019615
                    456: *I, 18.362968630416114402425299186062892646 + 5.877471754111437539 E-39*I],
                    457: [5, -1.175494350822287507 E-38 + 0.E-38*I, 2.350988701644575015 E-38 + 0.E-3
                    458: 8*I, -1.763241526233431261 E-38 + 0.E-38*I, 3.999999999999999999999999999999
                    459: 9999998 + 0.E-38*I; -1.175494350822287507 E-38 + 0.E-38*I, 6.684704342463487
                    460: 9841147654217963674264 - 5.877471754111437539 E-39*I, 0.85145677340721376574
                    461: 333983502938573597 + 5.877471754111437539 E-39*I, -0.13574266252716976137461
                    462: 193821267520737 + 5.877471754111437539 E-39*I, 0.272037843874685689165397882
                    463: 33281013314 - 5.877471754111437539 E-39*I; 2.350988701644575015 E-38 + 0.E-3
                    464: 8*I, 0.85145677340721376574333983502938573597 + 5.877471754111437539 E-39*I,
                    465:  9.1630968530221077951281598310681467898 + 0.E-38*I, 2.262298765209562945340
                    466: 3849736225691490 + 2.350988701644575015 E-38*I, -0.2179640988649663225444590
                    467: 1043974770651 + 0.E-38*I; -1.763241526233431261 E-38 + 0.E-38*I, -0.13574266
                    468: 252716976137461193821267520737 + 5.877471754111437539 E-39*I, 2.262298765209
                    469: 5629453403849736225691490 + 2.350988701644575015 E-38*I, 12.8457689488323355
                    470: 11882696939380696155 + 0.E-37*I, 4.5618400502378124720913214622468855073 - 3
                    471: .526483052466862523 E-38*I; 3.9999999999999999999999999999999999998 + 0.E-38
                    472: *I, 0.27203784387468568916539788233281013314 - 5.877471754111437539 E-39*I,
                    473: -0.21796409886496632254445901043974770651 + 0.E-38*I, 4.56184005023781247209
                    474: 13214622468855073 - 3.526483052466862523 E-38*I, 18.362968630416114402425299
                    475: 186062892646 + 0.E-37*I]], [Mod(5, y^3 - y - 1), 0, 0, 0, Mod(4, y^3 - y - 1
                    476: ); 0, 0, 0, Mod(4, y^3 - y - 1), Mod(10, y^3 - y - 1); 0, 0, Mod(4, y^3 - y
                    477: - 1), Mod(10, y^3 - y - 1), 0; 0, Mod(4, y^3 - y - 1), Mod(10, y^3 - y - 1),
                    478:  0, 0; Mod(4, y^3 - y - 1), Mod(10, y^3 - y - 1), 0, 0, Mod(4, y^3 - y - 1)]
                    479: , [;], [;], [;]], [[1.2671683045421243172528914279776896412, 0.2609638803864
                    480: 5528500256735072673484811 + 1.1772261533941944394700286585617926513*I, -0.89
                    481: 454803265751744362901306471557966872 + 0.53414854617473272670874609150394379
                    482: 949*I], [1.2671683045421243172528914279776896412 + 0.E-38*I, 0.2609638803864
                    483: 5528500256735072673484811 - 1.1772261533941944394700286585617926513*I, 0.260
                    484: 96388038645528500256735072673484811 + 1.177226153394194439470028658561792651
                    485: 3*I, -0.89454803265751744362901306471557966872 - 0.5341485461747327267087460
                    486: 9150394379949*I, -0.89454803265751744362901306471557966872 + 0.5341485461747
                    487: 3272670874609150394379949*I]~], [[Mod(1, y^3 - y - 1), Mod(1, y^3 - y - 1)*x
                    488: , Mod(1, y^3 - y - 1)*x^2, Mod(1, y^3 - y - 1)*x^3, Mod(1, y^3 - y - 1)*x^4]
                    489: , [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1,
                    490:  0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1]]], [M
                    491: od(1, y^3 - y - 1), 0, 0, 0, 0; 0, Mod(1, y^3 - y - 1), 0, 0, 0; 0, 0, Mod(1
                    492: , y^3 - y - 1), 0, 0; 0, 0, 0, Mod(1, y^3 - y - 1), 0; 0, 0, 0, 0, Mod(1, y^
1.2     ! noro      493: 3 - y - 1)], [], [y^3 - y - 1, [1, 1], -23, 1, [[1, 0.7548776662466927600495
        !           494: 0889635852869189, 1.3247179572447460259609088544780973407; 1, -0.87743883312
        !           495: 334638002475444817926434594 - 0.74486176661974423659317042860439236723*I, -0
        !           496: .66235897862237301298045442723904867036 + 0.56227951206230124389918214490937
        !           497: 306149*I], [1, 0.75487766624669276004950889635852869189, 1.32471795724474602
        !           498: 59609088544780973407; 1.4142135623730950488016887242096980785, -1.2408858979
        !           499: 558593537192653626096055786, -0.93671705072735084703311164961686101696; 0, -
        !           500: 1.0533936124468254335289038498031013275, 0.795183311803032710044767156296587
        !           501: 54002], 0, [3, -1, 0; -1, 1, 3; 0, 3, 2], [23, 16, 13; 0, 1, 0; 0, 0, 1], [-
        !           502: 7, 2, -3; 2, 6, -9; -3, -9, 2], [23, [10, 7, 1]~]], [1.324717957244746025960
        !           503: 9088544780973407, -0.66235897862237301298045442723904867036 + 0.562279512062
        !           504: 30124389918214490937306149*I], [1, y^2 - 1, y], [1, 0, 1; 0, 0, 1; 0, 1, 0],
        !           505:  [1, 0, 0, 0, 0, 1, 0, 1, 1; 0, 1, 0, 1, -1, 0, 0, 0, 1; 0, 0, 1, 0, 1, 0, 1
        !           506: , 0, 0]], [x^15 - 5*x^13 + 5*x^12 + 7*x^11 - 26*x^10 - 5*x^9 + 45*x^8 + 158*
        !           507: x^7 - 98*x^6 + 110*x^5 - 190*x^4 + 189*x^3 + 144*x^2 + 25*x + 1, Mod(3951653
        !           508: 6165538345/83718587879473471*x^14 - 6500512476832995/83718587879473471*x^13
        !           509: - 196215472046117185/83718587879473471*x^12 + 229902227480108910/83718587879
        !           510: 473471*x^11 + 237380704030959181/83718587879473471*x^10 - 106493198816077380
        !           511: 5/83718587879473471*x^9 - 20657086671714300/83718587879473471*x^8 + 17728852
        !           512: 05999206010/83718587879473471*x^7 + 5952033217241102348/83718587879473471*x^
        !           513: 6 - 4838840187320655696/83718587879473471*x^5 + 5180390720553188700/83718587
        !           514: 879473471*x^4 - 8374015687535120430/83718587879473471*x^3 + 8907744727915040
        !           515: 221/83718587879473471*x^2 + 4155976664123434381/83718587879473471*x + 318920
        !           516: 215718580450/83718587879473471, x^15 - 5*x^13 + 5*x^12 + 7*x^11 - 26*x^10 -
        !           517: 5*x^9 + 45*x^8 + 158*x^7 - 98*x^6 + 110*x^5 - 190*x^4 + 189*x^3 + 144*x^2 +
        !           518: 25*x + 1), -1, [1, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^10, x^11, x^
        !           519: 12, x^13, 1/83718587879473471*x^14 - 20528463024680133/83718587879473471*x^1
        !           520: 3 - 4742392948888610/83718587879473471*x^12 - 9983523646123358/8371858787947
        !           521: 3471*x^11 + 40898955597139011/83718587879473471*x^10 + 29412692423971937/837
        !           522: 18587879473471*x^9 - 5017479463612351/83718587879473471*x^8 + 41014993230075
        !           523: 066/83718587879473471*x^7 - 2712810874903165/83718587879473471*x^6 + 2015290
        !           524: 5879672878/83718587879473471*x^5 + 9591643151927789/83718587879473471*x^4 -
        !           525: 8471905745957397/83718587879473471*x^3 - 13395753879413605/83718587879473471
        !           526: *x^2 + 27623037732247492/83718587879473471*x + 26306699661480593/83718587879
        !           527: 473471], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -26306699661480593; 0, 1
        !           528: , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -27623037732247492; 0, 0, 1, 0, 0, 0,
        !           529: 0, 0, 0, 0, 0, 0, 0, 0, 13395753879413605; 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
        !           530: 0, 0, 0, 8471905745957397; 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -959164
        !           531: 3151927789; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -20152905879672878; 0,
        !           532:  0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2712810874903165; 0, 0, 0, 0, 0, 0,
        !           533: 0, 1, 0, 0, 0, 0, 0, 0, -41014993230075066; 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
        !           534:  0, 0, 0, 5017479463612351; 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -29412
        !           535: 692423971937; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -40898955597139011;
        !           536: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 9983523646123358; 0, 0, 0, 0, 0, 0
        !           537: , 0, 0, 0, 0, 0, 0, 1, 0, 4742392948888610; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        !           538:  0, 0, 1, 20528463024680133; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 83718
        !           539: 587879473471]]]
1.1       noro      540: ? bnfcertify(bnf)
                    541: 1
                    542: ? setrand(1);bnfclassunit(x^4-7,2,[0.2,0.2])
                    543:
                    544: [x^4 - 7]
                    545:
                    546: [[2, 1]]
                    547:
                    548: [[-87808, 1]]
                    549:
                    550: [[1, x, x^2, x^3]]
                    551:
                    552: [[2, [2], [[3, 1, 2, 1; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]]]]
                    553:
                    554: [14.229975145405511722395637833443108790]
                    555:
                    556: [1.121117107152756229]
                    557:
                    558: ? setrand(1);bnfclassunit(x^2-x-100000)
                    559:   ***   Warning: insufficient precision for fundamental units, not given.
                    560:
                    561: [x^2 - x - 100000]
                    562:
                    563: [[2, 0]]
                    564:
                    565: [[400001, 1]]
                    566:
1.2     ! noro      567: [[1, x - 1]]
1.1       noro      568:
1.2     ! noro      569: [[5, [5], [[2, 0; 0, 1]]]]
1.1       noro      570:
                    571: [129.82045011403975460991182396195022419]
                    572:
1.2     ! noro      573: [0.9876536979069047228]
1.1       noro      574:
                    575: [[2, -1]]
                    576:
                    577: [[;]]
                    578:
                    579: [0]
                    580:
                    581: ? setrand(1);bnfclassunit(x^2-x-100000,1)
                    582:
                    583: [x^2 - x - 100000]
                    584:
                    585: [[2, 0]]
                    586:
                    587: [[400001, 1]]
                    588:
1.2     ! noro      589: [[1, x - 1]]
1.1       noro      590:
1.2     ! noro      591: [[5, [5], [[2, 0; 0, 1]]]]
1.1       noro      592:
                    593: [129.82045011403975460991182396195022419]
                    594:
1.2     ! noro      595: [0.9876536979069047228]
1.1       noro      596:
                    597: [[2, -1]]
                    598:
                    599: [[379554884019013781006303254896369154068336082609238336*x + 119836165644250
                    600: 789990462835950022871665178127611316131167]]
                    601:
1.2     ! noro      602: [185]
1.1       noro      603:
                    604: ? setrand(1);bnfclassunit(x^4+24*x^2+585*x+1791,,[0.1,0.1])
                    605:
                    606: [x^4 + 24*x^2 + 585*x + 1791]
                    607:
                    608: [[0, 2]]
                    609:
                    610: [[18981, 3087]]
                    611:
1.2     ! noro      612: [[1, -10/1029*x^3 + 13/343*x^2 - 165/343*x - 1135/343, 17/1029*x^3 - 32/1029
        !           613: *x^2 + 109/343*x + 2444/343, -11/343*x^3 + 163/1029*x^2 - 373/343*x - 4260/3
        !           614: 43]]
1.1       noro      615:
1.2     ! noro      616: [[4, [4], [[7, 2, 4, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]]]]
1.1       noro      617:
                    618: [3.7941269688216589341408274220859400302]
                    619:
1.2     ! noro      620: [0.8826018286655581299]
1.1       noro      621:
1.2     ! noro      622: [[6, 10/1029*x^3 - 13/343*x^2 + 165/343*x + 1478/343]]
1.1       noro      623:
                    624: [[1/147*x^3 + 1/147*x^2 - 8/49*x - 9/49]]
                    625:
1.2     ! noro      626: [365]
1.1       noro      627:
                    628: ? setrand(1);bnfclgp(17)
                    629: [1, [], []]
                    630: ? setrand(1);bnfclgp(-31)
                    631: [3, [3], [Qfb(2, 1, 4)]]
                    632: ? setrand(1);bnfclgp(x^4+24*x^2+585*x+1791)
1.2     ! noro      633: [4, [4], [[7, 2, 0, 5; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]]]
        !           634: ? bnrconductor(bnf,[[25,14;0,1],[1,1]])
        !           635: [[5, 4; 0, 1], [1, 0]]
1.1       noro      636: ? bnrconductorofchar(bnr,[2])
1.2     ! noro      637: [[5, 4; 0, 1], [0, 0]]
        !           638: ? bnfisprincipal(bnf,[5,2;0,1],0)
1.1       noro      639: [1]~
1.2     ! noro      640: ? bnfisprincipal(bnf,[5,2;0,1])
        !           641: [[1]~, [7/3, 1/3]~, 187]
1.1       noro      642: ? bnfisunit(bnf,Mod(3405*x-27466,x^2-x-57))
                    643: [-4, Mod(1, 2)]~
                    644: ? \p19
                    645:    realprecision = 19 significant digits
                    646: ? bnfmake(sbnf)
1.2     ! noro      647: [Mat(2), Mat([1, 1, 0, 1, 1, 0, 1, 1]), [1.173637103435061715 + 3.1415926535
        !           648: 89793238*I, -4.562279014988837952 + 3.141592653589793238*I; -2.6335434327389
1.1       noro      649: 76049 + 3.141592653589793238*I, 1.420330600779487357 + 3.141592653589793238*
                    650: I; 1.459906329303914334, 3.141948414209350543], [1.246346989334819161 + 3.14
1.2     ! noro      651: 1592653589793238*I, 0.5404006376129469727 + 3.141592653589793238*I, -0.69263
        !           652: 91142471042844 + 3.141592653589793238*I, -1.990056445584799713 + 3.141592653
        !           653: 589793238*I, -0.8305625946607188643 + 3.141592653589793238*I, 0.E-57, 0.0043
        !           654: 75616572659815433 + 3.141592653589793238*I, -1.977791147836553953, 0.3677262
        !           655: 014027817708 + 3.141592653589793238*I; 0.6716827432867392938 + 3.14159265358
        !           656: 9793238*I, -0.8333219883742404170 + 3.141592653589793238*I, -0.2461086674077
        !           657: 943076, 0.5379005671092853269, -1.552661549868775853, 0.E-57, -0.87383180430
        !           658: 71131263, 0.5774919091398324092, 0.9729063188316092380; -1.91802973262155845
        !           659: 5, 0.2929213507612934444, 0.9387477816548985923, 1.452155878475514386, 2.383
        !           660: 224144529494717, 0.E-57, 0.8694561877344533111, 1.400299238696721544, -1.340
        !           661: 632520234391008], [[3, [-1, 1, 0]~, 1, 1, [1, 1, 1]~], [5, [-1, 1, 0]~, 1, 1
        !           662: , [0, 1, 1]~], [5, [2, 1, 0]~, 1, 1, [1, -2, 1]~], [5, [3, 1, 0]~, 1, 1, [2,
        !           663:  2, 1]~], [13, [19, 1, 0]~, 1, 1, [-2, -6, 1]~], [3, [10, 1, 1]~, 1, 2, [-1,
        !           664:  1, 0]~], [11, [1, 1, 0]~, 1, 1, [-3, -1, 1]~], [19, [-6, 1, 0]~, 1, 1, [6,
        !           665: 6, 1]~], [23, [-10, 1, 0]~, 1, 1, [-7, 10, 1]~]]~, 0, [x^3 - x^2 - 14*x - 1,
        !           666:  [3, 0], 10889, 1, [[1, -3.233732695981516672, 4.690759845041404811; 1, -0.0
        !           667: 7182350902743636344, -8.923017874523549402; 1, 4.305556205008953036, 5.23225
        !           668: 8029482144592], [1, -3.233732695981516672, 4.690759845041404811; 1, -0.07182
        !           669: 350902743636344, -8.923017874523549402; 1, 4.305556205008953036, 5.232258029
        !           670: 482144592], 0, [3, 1, 1; 1, 29, 8; 1, 8, 129], [10889, 5698, 8994; 0, 1, 0;
        !           671: 0, 0, 1], [3677, -121, -21; -121, 386, -23; -21, -23, 86], [10889, [1899, 51
        !           672: 91, 1]~]], [-3.233732695981516672, -0.07182350902743636344, 4.30555620500895
        !           673: 3036], [1, x, x^2 - x - 9], [1, 0, 9; 0, 1, 1; 0, 0, 1], [1, 0, 0, 0, 9, 1,
        !           674: 0, 1, 44; 0, 1, 0, 1, 1, 5, 0, 5, 1; 0, 0, 1, 0, 1, 0, 1, 0, -4]], [[2, [2],
        !           675:  [[3, 2, 0; 0, 1, 0; 0, 0, 1]]], 10.34800724602768011, 1.000000000000000000,
        !           676:  [2, -1], [x, x^2 + 2*x - 4], 1000], [Mat(1), [[0.E-57, 0.E-57, 0.E-57]], [[
        !           677: 1.246346989334819161 + 3.141592653589793238*I, 0.6716827432867392938 + 3.141
        !           678: 592653589793238*I, -1.918029732621558455]]], [-4, -1, 2, 3, 10, 3, 1, 7, 2;
        !           679: 1, 1, 1, 1, 5, 0, 1, 2, 1; 0, 0, 0, 0, 1, 0, 0, 0, -1]]
1.1       noro      680: ? \p38
                    681:    realprecision = 38 significant digits
                    682: ? bnfnarrow(bnf)
1.2     ! noro      683: [3, [3], [[3, 0; 0, 1]]]
1.1       noro      684: ? bnfreg(x^2-x-57)
                    685: 2.7124653051843439746808795106061300699
                    686: ? bnfsignunit(bnf)
                    687:
                    688: [-1]
                    689:
                    690: [1]
                    691:
                    692: ? bnfunit(bnf)
1.2     ! noro      693: [[x + 7], 187]
        !           694: ? bnrclass(bnf,[[5,4;0,1],[1,0]])
        !           695: [12, [12], [[3, 0; 0, 1]]]
        !           696: ? bnr2=bnrclass(bnf,[[25,14;0,1],[1,1]],2)
1.1       noro      697: [[Mat(3), Mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.7124653051843439746808795106
1.2     ! noro      698: 061300698 + 3.1415926535897932384626433832795028842*I; 2.7124653051843439746
        !           699: 808795106061300699], [1.7903417566977293763292119206302198761, 1.28976195306
        !           700: 52735025030086072395031017 + 3.1415926535897932384626433832795028842*I, 0.70
        !           701: 148550268542821846861610071436900868, 0.E-57, 0.5005798036324558738262033133
        !           702: 9071677436 + 3.1415926535897932384626433832795028842*I, 1.088856254012301157
        !           703: 8605958199158508674, 1.7241634548149836441438434283070556826 + 3.14159265358
        !           704: 97932384626433832795028842*I, -0.34328764427702709438988786673341921876 + 3.
        !           705: 1415926535897932384626433832795028842*I, 2.133629400974756470719099787363639
        !           706: 0948 + 3.1415926535897932384626433832795028842*I, 0.066178301882745732185368
        !           707: 492323164193433 + 3.1415926535897932384626433832795028842*I; -1.790341756697
        !           708: 7293763292119206302198760, -1.2897619530652735025030086072395031017, -0.7014
        !           709: 8550268542821846861610071436900868, 0.E-57, -0.50057980363245587382620331339
        !           710: 071677436, -1.0888562540123011578605958199158508674, -1.72416345481498364414
        !           711: 38434283070556826, 0.34328764427702709438988786673341921876, -2.133629400974
        !           712: 7564707190997873636390948, -0.066178301882745732185368492323164193433], [[3,
        !           713:  [0, 1]~, 1, 1, [1, 1]~], [5, [-1, 1]~, 1, 1, [2, 1]~], [11, [-1, 1]~, 1, 1,
        !           714:  [2, 1]~], [3, [1, 1]~, 1, 1, [0, 1]~], [5, [2, 1]~, 1, 1, [-1, 1]~], [11, [
        !           715: 2, 1]~, 1, 1, [-1, 1]~], [19, [1, 1]~, 1, 1, [0, 1]~], [17, [3, 1]~, 1, 1, [
        !           716: -2, 1]~], [17, [-2, 1]~, 1, 1, [3, 1]~], [19, [0, 1]~, 1, 1, [1, 1]~]], 0, [
        !           717: x^2 - x - 57, [2, 0], 229, 1, [[1, -8.0663729752107779635959310246705326058;
        !           718:  1, 7.0663729752107779635959310246705326058], [1, -8.06637297521077796359593
        !           719: 10246705326058; 1, 7.0663729752107779635959310246705326058], 0, [2, -1; -1,
        !           720: 115], [229, 115; 0, 1], [115, 1; 1, 2], [229, [115, 1]~]], [-7.0663729752107
        !           721: 779635959310246705326058, 8.0663729752107779635959310246705326058], [1, x -
        !           722: 1], [1, 1; 0, 1], [1, 0, 0, 57; 0, 1, 1, -1]], [[3, [3], [[3, 0; 0, 1]]], 2.
        !           723: 7124653051843439746808795106061300699, 0.8814422512654579364, [2, -1], [x +
        !           724: 7], 187], [Mat(1), [[0, 0]], [[1.7903417566977293763292119206302198761, -1.7
        !           725: 903417566977293763292119206302198760]]], [0, [Mat([[6, 1]~, 1])]]], [[[25, 1
        !           726: 4; 0, 1], [1, 1]], [80, [20, 2, 2], [[2, 0]~, [4, 2]~, [-2, -2]~]], Mat([[5,
        !           727:  [-1, 1]~, 1, 1, [2, 1]~], 2]), [[[[4], [[2, 0]~], [[2, 0]~], [[Mod(0, 2), M
        !           728: od(0, 2)]~], 1], [[5], [[6, 0]~], [[6, 0]~], [[Mod(0, 2), Mod(0, 2)]~], Mat(
        !           729: [1/5, -14/5])]], [[2, 2], [[4, 2]~, [-2, -2]~], [1, 0; 0, 1]]], [1, -12, 0,
        !           730: 0; 0, 0, 1, 0; 0, 0, 0, 1]], [1], Mat([1, -3, -6, 0]), [12, [12], [[3, 0; 0,
        !           731:  1]]], [[1, -18, 9; -1/2, 10, -5], [-2, 0; 0, -10]]]
        !           732: ? bnrclassno(bnf,[[5,4;0,1],[1,0]])
1.1       noro      733: 12
                    734: ? lu=ideallist(bnf,55,3);
                    735: ? bnrclassnolist(bnf,lu)
                    736: [[3], [], [3, 3], [3], [6, 6], [], [], [], [3, 3, 3], [], [3, 3], [3, 3], []
                    737: , [], [12, 6, 6, 12], [3], [3, 3], [], [9, 9], [6, 6], [], [], [], [], [6, 1
                    738: 2, 6], [], [3, 3, 3, 3], [], [], [], [], [], [3, 6, 6, 3], [], [], [9, 3, 9]
                    739: , [6, 6], [], [], [], [], [], [3, 3], [3, 3], [12, 12, 6, 6, 12, 12], [], []
                    740: , [6, 6], [9], [], [3, 3, 3, 3], [], [3, 3], [], [6, 12, 12, 6]]
                    741: ? bnrdisc(bnr,Mat(6))
                    742: [12, 12, 18026977100265125]
                    743: ? bnrdisc(bnr)
                    744: [24, 12, 40621487921685401825918161408203125]
                    745: ? bnrdisc(bnr2,,,2)
                    746: 0
                    747: ? bnrdisc(bnr,Mat(6),,1)
1.2     ! noro      748: [6, 2, [125, 14; 0, 1]]
1.1       noro      749: ? bnrdisc(bnr,,,1)
1.2     ! noro      750: [12, 1, [1953125, 1160889; 0, 1]]
1.1       noro      751: ? bnrdisc(bnr2,,,3)
                    752: 0
                    753: ? bnrdisclist(bnf,lu)
                    754: [[[6, 6, Mat([229, 3])]], [], [[], []], [[]], [[12, 12, [5, 3; 229, 6]], [12
                    755: , 12, [5, 3; 229, 6]]], [], [], [], [[], [], []], [], [[], []], [[], []], []
                    756: , [], [[24, 24, [3, 6; 5, 9; 229, 12]], [], [], [24, 24, [3, 6; 5, 9; 229, 1
                    757: 2]]], [[]], [[], []], [], [[18, 18, [19, 6; 229, 9]], [18, 18, [19, 6; 229,
                    758: 9]]], [[], []], [], [], [], [], [[], [24, 24, [5, 12; 229, 12]], []], [], [[
                    759: ], [], [], []], [], [], [], [], [], [[], [12, 12, [3, 3; 11, 3; 229, 6]], [1
                    760: 2, 12, [3, 3; 11, 3; 229, 6]], []], [], [], [[18, 18, [2, 12; 3, 12; 229, 9]
                    761: ], [], [18, 18, [2, 12; 3, 12; 229, 9]]], [[12, 12, [37, 3; 229, 6]], [12, 1
                    762: 2, [37, 3; 229, 6]]], [], [], [], [], [], [[], []], [[], []], [[], [], [], [
                    763: ], [], []], [], [], [[12, 12, [2, 12; 3, 3; 229, 6]], [12, 12, [2, 12; 3, 3;
                    764:  229, 6]]], [[18, 18, [7, 12; 229, 9]]], [], [[], [], [], []], [], [[], []],
                    765:  [], [[], [24, 24, [5, 9; 11, 6; 229, 12]], [24, 24, [5, 9; 11, 6; 229, 12]]
                    766: , []]]
                    767: ? bnrdisclist(bnf,20,,1)
                    768: [[[[matrix(0,2), [[6, 6, Mat([229, 3])], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]],
                    769:  [], [[Mat([12, 1]), [[0, 0, 0], [0, 0, 0], [0, 0, 0], [12, 0, [3, 3; 229, 6
                    770: ]]]], [Mat([13, 1]), [[0, 0, 0], [0, 0, 0], [12, 6, [-1, 1; 3, 3; 229, 6]],
                    771: [0, 0, 0]]]], [[Mat([10, 1]), [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]]
                    772: , [[Mat([20, 1]), [[12, 12, [5, 3; 229, 6]], [0, 0, 0], [0, 0, 0], [24, 0, [
                    773: 5, 9; 229, 12]]]], [Mat([21, 1]), [[12, 12, [5, 3; 229, 6]], [0, 0, 0], [24,
                    774:  12, [5, 9; 229, 12]], [0, 0, 0]]]], [], [], [], [[Mat([12, 2]), [[0, 0, 0],
                    775:  [0, 0, 0], [0, 0, 0], [0, 0, 0]]], [[12, 1; 13, 1], [[0, 0, 0], [12, 6, [-1
                    776: , 1; 3, 6; 229, 6]], [0, 0, 0], [24, 0, [3, 12; 229, 12]]]], [Mat([13, 2]),
                    777: [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]], [], [[Mat([44, 1]), [[0, 0,
                    778: 0], [0, 0, 0], [12, 6, [-1, 1; 11, 3; 229, 6]], [0, 0, 0]]], [Mat([45, 1]),
                    779: [[0, 0, 0], [0, 0, 0], [0, 0, 0], [12, 0, [11, 3; 229, 6]]]]], [[[10, 1; 12,
                    780:  1], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]], [[10, 1; 13, 1], [[0, 0,
                    781:  0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]], [], [], [[[12, 1; 20, 1], [[24, 24,
                    782:  [3, 6; 5, 9; 229, 12]], [0, 0, 0], [0, 0, 0], [48, 0, [3, 12; 5, 18; 229, 2
                    783: 4]]]], [[13, 1; 20, 1], [[0, 0, 0], [24, 12, [3, 6; 5, 9; 229, 12]], [24, 12
                    784: , [3, 6; 5, 6; 229, 12]], [48, 0, [3, 12; 5, 18; 229, 24]]]], [[12, 1; 21, 1
                    785: ], [[0, 0, 0], [24, 12, [3, 6; 5, 9; 229, 12]], [0, 0, 0], [48, 0, [3, 12; 5
                    786: , 18; 229, 24]]]], [[13, 1; 21, 1], [[24, 24, [3, 6; 5, 9; 229, 12]], [0, 0,
                    787:  0], [48, 24, [3, 12; 5, 18; 229, 24]], [0, 0, 0]]]], [[Mat([10, 2]), [[0, 0
                    788: , 0], [12, 6, [-1, 1; 2, 12; 229, 6]], [12, 6, [-1, 1; 2, 12; 229, 6]], [24,
                    789:  0, [2, 36; 229, 12]]]]], [[Mat([68, 1]), [[0, 0, 0], [12, 6, [-1, 1; 17, 3;
                    790:  229, 6]], [0, 0, 0], [0, 0, 0]]], [Mat([69, 1]), [[0, 0, 0], [12, 6, [-1, 1
                    791: ; 17, 3; 229, 6]], [0, 0, 0], [0, 0, 0]]]], [], [[Mat([76, 1]), [[18, 18, [1
                    792: 9, 6; 229, 9]], [0, 0, 0], [0, 0, 0], [36, 0, [19, 15; 229, 18]]]], [Mat([77
                    793: , 1]), [[18, 18, [19, 6; 229, 9]], [0, 0, 0], [36, 18, [-1, 1; 19, 15; 229,
                    794: 18]], [0, 0, 0]]]], [[[10, 1; 20, 1], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0,
                    795: 0, 0]]], [[10, 1; 21, 1], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]]]]
                    796: ? bnrisprincipal(bnr,idealprimedec(bnf,7)[1])
1.2     ! noro      797: [[9]~, [112595/19683, 13958/19683]~, 256]
1.1       noro      798: ? dirzetak(nf4,30)
                    799: [1, 2, 0, 3, 1, 0, 0, 4, 0, 2, 1, 0, 0, 0, 0, 5, 1, 0, 0, 3, 0, 2, 0, 0, 2,
                    800: 0, 1, 0, 1, 0]
                    801: ? factornf(x^3+x^2-2*x-1,t^3+t^2-2*t-1)
                    802:
                    803: [Mod(1, t^3 + t^2 - 2*t - 1)*x + Mod(-t, t^3 + t^2 - 2*t - 1) 1]
                    804:
                    805: [Mod(1, t^3 + t^2 - 2*t - 1)*x + Mod(-t^2 + 2, t^3 + t^2 - 2*t - 1) 1]
                    806:
                    807: [Mod(1, t^3 + t^2 - 2*t - 1)*x + Mod(t^2 + t - 1, t^3 + t^2 - 2*t - 1) 1]
                    808:
                    809: ? vp=idealprimedec(nf,3)[1]
1.2     ! noro      810: [3, [1, 0, 1, 0, 0]~, 1, 1, [1, -1, -1, -1, 0]~]
1.1       noro      811: ? idx=idealmul(nf,matid(5),vp)
                    812:
1.2     ! noro      813: [3 2 1 0 1]
1.1       noro      814:
                    815: [0 1 0 0 0]
                    816:
                    817: [0 0 1 0 0]
                    818:
                    819: [0 0 0 1 0]
                    820:
                    821: [0 0 0 0 1]
                    822:
                    823: ? idealinv(nf,idx)
                    824:
1.2     ! noro      825: [1 0 0 2/3 0]
1.1       noro      826:
1.2     ! noro      827: [0 1 0 1/3 0]
1.1       noro      828:
1.2     ! noro      829: [0 0 1 1/3 0]
1.1       noro      830:
1.2     ! noro      831: [0 0 0 1/3 0]
1.1       noro      832:
                    833: [0 0 0 0 1]
                    834:
                    835: ? idy=idealred(nf,idx,[1,5,6])
                    836:
1.2     ! noro      837: [5 0 0 0 2]
1.1       noro      838:
1.2     ! noro      839: [0 5 0 0 2]
1.1       noro      840:
1.2     ! noro      841: [0 0 5 0 1]
1.1       noro      842:
1.2     ! noro      843: [0 0 0 5 2]
1.1       noro      844:
1.2     ! noro      845: [0 0 0 0 1]
1.1       noro      846:
                    847: ? idx2=idealmul(nf,idx,idx)
                    848:
1.2     ! noro      849: [9 5 7 0 4]
1.1       noro      850:
                    851: [0 1 0 0 0]
                    852:
                    853: [0 0 1 0 0]
                    854:
                    855: [0 0 0 1 0]
                    856:
                    857: [0 0 0 0 1]
                    858:
                    859: ? idt=idealmul(nf,idx,idx,1)
                    860:
1.2     ! noro      861: [2 0 0 0 0]
1.1       noro      862:
1.2     ! noro      863: [0 2 0 0 0]
1.1       noro      864:
                    865: [0 0 2 0 0]
                    866:
                    867: [0 0 0 2 1]
                    868:
                    869: [0 0 0 0 1]
                    870:
                    871: ? idz=idealintersect(nf,idx,idy)
                    872:
1.2     ! noro      873: [15 10 5 0 12]
1.1       noro      874:
1.2     ! noro      875: [0 5 0 0 2]
1.1       noro      876:
1.2     ! noro      877: [0 0 5 0 1]
1.1       noro      878:
1.2     ! noro      879: [0 0 0 5 2]
1.1       noro      880:
1.2     ! noro      881: [0 0 0 0 1]
1.1       noro      882:
                    883: ? aid=[idx,idy,idz,matid(5),idx]
1.2     ! noro      884: [[3, 2, 1, 0, 1; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]
        !           885: , [5, 0, 0, 0, 2; 0, 5, 0, 0, 2; 0, 0, 5, 0, 1; 0, 0, 0, 5, 2; 0, 0, 0, 0, 1
        !           886: ], [15, 10, 5, 0, 12; 0, 5, 0, 0, 2; 0, 0, 5, 0, 1; 0, 0, 0, 5, 2; 0, 0, 0,
        !           887: 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0,
        !           888:  0, 1], [3, 2, 1, 0, 1; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0
        !           889: , 0, 1]]
1.1       noro      890: ? bid=idealstar(nf2,54,1)
                    891: [[[54, 0, 0; 0, 54, 0; 0, 0, 54], [0]], [132678, [1638, 9, 9]], [[2, [2, 0,
                    892: 0]~, 1, 3, [1, 0, 0]~], 1; [3, [3, 0, 0]~, 1, 3, [1, 0, 0]~], 3], [[[[7], [[
1.2     ! noro      893: 1, 1, 0]~], [[1, -27, 0]~], [[]~], 1]], [[[26], [[2, 1, 0]~], [[-25, -26, 0]
1.1       noro      894: ~], [[]~], 1], [[3, 3, 3], [[1, 3, 0]~, [1, 0, 3]~, [4, 0, 0]~], [[1, -24, 0
                    895: ]~, [1, 0, -24]~, [-23, 0, 0]~], [[]~, []~, []~], [0, 1/3, 0; 0, 0, 1/3; 1/3
                    896: , 0, 0]], [[3, 3, 3], [[1, 9, 0]~, [1, 0, 9]~, [10, 0, 0]~], [[1, -18, 0]~,
                    897: [1, 0, -18]~, [-17, 0, 0]~], [[]~, []~, []~], [0, 1/9, 0; 0, 0, 1/9; 1/9, 0,
1.2     ! noro      898:  0]]], [[], [], [;]]], [2106, -77, 10556, 0, -4368, 12012, 0, -13104; 0, 0,
        !           899: 0, 1, -2, 0, -6, -6; -27, 1, -136, 0, 56, -156, 0, 168]]
1.1       noro      900: ? vaid=[idx,idy,matid(5)]
1.2     ! noro      901: [[3, 2, 1, 0, 1; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]
        !           902: , [5, 0, 0, 0, 2; 0, 5, 0, 0, 2; 0, 0, 5, 0, 1; 0, 0, 0, 5, 2; 0, 0, 0, 0, 1
1.1       noro      903: ], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0,
                    904: 1]]
                    905: ? haid=[matid(5),matid(5),matid(5)]
                    906: [[1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]
                    907: , [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1
                    908: ], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0,
                    909: 1]]
                    910: ? idealadd(nf,idx,idy)
                    911:
                    912: [1 0 0 0 0]
                    913:
                    914: [0 1 0 0 0]
                    915:
                    916: [0 0 1 0 0]
                    917:
                    918: [0 0 0 1 0]
                    919:
                    920: [0 0 0 0 1]
                    921:
                    922: ? idealaddtoone(nf,idx,idy)
1.2     ! noro      923: [[3, 2, 1, 2, 1]~, [-2, -2, -1, -2, -1]~]
1.1       noro      924: ? idealaddtoone(nf,[idy,idx])
                    925: [[-5, 0, 0, 0, 0]~, [6, 0, 0, 0, 0]~]
                    926: ? idealappr(nf,idy)
1.2     ! noro      927: [-2, -2, -1, -2, -1]~
1.1       noro      928: ? idealappr(nf,idealfactor(nf,idy),1)
1.2     ! noro      929: [-2, -2, -1, -2, -1]~
1.1       noro      930: ? idealcoprime(nf,idx,idx)
1.2     ! noro      931: [1/3, -1/3, -1/3, -1/3, 0]~
1.1       noro      932: ? idealdiv(nf,idy,idt)
                    933:
1.2     ! noro      934: [5 0 5/2 0 1]
1.1       noro      935:
1.2     ! noro      936: [0 5/2 0 0 1]
1.1       noro      937:
1.2     ! noro      938: [0 0 5/2 0 1/2]
1.1       noro      939:
1.2     ! noro      940: [0 0 0 5/2 1]
1.1       noro      941:
1.2     ! noro      942: [0 0 0 0 1/2]
1.1       noro      943:
                    944: ? idealdiv(nf,idx2,idx,1)
                    945:
1.2     ! noro      946: [3 2 1 0 1]
1.1       noro      947:
                    948: [0 1 0 0 0]
                    949:
                    950: [0 0 1 0 0]
                    951:
                    952: [0 0 0 1 0]
                    953:
                    954: [0 0 0 0 1]
                    955:
                    956: ? idf=idealfactor(nf,idz)
                    957:
1.2     ! noro      958: [[3, [1, 0, 1, 0, 0]~, 1, 1, [1, -1, -1, -1, 0]~] 1]
1.1       noro      959:
1.2     ! noro      960: [[5, [-1, 0, 0, 0, 1]~, 1, 1, [2, 0, 3, 0, 1]~] 1]
1.1       noro      961:
1.2     ! noro      962: [[5, [2, 0, 0, 0, 1]~, 4, 1, [2, 2, 1, 2, 1]~] 3]
1.1       noro      963:
                    964: ? idealhnf(nf,vp)
                    965:
1.2     ! noro      966: [3 2 1 0 1]
1.1       noro      967:
                    968: [0 1 0 0 0]
                    969:
                    970: [0 0 1 0 0]
                    971:
                    972: [0 0 0 1 0]
                    973:
                    974: [0 0 0 0 1]
                    975:
                    976: ? idealhnf(nf,vp[2],3)
                    977:
1.2     ! noro      978: [3 2 1 0 1]
1.1       noro      979:
                    980: [0 1 0 0 0]
                    981:
                    982: [0 0 1 0 0]
                    983:
                    984: [0 0 0 1 0]
                    985:
                    986: [0 0 0 0 1]
                    987:
                    988: ? ideallist(bnf,20)
1.2     ! noro      989: [[[1, 0; 0, 1]], [], [[3, 0; 0, 1], [3, 1; 0, 1]], [[2, 0; 0, 2]], [[5, 4; 0
        !           990: , 1], [5, 2; 0, 1]], [], [], [], [[9, 6; 0, 1], [3, 0; 0, 3], [9, 4; 0, 1]],
        !           991:  [], [[11, 10; 0, 1], [11, 2; 0, 1]], [[6, 0; 0, 2], [6, 2; 0, 2]], [], [],
        !           992: [[15, 9; 0, 1], [15, 4; 0, 1], [15, 12; 0, 1], [15, 7; 0, 1]], [[4, 0; 0, 4]
        !           993: ], [[17, 15; 0, 1], [17, 3; 0, 1]], [], [[19, 0; 0, 1], [19, 1; 0, 1]], [[10
        !           994: , 8; 0, 2], [10, 4; 0, 2]]]
1.1       noro      995: ? ideallog(nf2,w,bid)
1.2     ! noro      996: [486, 3, 7]~
1.1       noro      997: ? idealmin(nf,idx,[1,2,3])
1.2     ! noro      998: [[-2; 1; 1; 0; 1], [2.0885812311199768913287869744681966008 + 3.141592653589
1.1       noro      999: 7932384626433832795028842*I, 1.5921096812520196555597562531657929785 + 4.244
                   1000: 7196639216499665715751642189271112*I, -0.79031915447583185468082063233076160
1.2     ! noro     1001: 207 + 2.5437460822678889883600220330800078854*I]]
1.1       noro     1002: ? idealnorm(nf,idt)
                   1003: 16
                   1004: ? idp=idealpow(nf,idx,7)
                   1005:
1.2     ! noro     1006: [2187 1436 1807 630 1822]
1.1       noro     1007:
                   1008: [0 1 0 0 0]
                   1009:
                   1010: [0 0 1 0 0]
                   1011:
                   1012: [0 0 0 1 0]
                   1013:
                   1014: [0 0 0 0 1]
                   1015:
                   1016: ? idealpow(nf,idx,7,1)
                   1017:
1.2     ! noro     1018: [2 0 0 0 0]
1.1       noro     1019:
1.2     ! noro     1020: [0 2 0 0 0]
1.1       noro     1021:
1.2     ! noro     1022: [0 0 2 0 0]
1.1       noro     1023:
1.2     ! noro     1024: [0 0 0 2 1]
1.1       noro     1025:
1.2     ! noro     1026: [0 0 0 0 1]
1.1       noro     1027:
                   1028: ? idealprimedec(nf,2)
1.2     ! noro     1029: [[2, [3, 0, 1, 0, 0]~, 1, 1, [0, 0, 0, 1, 1]~], [2, [12, -4, -2, 11, 3]~, 1,
        !          1030:  4, [1, 0, 1, 0, 0]~]]
1.1       noro     1031: ? idealprimedec(nf,3)
1.2     ! noro     1032: [[3, [1, 0, 1, 0, 0]~, 1, 1, [1, -1, -1, -1, 0]~], [3, [-1, -1, -1, 0, 0]~,
        !          1033: 2, 2, [0, 2, 2, 1, 0]~]]
1.1       noro     1034: ? idealprimedec(nf,11)
                   1035: [[11, [11, 0, 0, 0, 0]~, 1, 5, [1, 0, 0, 0, 0]~]]
                   1036: ? idealprincipal(nf,Mod(x^3+5,nfpol))
                   1037:
                   1038: [6]
                   1039:
1.2     ! noro     1040: [1]
        !          1041:
        !          1042: [3]
1.1       noro     1043:
                   1044: [1]
                   1045:
                   1046: [3]
                   1047:
                   1048: ? idealtwoelt(nf,idy)
1.2     ! noro     1049: [5, [2, 2, 1, 2, 1]~]
1.1       noro     1050: ? idealtwoelt(nf,idy,10)
1.2     ! noro     1051: [-2, -2, -1, -2, -1]~
1.1       noro     1052: ? idealstar(nf2,54)
                   1053: [[[54, 0, 0; 0, 54, 0; 0, 0, 54], [0]], [132678, [1638, 9, 9]], [[2, [2, 0,
                   1054: 0]~, 1, 3, [1, 0, 0]~], 1; [3, [3, 0, 0]~, 1, 3, [1, 0, 0]~], 3], [[[[7], [[
1.2     ! noro     1055: 1, 0, 1]~], [[1, 0, -27]~], [[]~], 1]], [[[26], [[2, 2, 1]~], [[-25, 2, -26]
1.1       noro     1056: ~], [[]~], 1], [[3, 3, 3], [[1, 3, 0]~, [1, 0, 3]~, [4, 0, 0]~], [[1, -24, 0
                   1057: ]~, [1, 0, -24]~, [-23, 0, 0]~], [[]~, []~, []~], [0, 1/3, 0; 0, 0, 1/3; 1/3
                   1058: , 0, 0]], [[3, 3, 3], [[1, 9, 0]~, [1, 0, 9]~, [10, 0, 0]~], [[1, -18, 0]~,
                   1059: [1, 0, -18]~, [-17, 0, 0]~], [[]~, []~, []~], [0, 1/9, 0; 0, 0, 1/9; 1/9, 0,
1.2     ! noro     1060:  0]]], [[], [], [;]]], [468, 469, 0, 0, -85358, 0, 0, -36582; 0, 0, 1, 0, -5
        !          1061: , -6, 0, -6; 0, 0, 0, 1, -8, 0, -6, -6]]
1.1       noro     1062: ? idealval(nf,idp,vp)
                   1063: 7
                   1064: ? ideleprincipal(nf,Mod(x^3+5,nfpol))
1.2     ! noro     1065: [[6; 1; 3; 1; 3], [2.2324480827796254080981385584384939684 + 3.1415926535897
        !          1066: 932384626433832795028841*I, 5.0387659675158716386435353106610489968 + 1.5851
1.1       noro     1067: 760343512250049897278861965702423*I, 4.2664040272651028743625910797589683173
1.2     ! noro     1068:  - 0.0083630478144368246110910258645462996225*I]]
1.1       noro     1069: ? ba=nfalgtobasis(nf,Mod(x^3+5,nfpol))
1.2     ! noro     1070: [6, 1, 3, 1, 3]~
1.1       noro     1071: ? bb=nfalgtobasis(nf,Mod(x^3+x,nfpol))
1.2     ! noro     1072: [1, 1, 4, 1, 3]~
1.1       noro     1073: ? bc=matalgtobasis(nf,[Mod(x^2+x,nfpol);Mod(x^2+1,nfpol)])
                   1074:
1.2     ! noro     1075: [[3, -2, 1, 1, 0]~]
1.1       noro     1076:
1.2     ! noro     1077: [[4, -2, 0, 1, 0]~]
1.1       noro     1078:
                   1079: ? matbasistoalg(nf,bc)
                   1080:
                   1081: [Mod(x^2 + x, x^5 - 5*x^3 + 5*x + 25)]
                   1082:
                   1083: [Mod(x^2 + 1, x^5 - 5*x^3 + 5*x + 25)]
                   1084:
                   1085: ? nfbasis(x^3+4*x+5)
                   1086: [1, x, 1/7*x^2 - 1/7*x - 2/7]
                   1087: ? nfbasis(x^3+4*x+5,2)
                   1088: [1, x, 1/7*x^2 - 1/7*x - 2/7]
                   1089: ? nfbasis(x^3+4*x+12,1)
                   1090: [1, x, 1/2*x^2]
                   1091: ? nfbasistoalg(nf,ba)
                   1092: Mod(x^3 + 5, x^5 - 5*x^3 + 5*x + 25)
                   1093: ? nfbasis(p2,0,fa)
                   1094: [1, x, x^2, 1/11699*x^3 + 1847/11699*x^2 - 132/11699*x - 2641/11699, 1/13962
                   1095: 3738889203638909659*x^4 - 1552451622081122020/139623738889203638909659*x^3 +
                   1096:  418509858130821123141/139623738889203638909659*x^2 - 6810913798507599407313
                   1097: 4/139623738889203638909659*x - 13185339461968406/58346808996920447]
                   1098: ? da=nfdetint(nf,[a,aid])
                   1099:
1.2     ! noro     1100: [90 70 35 0 65]
1.1       noro     1101:
                   1102: [0 5 0 0 0]
                   1103:
1.2     ! noro     1104: [0 0 5 0 0]
1.1       noro     1105:
1.2     ! noro     1106: [0 0 0 5 0]
1.1       noro     1107:
                   1108: [0 0 0 0 5]
                   1109:
                   1110: ? nfdisc(x^3+4*x+12)
                   1111: -1036
                   1112: ? nfdisc(x^3+4*x+12,1)
                   1113: -1036
                   1114: ? nfdisc(p2,0,fa)
                   1115: 136866601
                   1116: ? nfeltdiv(nf,ba,bb)
1.2     ! noro     1117: [584/373, 66/373, -32/373, -105/373, 120/373]~
1.1       noro     1118: ? nfeltdiveuc(nf,ba,bb)
1.2     ! noro     1119: [2, 0, 0, 0, 0]~
1.1       noro     1120: ? nfeltdivrem(nf,ba,bb)
1.2     ! noro     1121: [[2, 0, 0, 0, 0]~, [4, -1, -5, -1, -3]~]
1.1       noro     1122: ? nfeltmod(nf,ba,bb)
1.2     ! noro     1123: [4, -1, -5, -1, -3]~
1.1       noro     1124: ? nfeltmul(nf,ba,bb)
1.2     ! noro     1125: [50, -15, -35, 60, 15]~
1.1       noro     1126: ? nfeltpow(nf,bb,5)
1.2     ! noro     1127: [-291920, 136855, 230560, -178520, 74190]~
1.1       noro     1128: ? nfeltreduce(nf,ba,idx)
                   1129: [1, 0, 0, 0, 0]~
                   1130: ? nfeltval(nf,ba,vp)
                   1131: 0
                   1132: ? nffactor(nf2,x^3+x)
                   1133:
1.2     ! noro     1134: [x 1]
1.1       noro     1135:
1.2     ! noro     1136: [x^2 + 1 1]
1.1       noro     1137:
                   1138: ? aut=nfgaloisconj(nf3)
1.2     ! noro     1139: [-x, x, -1/12*x^4 - 1/2*x, -1/12*x^4 + 1/2*x, 1/12*x^4 - 1/2*x, 1/12*x^4 + 1
        !          1140: /2*x]~
1.1       noro     1141: ? nfgaloisapply(nf3,aut[5],Mod(x^5,x^6+108))
1.2     ! noro     1142: Mod(-1/2*x^5 + 9*x^2, x^6 + 108)
1.1       noro     1143: ? nfhilbert(nf,3,5)
                   1144: -1
                   1145: ? nfhilbert(nf,3,5,idf[1,1])
                   1146: -1
                   1147: ? nfhnf(nf,[a,aid])
1.2     ! noro     1148: [[[1, 0, 0, 0, 0]~, [-2, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [
        !          1149: 1, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [1, 0
        !          1150: , 0, 0, 0]~], [[10, 4, 5, 6, 7; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
        !          1151:  0, 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0
        !          1152: ; 0, 0, 0, 0, 1], [3, 2, 1, 0, 1; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1,
        !          1153: 0; 0, 0, 0, 0, 1]]]
1.1       noro     1154: ? nfhnfmod(nf,[a,aid],da)
1.2     ! noro     1155: [[[1, 0, 0, 0, 0]~, [-2, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [
        !          1156: 1, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [1, 0
        !          1157: , 0, 0, 0]~], [[10, 4, 5, 6, 7; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
        !          1158:  0, 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0
        !          1159: ; 0, 0, 0, 0, 1], [3, 2, 1, 0, 1; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1,
        !          1160: 0; 0, 0, 0, 0, 1]]]
        !          1161: ? nfisideal(bnf[7],[5,2;0,1])
1.1       noro     1162: 1
                   1163: ? nfisincl(x^2+1,x^4+1)
                   1164: [-x^2, x^2]
                   1165: ? nfisincl(x^2+1,nfinit(x^4+1))
                   1166: [-x^2, x^2]
                   1167: ? nfisisom(x^3+x^2-2*x-1,x^3+x^2-2*x-1)
                   1168: [x, -x^2 - x + 1, x^2 - 2]
                   1169: ? nfisisom(x^3-2,nfinit(x^3-6*x^2-6*x-30))
                   1170: [-1/25*x^2 + 13/25*x - 2/5]
                   1171: ? nfroots(nf2,x+2)
                   1172: [Mod(-2, y^3 - y - 1)]
                   1173: ? nfrootsof1(nf)
                   1174: [2, [-1, 0, 0, 0, 0]~]
                   1175: ? nfsnf(nf,[as,haid,vaid])
1.2     ! noro     1176: [[2562748315629757085585610, 436545976069778274371140, 123799938628701108220
        !          1177: 1405, 2356446991473627724963350, 801407102592194537169612; 0, 5, 0, 0, 2; 0,
        !          1178:  0, 5, 0, 1; 0, 0, 0, 5, 2; 0, 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0
        !          1179: , 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0;
        !          1180: 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]]
1.1       noro     1181: ? nfsubfields(nf)
                   1182: [[x^5 - 5*x^3 + 5*x + 25, x], [x, x^5 - 5*x^3 + 5*x + 25]]
                   1183: ? polcompositum(x^4-4*x+2,x^3-x-1)
                   1184: [x^12 - 4*x^10 + 8*x^9 + 12*x^8 + 12*x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*x
                   1185: ^2 - 128*x - 5]
                   1186: ? polcompositum(x^4-4*x+2,x^3-x-1,1)
                   1187: [[x^12 - 4*x^10 + 8*x^9 + 12*x^8 + 12*x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*
                   1188: x^2 - 128*x - 5, Mod(-279140305176/29063006931199*x^11 + 129916611552/290630
                   1189: 06931199*x^10 + 1272919322296/29063006931199*x^9 - 2813750209005/29063006931
                   1190: 199*x^8 - 2859411937992/29063006931199*x^7 - 414533880536/29063006931199*x^6
                   1191:  - 35713977492936/29063006931199*x^5 - 17432607267590/29063006931199*x^4 + 4
                   1192: 9785595543672/29063006931199*x^3 + 9423768373204/29063006931199*x^2 - 427797
                   1193: 76146743/29063006931199*x + 37962587857138/29063006931199, x^12 - 4*x^10 + 8
                   1194: *x^9 + 12*x^8 + 12*x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*x^2 - 128*x - 5), M
                   1195: od(-279140305176/29063006931199*x^11 + 129916611552/29063006931199*x^10 + 12
                   1196: 72919322296/29063006931199*x^9 - 2813750209005/29063006931199*x^8 - 28594119
                   1197: 37992/29063006931199*x^7 - 414533880536/29063006931199*x^6 - 35713977492936/
                   1198: 29063006931199*x^5 - 17432607267590/29063006931199*x^4 + 49785595543672/2906
                   1199: 3006931199*x^3 + 9423768373204/29063006931199*x^2 - 13716769215544/290630069
                   1200: 31199*x + 37962587857138/29063006931199, x^12 - 4*x^10 + 8*x^9 + 12*x^8 + 12
                   1201: *x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*x^2 - 128*x - 5), -1]]
                   1202: ? polgalois(x^6-3*x^2-1)
                   1203: [12, 1, 1]
                   1204: ? polred(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
                   1205: [x - 1, x^5 - x^4 - 6*x^3 + 6*x^2 + 13*x - 5, x^5 - x^4 + 2*x^3 - 4*x^2 + x
                   1206: - 1, x^5 - x^4 + 4*x^3 - 2*x^2 + x - 1, x^5 + 4*x^3 - 4*x^2 + 8*x - 8]
                   1207: ? polred(x^4-28*x^3-458*x^2+9156*x-25321,3)
                   1208:
                   1209: [1 x - 1]
                   1210:
                   1211: [1/115*x^2 - 14/115*x - 327/115 x^2 - 10]
                   1212:
                   1213: [3/1495*x^3 - 63/1495*x^2 - 1607/1495*x + 13307/1495 x^4 - 32*x^2 + 216]
                   1214:
                   1215: [1/4485*x^3 - 7/1495*x^2 - 1034/4485*x + 7924/4485 x^4 - 8*x^2 + 6]
                   1216:
                   1217: ? polred(x^4+576,1)
                   1218: [x - 1, x^2 - x + 1, x^2 + 1, x^4 - x^2 + 1]
                   1219: ? polred(x^4+576,3)
                   1220:
                   1221: [1 x - 1]
                   1222:
                   1223: [1/192*x^3 + 1/8*x + 1/2 x^2 - x + 1]
                   1224:
                   1225: [-1/24*x^2 x^2 + 1]
                   1226:
                   1227: [-1/192*x^3 + 1/48*x^2 + 1/8*x x^4 - x^2 + 1]
                   1228:
                   1229: ? polred(p2,0,fa)
                   1230: [x - 1, x^5 - 2*x^4 - 62*x^3 + 85*x^2 + 818*x + 1, x^5 - 2*x^4 - 53*x^3 - 46
                   1231: *x^2 + 508*x + 913, x^5 - 2*x^4 - 13*x^3 + 37*x^2 - 21*x - 1, x^5 - x^4 - 52
                   1232: *x^3 - 197*x^2 - 273*x - 127]
                   1233: ? polred(p2,1,fa)
                   1234: [x - 1, x^5 - 2*x^4 - 62*x^3 + 85*x^2 + 818*x + 1, x^5 - 2*x^4 - 53*x^3 - 46
                   1235: *x^2 + 508*x + 913, x^5 - 2*x^4 - 13*x^3 + 37*x^2 - 21*x - 1, x^5 - x^4 - 52
                   1236: *x^3 - 197*x^2 - 273*x - 127]
                   1237: ? polredabs(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
                   1238: x^5 - x^4 + 2*x^3 - 4*x^2 + x - 1
                   1239: ? polredabs(x^5-2*x^4-4*x^3-96*x^2-352*x-568,1)
                   1240: [x^5 - x^4 + 2*x^3 - 4*x^2 + x - 1, Mod(2*x^4 - x^3 + 3*x^2 - 3*x - 1, x^5 -
                   1241:  x^4 + 2*x^3 - 4*x^2 + x - 1)]
                   1242: ? polredord(x^3-12*x+45*x-1)
                   1243: [x - 1, x^3 - 363*x - 2663, x^3 + 33*x - 1]
                   1244: ? polsubcyclo(31,5)
                   1245: x^5 + x^4 - 12*x^3 - 21*x^2 + x + 5
                   1246: ? setrand(1);poltschirnhaus(x^5-x-1)
                   1247: x^5 - 15*x^4 + 88*x^3 - 278*x^2 + 452*x - 289
                   1248: ? aa=rnfpseudobasis(nf2,p)
                   1249: [[[1, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [-2, 0, 0]~, [11, 0, 0]~; [0, 0, 0]~,
                   1250: [1, 0, 0]~, [0, 0, 0]~, [2, 0, 0]~, [-8, 0, 0]~; [0, 0, 0]~, [0, 0, 0]~, [1,
                   1251:  0, 0]~, [1, 0, 0]~, [4, 0, 0]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [1, 0,
                   1252: 0]~, [-2, 0, 0]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [1, 0, 0]~
                   1253: ], [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1
1.2     ! noro     1254: , 0; 0, 0, 1], [1, 0, 2/5; 0, 1, 3/5; 0, 0, 1/5], [1, 0, 22/25; 0, 1, 8/25;
        !          1255: 0, 0, 1/25]], [416134375, 202396875, 60056800; 0, 3125, 2700; 0, 0, 25], [-1
        !          1256: 275, 5, 5]~]
1.1       noro     1257: ? rnfbasis(bnf2,aa)
                   1258:
1.2     ! noro     1259: [[1, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [-6/25, 66/25, 77/25]~ [-391/25, -699/25,
        !          1260: 197/25]~]
1.1       noro     1261:
1.2     ! noro     1262: [[0, 0, 0]~ [1, 0, 0]~ [0, 0, 0]~ [18/25, -48/25, -56/25]~ [268/25, 552/25,
        !          1263: -206/25]~]
1.1       noro     1264:
1.2     ! noro     1265: [[0, 0, 0]~ [0, 0, 0]~ [1, 0, 0]~ [41/25, 24/25, 28/25]~ [-194/25, -116/25,
        !          1266: -127/25]~]
1.1       noro     1267:
1.2     ! noro     1268: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [17/25, -12/25, -14/25]~ [52/25, 178/25, -
        !          1269: 109/25]~]
1.1       noro     1270:
1.2     ! noro     1271: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [4/25, 6/25, 7/25]~ [-41/25, -49/25, -3/25
        !          1272: ]~]
1.1       noro     1273:
                   1274: ? rnfdisc(nf2,p)
1.2     ! noro     1275: [[416134375, 202396875, 60056800; 0, 3125, 2700; 0, 0, 25], [-1275, 5, 5]~]
1.1       noro     1276: ? rnfequation(nf2,p)
                   1277: x^15 - 15*x^11 + 75*x^7 - x^5 - 125*x^3 + 5*x + 1
                   1278: ? rnfequation(nf2,p,1)
                   1279: [x^15 - 15*x^11 + 75*x^7 - x^5 - 125*x^3 + 5*x + 1, Mod(-x^5 + 5*x, x^15 - 1
                   1280: 5*x^11 + 75*x^7 - x^5 - 125*x^3 + 5*x + 1), 0]
                   1281: ? rnfhnfbasis(bnf2,aa)
                   1282:
1.2     ! noro     1283: [[1, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [6/5, 4/5, -2/5]~ [-22/25, -33/25, 99/25]~
1.1       noro     1284: ]
                   1285:
1.2     ! noro     1286: [[0, 0, 0]~ [1, 0, 0]~ [0, 0, 0]~ [-6/5, -4/5, 2/5]~ [16/25, 24/25, -72/25]~
        !          1287: ]
1.1       noro     1288:
1.2     ! noro     1289: [[0, 0, 0]~ [0, 0, 0]~ [1, 0, 0]~ [-3/5, -2/5, 1/5]~ [-8/25, -12/25, 36/25]~
        !          1290: ]
1.1       noro     1291:
1.2     ! noro     1292: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [-3/5, -2/5, 1/5]~ [4/25, 6/25, -18/25]~]
1.1       noro     1293:
1.2     ! noro     1294: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [-2/25, -3/25, 9/25]~]
1.1       noro     1295:
                   1296: ? rnfisfree(bnf2,aa)
                   1297: 1
                   1298: ? rnfsteinitz(nf2,aa)
1.2     ! noro     1299: [[[1, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [-6/25, 66/25, 77/25]~, [17/125, -66/1
        !          1300: 25, -77/125]~; [0, 0, 0]~, [1, 0, 0]~, [0, 0, 0]~, [18/25, -48/25, -56/25]~,
        !          1301:  [-26/125, 48/125, 56/125]~; [0, 0, 0]~, [0, 0, 0]~, [1, 0, 0]~, [41/25, 24/
        !          1302: 25, 28/25]~, [-37/125, -24/125, -28/125]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]
        !          1303: ~, [17/25, -12/25, -14/25]~, [-19/125, 12/125, 14/125]~; [0, 0, 0]~, [0, 0,
        !          1304: 0]~, [0, 0, 0]~, [4/25, 6/25, 7/25]~, [-3/125, -6/125, -7/125]~], [[1, 0, 0;
        !          1305:  0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1]
        !          1306: , [1, 0, 0; 0, 1, 0; 0, 0, 1], [125, 0, 22; 0, 125, 108; 0, 0, 1]], [4161343
        !          1307: 75, 202396875, 60056800; 0, 3125, 2700; 0, 0, 25], [-1275, 5, 5]~]
1.1       noro     1308: ? nfz=zetakinit(x^2-2);
                   1309: ? zetak(nfz,-3)
                   1310: 0.091666666666666666666666666666666666666
                   1311: ? zetak(nfz,1.5+3*I)
                   1312: 0.88324345992059326405525724366416928890 - 0.2067536250233895222724230899142
                   1313: 7938845*I
                   1314: ? setrand(1);quadclassunit(1-10^7,,[1,1])
                   1315:   ***   Warning: not a fundamental discriminant in quadclassunit.
1.2     ! noro     1316: [2416, [1208, 2], [Qfb(277, 55, 9028), Qfb(1700, 1249, 1700)], 1, 1.00257481
        !          1317: 6299307750]
1.1       noro     1318: ? setrand(1);quadclassunit(10^9-3,,[0.5,0.5])
                   1319: [4, [4], [Qfb(3, 1, -83333333, 0.E-57)], 2800.625251907016076486370621737074
1.2     ! noro     1320: 5514, 0.9849577285369119736]
1.1       noro     1321: ? sizebyte(%)
1.2     ! noro     1322: 320
1.1       noro     1323: ? getheap
1.2     ! noro     1324: [199, 115764]
1.1       noro     1325: ? print("Total time spent: ",gettime);
1.2     ! noro     1326: Total time spent: 3629
1.1       noro     1327: ? \q

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>