Annotation of OpenXM_contrib/pari/doc/translations, Revision 1.1.1.1
1.1 maekawa 1: readline @A (too) short introduction to readline@2
2: edit @A (too) short introduction to readline@2
3: ? @?@2
4: ?? @?@2
5: \\ @\bs\bs@2
6: \a @\b{a}@2
7: \b @\b{b}@2
8: \c @\b{c}@2
9: \d @\b{d}@2
10: \e @\b{e}@2
11: \g @\b{g}@2
12: \gf @\b{gf}@2
13: \gm @\b{gm}@2
14: \h @\b{h}@2
15: \k @\b{k}@2
16: \l @\b{l}@2
17: \m @\b{m}@2
18: \p @\b{p}@2
19: \ps @\b{ps}@2
20: \q @\b{q}@2
21: \r @\b{r}@2
22: \s @\b{s}@2
23: \t @\b{t}@2
24: \u @\b{u}@2
25: \um @\b{um}@2
26: \v @\b{v}@2
27: \w @\b{w}@2
28: \x @\b{x}@2
29: \y @\b{y}@2
30: # @\#@2
31: ## @\#\#@2
32: operator @GP operators@2
33: and @&&@3
34: or @&&@3
35: not @&&@3
36: t_INT @Integers@2
37: INT @Integers@2
38: integer @Integers@2
39: REAL @Real numbers@2
40: real @Real numbers@2
41: real number @Real numbers@2
42: INTMOD @Integermods@2
43: intmod @Integermods@2
44: FRAC @Rational numbers@2
45: fraction @Rational numbers@2
46: rational @Rational numbers@2
47: FRACN @Rational numbers@2
48: COMPLEX @Complex numbers@2
49: complex @Complex numbers@2
50: PADIC @$p$-adic numbers@2
51: padic @$p$-adic numbers@2
52: QUAD @Quadratic numbers@2
53: quadratic @Quadratic numbers@2
54: POLMOD @Polmods@2
55: polmod @Polmods@2
56: POL @Polynomials@2
57: polynomial @Polynomials@2
58: SER @Power series@2
59: RFRAC @Rational functions@2
60: RFRACN @Rational functions@2
61: RFRACN @Rational functions@2
62: QFR @Binary quadratic forms of positive or negative discriminant@2
63: QFI @Binary quadratic forms of positive or negative discriminant@2
64: VEC @Row and column vectors@2
65: COL @Row and column vectors@2
66: MAT @Matrices@2
67: LIST @Lists@2
68: STR @Strings@2
69: local @User defined functions@2
70: user defined @User defined functions@2
71: user defined function @User defined functions@2
72: member function @Member functions@2
73: member @Member functions@2
74: \ @\bs
75: \/ @\bs/
76: ^ @\pow
77: ! @factorial
78: ~ @mattranspose
79: - @+
80: % @\%
81: +/- @+$/$-
82: min @max
83: >> @shift
84: << @shift
85: emacs @Using GP under GNU Emacs@2
86: Emacs @Using GP under GNU Emacs@2
87: 0 @Functions and Operations Available in PARI and GP
88: 1 @Standard monadic or dyadic operators
89: 2 @Conversions and similar elementary functions or commands
90: 3 @Transcendental functions
91: 4 @Arithmetic functions
92: 5 @Functions related to elliptic curves
93: 6 @Functions related to general number fields
94: 7 @Polynomials and power series
95: 8 @Vectors, matrices, linear algebra and sets
96: 9 @Sums, products, integrals and similar functions
97: 10 @Plotting functions
98: 11 @Programming under GP
99: ell @Functions related to elliptic curves
100: nf @Functions related to general number fields
101: bnf @Functions related to general number fields
102: bnr @Functions related to general number fields
103: component @components of a PARI object
104: bnfinit @bnf{}init
105: bnfisintnorm @bnf{}isintnorm
106: bnfisnorm @bnf{}isnorm
107: bnfissunit @bnf{}issunit
108: bnfisprincipal @bnf{}isprincipal
109: bnfisunit @bnf{}isunit
110: nffactor @nf{}factor
111: nffactormod @nf{}factormod
112: nfinit @nf{}init
113: nfisideal @nf{}isideal
114: nfisincl @nf{}isincl
115: nfisisom @nf{}isisom
116: rnfidealabstorel@rnf{}idealabstorel
117: rnfidealdown @rnf{}idealdown
118: rnfidealhnf @rnf{}idealhnf
119: rnfidealnormabs @rnf{}idealnormabs
120: rnfidealnormrel @rnf{}idealnormrel
121: rnfidealreltoabs@rnf{}idealreltoabs
122: rnfidealtwoelt @rnf{}idealtwoelt
123: rnfidealup @rnf{}idealup
124: rnfinit @rnf{}init
125: rnfisfree @rnf{}isfree
126: rnfisnorm @rnf{}isnorm
127: rnflllgram @rnf{}lllgram
128: qflll @qf{}lll
129: qflllgram @qf{}lllgram
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>