[BACK]Return to usersch5.tex CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari / doc

Annotation of OpenXM_contrib/pari/doc/usersch5.tex, Revision 1.1.1.1

1.1       maekawa     1: \chapter{Technical Reference Guide for Low-Level Functions}
                      2: \def\B{\kbd{BIL}}
                      3: \def\op{{\it op\/}}
                      4: \def\fun#1#2#3{\noindent{\tt #1 \key{#2}(#3)}:}
                      5:
                      6: In this chapter, we give a description all public low-level functions of the
                      7: PARI system. These essentially include functions for handling all the PARI
                      8: types. Higher level functions, such as arithmetic or transcendental
                      9: functions, are described fully in Chapter~3 of this manual.
                     10:
                     11: Many other undocumented functions can be found throughout the source code.
                     12: These private functions are more efficient than the library functions that
                     13: call them, but much sloppier on argument checking and damage control. Use
                     14: them at your own risk!
                     15:
                     16: \section{Level 0 kernel (operations on unsigned longs)}
                     17:
                     18: \noindent
                     19: For the non-68k versions, we need level 0 operations simulating basic
                     20: operations of the 68020 processor (on which PARI was originally
                     21: implemented). The type \tet{ulong} is defined in the file \kbd{parigen.h} as
                     22: \kbd{unsigned long}. Note that in the prototypes below a \kbd{ulong} is
                     23: sometimes implicitly typecast to \kbd{int} or \kbd{long}.
                     24:
                     25: The global \kbd{ulong} variables \kbd{overflow} (which will contain
                     26: only 0 or 1) and \kbd{hiremainder} used to be declared in the file
                     27: \kbd{pariinl.h}. However, for certain architectures they are no longer
                     28: needed, and/or have been replaced with local variables for efficiency;
                     29: and the `functions' mentioned below are really chunks of assembler code which
                     30: will be inlined at each invocation by the compiler. If you really need to
                     31: use these lowest-level operations directly, make sure you know your way
                     32: through the PARI kernel sources, and understand the architecture dependencies.
                     33:
                     34: To make the following descriptions valid both for 32-bit and 64-bit
                     35: machines, we will set \B\ to be equal to 32 (resp.~64), an abbreviation of
                     36: \kbd{BITS\_IN\_LONG}, which is what is actually used in the source code.
                     37:
                     38: \fun{int}{addll}{int x, int y} adds the ulongs \kbd{x} and \kbd{y},
                     39: returns the lower \B\ bits and puts the carry bit into \kbd{overflow}.
                     40:
                     41: \fun{int}{addllx}{int x, int y} adds \kbd{overflow} to the sum of the
                     42: ulongs \kbd{x} and \kbd{y}, returns the lower \B\ bits and puts the
                     43: carry bit into \kbd{overflow}.
                     44:
                     45: \fun{int}{subll}{int x, int y} subtracts the ulongs \kbd{x} and \kbd{y},
                     46: returns the lower \B\ bits and put the carry (borrow) bit into \kbd{overflow}.
                     47:
                     48: \fun{int}{subllx}{int x, int y} subtracts \kbd{overflow} from the
                     49: difference of the ulongs \kbd{x} and \kbd{y}, returns the lower \B\ bits
                     50: and puts the carry (borrow) bit into \kbd{overflow}.
                     51:
                     52: \fun{int}{shiftl}{ulong x, ulong y} shifts the ulong \kbd{x} left by \kbd{y}
                     53: bits, returns the lower \B\ bits and stores the high-order \B\ bits into
                     54: \kbd{hiremainder}. We must have $1\le\kbd{y}\le\B$. In particular, \kbd{y}
                     55: must be non-zero; the caller is responsible for testing this.
                     56:
                     57: \fun{int}{shiftlr}{ulong x, ulong y} shifts the ulong \kbd{x << \B} right
                     58: by \kbd{y} bits, returns the higher \B\ bits and stores the low-order
                     59: \B\ bits into \kbd{hiremainder}. We must have $1\le\kbd{y}\le\B$. In
                     60: particular, \kbd{y} must be non-zero.
                     61:
                     62: % break ugly ff ligatures in bfffo
                     63: \fun{int}{b{}f{}f{}fo}{ulong x} returns the number of leading zero bits in the
                     64: ulong \kbd{x} (i.e. the number of bit positions by which it would have to be
                     65: shifted left until its leftmost bit first becomes equal to~1, which can be
                     66: between 0 and $\B-1$ for nonzero \kbd{x}). When \kbd{x} is~0, \B\ is returned.
                     67:
                     68: \fun{int}{mulll}{ulong x, ulong y} multiplies the ulong \kbd{x} by the ulong
                     69: \kbd{y}, returns the lower \B\ bits and stores the high-order \B\ bits into
                     70: \kbd{hiremainder}.
                     71:
                     72: \fun{int}{addmul}{ulong x, ulong y} adds \kbd{hiremainder} to the product
                     73: of the ulongs \kbd{x} and \kbd{y}, returns the lower \B\ bits and stores the
                     74: high-order \B\ bits into \kbd{hiremainder}.
                     75:
                     76: \fun{int}{divll}{ulong x, ulong y} returns the Euclidean quotient of
                     77: (\kbd{hiremainder << \B})${}+{}$\kbd{x} and the ulong divisor \kbd{y} and
                     78: stores the remainder into \kbd{hiremainder}. An error occurs if the quotient
                     79: cannot be represented by a ulong, i.e.~if $\kbd{hiremainder}\ge\kbd{y}$
                     80: initially.
                     81:
                     82: \section{Level 1 kernel (operations on longs, integers and reals)}
                     83:
                     84: \noindent
                     85: In this section as elsewhere, \kbd{long} denotes a \B-bit signed C-integer,
                     86: ``integer'' denotes a PARI multiprecise integer (type \typ{INT}), ``real''
                     87: denotes a PARI multiprecise real (type \typ{REAL}). Refer to Chapters
                     88: 1--2 and~4 for general background.
                     89:
                     90: \misctitle{Note:} Many functions consist of an elementary operation,
                     91: immediately followed by an assignment statement. All such functions are
                     92: obtained using macros (see the file \kbd{paricom.h}), hence you can easily
                     93: extend the list. Below, they will be introduced like in the following
                     94: example:
                     95:
                     96: \fun{GEN}{gadd[z]}{GEN x, GEN y[, GEN z]} followed by the explicit
                     97: description of the function
                     98:
                     99: \kbd{GEN \key{gadd}(GEN x, GEN y)}
                    100:
                    101: \noindent which creates its result on the stack, returning a \kbd{GEN} pointer
                    102: to it, and the parts in brackets indicate that there exists also a function
                    103:
                    104: \kbd{void \key{gaddz}(GEN x, GEN y, GEN z)}
                    105:
                    106: \noindent which assigns its result to the pre-existing object
                    107: \kbd{z}, leaving the stack unchanged.
                    108:
                    109: \subsec{Basic unit and subunit handling functions}
                    110:
                    111: \fun{long}{typ}{GEN x} returns the type number of~\kbd{x}. (The header files
                    112: included through \kbd{pari.h} will give you access to the symbolic constants
                    113: \typ{INT} etc., so you should never need to know the actual numerical values.)
                    114:
                    115: \fun{long}{lg}{GEN x} returns the length of~\kbd{x} in \B-bit words.
                    116:
                    117: \fun{long}{lgef}{GEN x} returns the effective length of the polynomial \kbd{x}
                    118: in \B-bit words.
                    119:
                    120: \fun{long}{lgefint}{GEN x} returns the effective length of the integer \kbd{x}
                    121: in \B-bit words.
                    122:
                    123: \fun{long}{signe}{GEN x} returns the sign ($-1$, 0 or 1) of~\kbd{x}. Can be
                    124: used for integers, reals, polynomials and power series (for the last two
                    125: types, only 0 or 1 are possible).
                    126:
                    127: \fun{long}{gsigne}{GEN x} same as \kbd{signe}, but also valid for rational
                    128: numbers (and marginally less efficient for the other types).
                    129:
                    130: \fun{long}{expo}{GEN x} returns the unbiased binary exponent of the real
                    131: number~\kbd{x}.
                    132:
                    133: \fun{long}{gexpo}{GEN x} same as \kbd{expo}, but also valid when \kbd{x}
                    134: is not a real number. When \kbd{x} is an exact~0, this returns
                    135: \hbox{\kbd{-HIGHEXPOBIT}}.
                    136:
                    137: \fun{long}{expi}{GEN x} returns the binary exponent of the real number equal
                    138: to the integer~\kbd{x}. This is a special case of \kbd{gexpo} above, covering
                    139: the case where \kbd{x} is of type~\typ{INT}.
                    140:
                    141: \fun{long}{valp}{GEN x} returns the unbiased 16-bit $p$-adic valuation (for
                    142: a $p$-adic) or $X$-adic valuation (for a power series, taken with respect
                    143: to the main variable) of~\kbd{x}.
                    144:
                    145: \fun{long}{precp}{GEN x} returns the precision of the $p$-adic~\kbd{x}.
                    146:
                    147: \fun{long}{varn}{GEN x} returns the variable number of \kbd{x} (between 0 and
                    148: \kbd{MAXVARN}). Should be used only for polynomials and power series.
                    149:
                    150: \fun{long}{gvar}{(GEN x)} returns the main variable number when any variable
                    151: at all occurs in the composite object~\kbd{x} (the smallest variable number
                    152: which occurs), and \kbd{BIGINT} otherwise.
                    153:
                    154: \fun{void}{settyp}{GEN x, long s} sets the type number of~\kbd{x} to~\kbd{s}.
                    155: This should be used with extreme care since usually the type is set
                    156: otherwise, and the components and further codeword fields (which are left
                    157: unchanged) may not match the PARI conventions for the new type.
                    158:
                    159: \fun{void}{setlg}{GEN x, long s} sets the length of~\kbd{x} to~\kbd{s}. Again
                    160: this should be used with extreme care since usually the length is set
                    161: otherwise, and increasing the length joins previously unrelated memory words
                    162: to the root node of~\kbd{x}. This is, however, an extremely efficient way of
                    163: truncating vectors or polynomials.
                    164:
                    165: \fun{void}{setlgef}{GEN x, long s} sets the effective length of \kbd{x}
                    166: to~\kbd{s}, where \kbd{x} is a polynomial. The number \kbd{s} must be less
                    167: than or equal to the length of~\kbd{x}.
                    168:
                    169: \fun{void}{setlgefint}{GEN x, long s} sets the effective length
                    170: of the integer \kbd{x} to~\kbd{s}. The number \kbd{s} must be less than or
                    171: equal to the length of~\kbd{x}.
                    172:
                    173: \fun{void}{setsigne}{GEN x, long s} sets the sign of~\kbd{x} to~\kbd{s}.
                    174: If \kbd{x} is an integer or real, \kbd{s} must be equal to $-1$, 0 or~1,
                    175: and if \kbd{x} is a polynomial or a power series, \kbd{s} must be equal to
                    176: 0 or~1.
                    177:
                    178: \fun{void}{setexpo}{GEN x, long s} sets the binary exponent of the real
                    179: number~\kbd{x} to \kbd{s}, after adding the appropriate bias. The unbiased
                    180: value \kbd{s} must be a 24-bit signed number.
                    181:
                    182: \fun{void}{setvalp}{GEN x, long s} sets the $p$-adic or $X$-adic valuation
                    183: of~\kbd{x} to~\kbd{s}, if \kbd{x} is a $p$-adic or a power series,
                    184: respectively.
                    185:
                    186: \fun{void}{setprecp}{GEN x, long s} sets the $p$-adic precision of the
                    187: $p$-adic number~\kbd{x} to~\kbd{s}.
                    188:
                    189: \fun{void}{setvarn}{GEN x, long s} sets the variable number of the polynomial
                    190: or power series~\kbd{x} to~\kbd{s} (where $0\le \kbd{s}\le\kbd{MAXVARN}$).
                    191:
                    192:
                    193: \subsec{Memory allocation on the PARI stack}
                    194:
                    195: \fun{GEN}{cgetg}{long n, long t} allocates memory on the PARI stack for
                    196: an object of length \kbd{n} and type~\kbd{t}, and initializes its first
                    197: codeword.
                    198:
                    199: \fun{GEN}{cgeti}{long n} allocates memory on the PARI stack for an
                    200: integer of length~\kbd{n}, and initializes its first codeword. Identical to
                    201: {\tt cgetg(n,\typ{INT})}.
                    202:
                    203: \fun{GEN}{cgetr}{long n} allocates memory on the PARI stack for a real
                    204: of length~\kbd{n}, and initializes its first codeword. Identical to
                    205: {\tt cgetg(n,\typ{REAL})}.
                    206:
                    207: \fun{void}{cgiv}{GEN x} frees object \kbd{x} if it is the last created on the
                    208: PARI stack (otherwise disaster occurs).
                    209:
                    210: \fun{GEN}{gerepile}{long p, long q, GEN x} general garbage collector
                    211: for the PARI stack. See \secref{se:garbage} for a detailed explanation and
                    212: many examples.
                    213:
                    214: \subsec{Assignments, conversions and integer parts}
                    215:
                    216: \fun{void}{mpaff}{GEN x, GEN z} assigns \kbd{x} into~\kbd{z} (where
                    217: \kbd{x} and \kbd{z} are integers or reals).
                    218:
                    219: \fun{void}{affsz}{long s, GEN z} assigns the long \kbd{s} into the integer or
                    220: real~\kbd{z}.
                    221:
                    222: \fun{void}{affsi}{long s, GEN z} assigns the long \kbd{s} into the
                    223: integer~\kbd{z}.
                    224:
                    225: \fun{void}{affsr}{long s, GEN z} assigns the long \kbd{s} into the
                    226: real~\kbd{z}.
                    227:
                    228: \fun{void}{affii}{GEN x, GEN z} assigns the integer \kbd{x} into the
                    229: integer~\kbd{z}.
                    230:
                    231: \fun{void}{affir}{GEN x, GEN z} assigns the integer \kbd{x} into the
                    232: real~\kbd{z}.
                    233:
                    234: \fun{void}{affrs}{GEN x, long s} assigns the real \kbd{x} into the
                    235: long~\kbd{s}\dots not. This is a forbidden assignment in PARI, so an error
                    236: message is issued.
                    237:
                    238: \fun{void}{affri}{GEN x, GEN z} assigns the real \kbd{x} into the
                    239: integer~\kbd{z}\dots no it doesn't. This is a forbidden assignment in PARI,
                    240: so an error message is issued.
                    241:
                    242: \fun{void}{affrr}{GEN x, GEN z} assigns the real \kbd{x} into the real~\kbd{z}.
                    243: \smallskip
                    244:
                    245: \fun{GEN}{stoi}{long s} creates the PARI integer corresponding to the
                    246: long~\kbd{s}.
                    247:
                    248: \fun{long}{itos}{GEN x} converts the PARI integer \kbd{x} to a C long (if
                    249: possible, otherwise an error message is issued).
                    250: \smallskip
                    251:
                    252: \fun{GEN}{mptrunc[z]}{GEN x[, GEN z]} truncates the integer or real~\kbd{x}
                    253: (not the same as the integer part if \kbd{x} is non-integer and negative).
                    254:
                    255: \fun{GEN}{mpent[z]}{GEN x[, GEN z]} true integer part of the integer or
                    256: real~\kbd{x} (i.e.~the \kbd{floor} function).
                    257:
                    258: \subsec{Valuation and shift}
                    259:
                    260: \fun{long}{vals}{long s} 2-adic valuation of the long~\kbd{s}. Returns $-1$
                    261: if \kbd{s} is equal to 0, with no error.
                    262:
                    263: \fun{long}{vali}{GEN x} 2-adic valuation of the integer~\kbd{x}. Returns $-1$
                    264: if \kbd{s} is equal to 0, with no error.
                    265:
                    266: \fun{GEN}{mpshift[z]}{GEN x, long n[, GEN z]} shifts the real or
                    267: integer \kbd{x} by~\kbd{n}. If \kbd{n} is positive, this is a left shift,
                    268: i.e.~multiplication by $2^{\kbd{n}}$. If \kbd{n} is negative, it is a right
                    269: shift by~$-\kbd{n}$, which amounts to the truncation of the quotient of \kbd{x}
                    270: by~$2^{-\kbd{n}}$.
                    271:
                    272: \fun{GEN}{shifts}{long s, long n} converts the long \kbd{s} into a PARI
                    273: integer and shifts the value by~\kbd{n}.
                    274:
                    275: \fun{GEN}{shifti}{GEN x, long n} shifts the integer~\kbd{x} by~\kbd{n}.
                    276:
                    277: \fun{GEN}{shiftr}{GEN x, long n} shifts the real~\kbd{x} by~\kbd{n}.
                    278:
                    279: \subsec{Unary operations}
                    280:
                    281: \noindent
                    282: Let ``\op'' be some unary operation of type \kbd{GEN (*)(GEN)}. The names and
                    283: prototypes of the low-level functions corresponding to \op\ will be as follows.
                    284:
                    285: \fun{GEN}{mp\op}{GEN x} creates the result of \op\ applied to the integer
                    286: or real~\kbd{x}.
                    287:
                    288: \fun{GEN}{\op s}{long s} creates the result of \op\ applied to the
                    289: long~\kbd{s}.
                    290:
                    291: \fun{GEN}{\op i}{GEN x} creates the result of \op\ applied to the
                    292: integer~\kbd{x}.
                    293:
                    294: \fun{GEN}{\op r}{GEN x} creates the result of \op\ applied to the real~\kbd{x}.
                    295:
                    296: \fun{GEN}{mp\op z}{GEN x, GEN z} assigns the result of applying \op\ to the
                    297: integer or real~\kbd{x} into the integer or real \kbd{z}.
                    298:
                    299: \misctitle{Remark:} it has not been considered useful to include the
                    300: functions {\tt void \op sz(long,GEN)}, {\tt void \op iz(GEN,GEN)} and
                    301: {\tt void \op rz(GEN, GEN)}.
                    302: \smallskip
                    303:
                    304: \noindent The above prototype schemes apply to the following operators:
                    305:
                    306: \op=\key{neg}: negation ($-$\kbd{x}). The result is of the same type
                    307: as~\kbd{x}.
                    308:
                    309: \op=\key{abs}: absolute value ($|\kbd{x}|$). The result is of the same type
                    310: as~\kbd{x}.
                    311:
                    312: \noindent In addition, there exist the following special unary functions with
                    313: assignment:
                    314:
                    315: \fun{void}{mpinvz}{GEN x, GEN z} assigns the inverse of the integer or
                    316: real \kbd{x} into the real~\kbd{z}. The inverse is computed as a quotient
                    317: of real numbers, not as a Euclidean division.
                    318:
                    319: \fun{void}{mpinvsr}{long s, GEN z} assigns the inverse of the long \kbd{s}
                    320: into the real~\kbd{z}.
                    321:
                    322: \fun{void}{mpinvir}{GEN x, GEN z} assigns the inverse of the integer \kbd{x}
                    323: into the real~\kbd{z}.
                    324:
                    325: \fun{void}{mpinvrr}{GEN x, GEN z} assigns the inverse of the real \kbd{x} into
                    326: the real~\kbd{z}.
                    327:
                    328: \subsec{Comparison operators}
                    329:
                    330: \fun{long}{mpcmp}{GEN x, GEN y} compares the integer or real \kbd{x} to the
                    331: integer or real~\kbd{y}. The result is the sign of $\kbd{x}-\kbd{y}$.
                    332:
                    333: \fun{long}{cmpss}{long s, long t} returns the sign of $\kbd{s}-\kbd{t}$.
                    334:
                    335: \fun{long}{cmpsi}{long s, GEN x} compares the long \kbd{s} to the
                    336: integer~\kbd{x}.
                    337:
                    338: \fun{long}{cmpsr}{long s, GEN x} compares the long \kbd{s} to the real~\kbd{x}.
                    339:
                    340: \fun{long}{cmpis}{GEN x, long s} compares the integer \kbd{x} to the
                    341: long~\kbd{s}.
                    342:
                    343: \fun{long}{cmpii}{GEN x, GEN y} compares the integer \kbd{x} to the
                    344: integer~\kbd{y}.
                    345:
                    346: \fun{long}{cmpir}{GEN x, GEN y} compares the integer \kbd{x} to the
                    347: real~\kbd{y}.
                    348:
                    349: \fun{long}{cmprs}{GEN x, long s} compares the real \kbd{x} to the
                    350: long~\kbd{s}.
                    351:
                    352: \fun{long}{cmpri}{GEN x, GEN y} compares the real \kbd{x} to the
                    353: integer~\kbd{y}.
                    354:
                    355: \fun{long}{cmprr}{GEN x, GEN y} compares the real \kbd{x} to the real~\kbd{y}.
                    356:
                    357: \subsec{Binary operations}
                    358:
                    359: \noindent
                    360: Let ``\op'' be some operation of type \kbd{GEN (*)(GEN,GEN)}. The names and
                    361: prototypes of the low-level functions corresponding to \op\ will be as follows.
                    362: In this section, the \kbd{z} argument in the \kbd{z}-functions must be of type
                    363: \typ{INT} or~\typ{REAL}.
                    364:
                    365: \fun{GEN}{mp\op[z]}{GEN x, GEN y[, GEN z]} applies \op\ to
                    366: the integer-or-reals \kbd{x} and~\kbd{y}.
                    367:
                    368: \fun{GEN}{\op ss[z]}{long s, long t[, GEN z]} applies \op\ to the longs
                    369: \kbd{s} and~\kbd{t}.
                    370:
                    371: \fun{GEN}{\op si[z]}{long s, GEN x[, GEN z]} applies \op\ to the long \kbd{s}
                    372: and the integer~\kbd{x}.
                    373:
                    374: \fun{GEN}{\op sr[z]}{long s, GEN x[, GEN z]} applies \op\ to the long \kbd{s}
                    375: and the real~\kbd{x}.
                    376:
                    377: \fun{GEN}{\op is[z]}{GEN x, long s[, GEN z]} applies \op\ to the
                    378: integer \kbd{x} and the long~\kbd{s}.
                    379:
                    380: \fun{GEN}{\op ii[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the
                    381: integers \kbd{x} and~\kbd{y}.
                    382:
                    383: \fun{GEN}{\op ir[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the
                    384: integer \kbd{x} and the real~\kbd{y}.
                    385:
                    386: \fun{GEN}{\op rs[z]}{GEN x, long s[, GEN z]} applies \op\ to the real \kbd{x}
                    387: and the long~\kbd{s}.
                    388:
                    389: \fun{GEN}{\op ri[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the real \kbd{x}
                    390: and the integer~\kbd{y}.
                    391:
                    392: \fun{GEN}{\op rr[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the reals \kbd{x}
                    393: and~\kbd{y}.
                    394: \smallskip
                    395: \noindent Each of the above can be used with the following operators.
                    396:
                    397: \op=\key{add}: addition (\kbd{x + y}). The result is real unless both \kbd{x}
                    398: and \kbd{y} are integers (or longs).
                    399:
                    400: \op=\key{sub}: subtraction (\kbd{x - y}). The result is real unless both
                    401: \kbd{x} and \kbd{y} are integers (or longs).
                    402:
                    403: \op=\key{mul}: multiplication (\kbd{x * y}). The result is real unless both
                    404: \kbd{x} and \kbd{y} are integers (or longs), OR if \kbd{x} or \kbd{y} is the
                    405: integer or long zero.
                    406:
                    407: \op=\key{div}: division (\kbd{x / y}). In the case where \kbd{x} and \kbd{y}
                    408: are both integers or longs, the result is the Euclidean quotient, where the
                    409: remainder has the same sign as the dividend~\kbd{x}. If one of \kbd{x} or
                    410: \kbd{y} is real, the result is real unless \kbd{x} is the integer or long
                    411: zero. A division-by-zero error occurs if \kbd{y} is equal to zero.
                    412:
                    413: \op=\key{res}: remainder (``\kbd{x \% y}''). This operation is defined only
                    414: when \kbd{x} and \kbd{y} are longs or integers. The result is the Euclidean
                    415: remainder corresponding to \kbd{div},~i.e. its sign is that of the
                    416: dividend~\kbd{x}. The result is always an integer.
                    417:
                    418: \op=\key{mod}: remainder (\kbd{x \% y}). This operation is defined only when
                    419: \kbd{x} and \kbd{y} are longs or integers. The result is the true Euclidean
                    420: remainder, i.e.~non-negative and less than the absolute value of~\kbd{y}.
                    421:
                    422: \subsec{Division with remainder}: the following functions return two objects,
                    423: unless specifically asked for only one of them~--- a quotient and a remainder.
                    424: The remainder will be created on the stack, and a \kbd{GEN} pointer to this
                    425: object will be returned through the variable whose address is passed as the
                    426: \kbd{r} argument.
                    427:
                    428: \fun{GEN}{dvmdss}{long s, long t, GEN *r} creates the Euclidean
                    429: quotient and remainder of the longs \kbd{s} and~\kbd{t}. If \kbd{r} is not
                    430: \kbd{NULL} or \kbd{ONLY\_REM}, this puts the remainder into \kbd{*r},
                    431: and returns the quotient. If \kbd{r} is equal to \kbd{NULL}, only the
                    432: quotient is returned. If \kbd{r} is equal to \kbd{ONLY\_REM}, the remainder
                    433: is returned instead of the quotient. In the generic case, the remainder is
                    434: created after the quotient and can be disposed of individually with a
                    435: \kbd{cgiv(r)}. The remainder is always of the sign of the dividend~\kbd{s}.
                    436:
                    437: \fun{GEN}{dvmdsi}{long s, GEN x, GEN *r} creates the Euclidean
                    438: quotient and remainder of the long \kbd{s} by the integer~\kbd{x}.
                    439: Obeys the same conventions with respect to~\kbd{r}.
                    440:
                    441: \fun{GEN}{dvmdis}{GEN x, long s, GEN *r} create the Euclidean
                    442: quotient and remainder of the integer x by the long~s.
                    443:
                    444: \fun{GEN}{dvmdii}{GEN x, GEN y, GEN *r} returns the Euclidean quotient
                    445: of the integer \kbd{x} by the integer \kbd{y} and puts the remainder
                    446: into~\kbd{*r}. If \kbd{r} is equal to \kbd{NULL}, the remainder is not
                    447: created, and if \kbd{r} is equal to  \kbd{ONLY\_REM}, only the remainder
                    448: is created and returned. In the generic case, the remainder is created
                    449: after the quotient and can be disposed of individually with a \kbd{cgiv(r)}.
                    450: The remainder is always of the sign of the dividend~\kbd{x}.
                    451:
                    452: \fun{GEN}{truedvmdii}{GEN x, GEN y, GEN *r}, as \kbd{dvmdii} but with a
                    453: non-negative remainder.
                    454:
                    455: \fun{void}{mpdvmdz}{GEN x, GEN y, GEN z, GEN *r} assigns the Euclidean
                    456: quotient of the integers \kbd{x} and \kbd{y} into the integer or real~\kbd{z},
                    457: putting the remainder into~\kbd{*r} (unless \kbd{r} is equal to \kbd{NULL} or
                    458: \kbd{ONLY\_REM} as above).
                    459:
                    460: \fun{void}{dvmdssz}{long s, long t, GEN z, GEN *r} assigns the Euclidean
                    461: quotient of the longs \kbd{s} and \kbd{t} into the integer or real~\kbd{z},
                    462: putting the remainder into~\kbd{*r} (unless \kbd{r} is equal to \kbd{NULL} or
                    463: \kbd{ONLY\_REM} as above).
                    464:
                    465: \fun{void}{dvmdsiz}{long s, GEN x, GEN z, GEN *r} assigns the Euclidean
                    466: quotient of the long \kbd{s} and the integer \kbd{x} into the integer or
                    467: real~\kbd{z}, putting the remainder into \kbd{*r} (unless \kbd{r} is equal
                    468: to \kbd{NULL} or \kbd{ONLY\_REM} as above).
                    469:
                    470: \fun{void}{dvmdisz}{GEN x, long s, GEN z, GEN *r} assigns the Euclidean
                    471: quotient of the integer \kbd{x} and the long \kbd{s} into the integer or
                    472: real~\kbd{z}, putting the remainder into~\kbd{*r} (unless \kbd{r} is equal
                    473: to \kbd{NULL} or \kbd{ONLY\_REM} as above).
                    474:
                    475: \fun{void}{dvmdiiz}{GEN x, GEN y, GEN z, GEN *r} assigns the Euclidean
                    476: quotient of the integers \kbd{x} and \kbd{y} into the integer or real~\kbd{z},
                    477: putting the address of the remainder into~\kbd{*r} (unless \kbd{r} is equal
                    478: to \kbd{NULL} or \kbd{ONLY\_REM} as above).
                    479:
                    480: \subsec{Miscellaneous functions}
                    481:
                    482: \fun{void}{addsii}{long s, GEN x, GEN z} assigns the sum of the long \kbd{s}
                    483: and the integer \kbd{x} into the integer~\kbd{z} (essentially identical to
                    484: \kbd{addsiz} except that \kbd{z} is specifically an integer).
                    485:
                    486: \fun{long}{divise}{GEN x, GEN y} if the integer \kbd{y} divides the
                    487: integer~\kbd{x}, returns 1 (true), otherwise returns 0 (false).
                    488:
                    489: \fun{long}{divisii}{GEN x, long s, GEN z} assigns the Euclidean quotient of
                    490: the integer \kbd{x} and the long \kbd{s} into the integer \kbd{z}, and returns
                    491: the remainder as a long.
                    492:
                    493: \fun{long}{mpdivis}{GEN x, GEN y, GEN z} if the integer \kbd{y} divides the
                    494: integer~\kbd{x}, assigns the quotient to the integer~\kbd{z} and returns
                    495: 1 (true), otherwise returns 0 (false).
                    496:
                    497: \fun{void}{mulsii}{long s, GEN x, GEN z} assigns the product of the long
                    498: \kbd{s} and the integer \kbd{x} into the integer~\kbd{z} (essentially
                    499: dentical to \kbd{mulsiz} except that \kbd{z} is specifically an integer).
                    500:
                    501: \section{Level 2 kernel (operations on general PARI objects)}
                    502:
                    503: \noindent The functions available to handle subunits are the following.
                    504:
                    505: \fun{GEN}{compo}{GEN x, long n} creates a copy of the \kbd{n}-th true
                    506: component (i.e.\ not counting the codewords) of the object~\kbd{x}.
                    507:
                    508: \fun{GEN}{truecoeff}{GEN x, long n} creates a copy of the coefficient of
                    509: degree~\kbd{n} of~\kbd{x} if \kbd{x} is a scalar, polynomial or power series,
                    510: and otherwise of the \kbd{n}-th component of~\kbd{x}.
                    511:
                    512: \noindent % borderline case -- looks better like this [GN]
                    513: The remaining two are macros, NOT functions (see \secref{se:typecast} for a
                    514: detailed explanation):
                    515:
                    516: \fun{long}{coeff}{GEN x, long i, long j} applied to a matrix \kbd{x} (type
                    517: \typ{MAT}), this gives the address of the coefficient at row \kbd{i} and
                    518: column~\kbd{j} of~\kbd{x}.
                    519:
                    520: \fun{long}{mael$n$}{GEN x, long $a_1$, ..., long $a_n$} stands for
                    521: \kbd{x[$a_1$][$a_2$]...[$a_n$]}, where $2\le n \le 5$, with all the
                    522: necessary typecasts.
                    523:
                    524: \subsec{Copying and conversion}
                    525:
                    526: \fun{GEN}{cgetp}{GEN x} creates space sufficient to hold the $p$-adic~\kbd{x},
                    527: and sets the prime $p$ and the $p$-adic precision to those of~\kbd{x}, but
                    528: does not copy (the $p$-adic unit or zero representative and the modulus
                    529: of)~\kbd{x}.
                    530:
                    531: \fun{GEN}{gcopy}{GEN x} creates a new copy of the object~\kbd{x} on the PARI
                    532: stack. For permanent subobjects, only the pointer is copied.
                    533:
                    534: \fun{GEN}{forcecopy}{GEN x} same as \key{copy} except that even permanent
                    535: subobjects are copied onto the stack.
                    536:
                    537: \fun{long}{taille}{GEN x} returns the total number of \B-bit words occupied
                    538: by the tree representing~\kbd{x}.
                    539:
                    540: \fun{GEN}{gclone}{GEN x} creates a new permanent copy of the object \kbd{x}
                    541: on the heap.
                    542:
                    543: \fun{GEN}{greffe}{GEN x, long l, int use\_stack} applied to a
                    544: polynomial~\kbd{x} (type \typ{POL}), creates a power series (type \typ{SER})
                    545: of length~\kbd{l} starting with~\kbd{x}, but without actually copying the
                    546: coefficients, just the pointers. If \kbd{use\_stack} is zero, this is created
                    547: through malloc, and must be freed after use. Intended for internal use only.
                    548:
                    549: \fun{double}{rtodbl}{GEN x} applied to a real~\kbd{x} (type \typ{REAL}),
                    550: converts \kbd{x} into a C double if possible.
                    551:
                    552: \fun{GEN}{dbltor}{double x} converts the C double \kbd{x} into a PARI real.
                    553:
                    554: \fun{double}{gtodouble}{GEN x} if \kbd{x} is a real number (but not
                    555: necessarily of type \typ{REAL}), converts \kbd{x} into a C double if possible.
                    556:
                    557: \fun{long}{gtolong}{GEN x} if \kbd{x} is an integer (not a C long,
                    558: but not necessarily of type \typ{INT}), converts \kbd{x} into a C long
                    559: if possible.
                    560:
                    561: \fun{GEN}{gtopoly}{GEN x, long v} converts or truncates the object~\kbd{x}
                    562: into a polynomial with main variable number~\kbd{v}. A common application
                    563: would be the conversion of coefficient vectors.
                    564:
                    565: \fun{GEN}{gtopolyrev}{GEN x, long v} converts or truncates the object~\kbd{x}
                    566: into a polynomial with main variable number~\kbd{v}, but vectors are converted
                    567: in reverse order.
                    568:
                    569: \fun{GEN}{gtoser}{GEN x, long v} converts the object~\kbd{x} into a power
                    570: series with main variable number~\kbd{v}.
                    571:
                    572: \fun{GEN}{gtovec}{GEN x} converts the object~\kbd{x} into a (row) vector.
                    573:
                    574: \fun{GEN}{co8}{GEN x, long l} applied to a quadratic number~\kbd{x}
                    575: (type \typ{QUAD}), converts \kbd{x} into a real or complex number
                    576: depending on the sign of the discriminant of~\kbd{x}, to precision
                    577: \hbox{\kbd{l} \B-bit} words.% absolutely forbid line brk at hyphen here [GN]
                    578:
                    579: \fun{GEN}{gcvtop}{GEN x, GEN p, long l} converts \kbd{x} into a \kbd{p}-adic
                    580: number of precision~\kbd{l}.
                    581:
                    582: \fun{GEN}{gmodulcp}{GEN x, GEN y} creates the object \kbd{\key{Mod}(x,y)}
                    583: on the PARI stack, where \kbd{x} and \kbd{y} are either both integers, and
                    584: the result is an integermod (type \typ{INTMOD}), or \kbd{x} is a scalar or
                    585: a polynomial and \kbd{y} a polynomial, and the result is a polymod
                    586: (type \typ{POLMOD}).
                    587:
                    588: \fun{GEN}{gmodulgs}{GEN x, long y} same as \key{gmodulcp} except \kbd{y} is a
                    589: \kbd{long}.
                    590:
                    591: \fun{GEN}{gmodulss}{long x, long y} same as \key{gmodulcp} except both \kbd{x}
                    592: and \kbd{y} are \kbd{long}s.
                    593:
                    594: \fun{GEN}{gmodulo}{GEN x, GEN y} same as \key{gmodulcp} except that the
                    595: modulus \kbd{y} is copied onto the heap and not onto the PARI stack.
                    596:
                    597: \fun{long}{gexpo}{GEN x} returns the binary exponent of \kbd{x} or the maximal
                    598: binary exponent of the coefficients of~\kbd{x}. Returns
                    599: \hbox{\kbd{-HIGHEXPOBIT}} if \kbd{x} has no components or is an exact zero.
                    600:
                    601: \fun{long}{gsize}{GEN x} returns 0 if \kbd{x} is exactly~0. Otherwise,
                    602: returns \kbd{\key{gexpo}(x)} multiplied by $\log_{10}(2)$. This gives a
                    603: crude estimate for the maximal number of decimal digits of the components
                    604: of~\kbd{x}.
                    605:
                    606: \fun{long}{gsigne}{GEN x} returns the sign of~\kbd{x} ($-1$, 0 or 1) when
                    607: \kbd{x} is an integer, real or (irreducible or reducible) fraction. Raises
                    608: an error for all other types.
                    609:
                    610: \fun{long}{gvar}{GEN x} returns the main variable of~\kbd{x}. If no component
                    611: of~\kbd{x} is a polynomial or power series, this returns \kbd{BIGINT}.
                    612:
                    613: \fun{int}{precision}{GEN x} If \kbd{x} is of type \typ{REAL}, returns the
                    614: precision of~\kbd{x} (the length of \kbd{x} in \B-bit words if \kbd{x} is
                    615: not zero, and a reasonable quantity obtained from the exponent of \kbd{x}
                    616: if \kbd{x} is numerically equal to zero). If \kbd{x} is of type \typ{COMPLEX},
                    617: returns the minimum of the precisions of the real and imaginary part.
                    618: Otherwise, returns~0 (which stands in fact for infinite precision).
                    619:
                    620: \subsec{Comparison operators and valuations}
                    621:
                    622: \fun{int}{gcmp0}{GEN x} returns 1 (true) if \kbd{x} is equal to~0, 0~(false)
                    623: otherwise.
                    624:
                    625: \fun{int}{isexactzero}{GEN x} returns 1 (true) if \kbd{x} is exactly equal
                    626: to~0, 0~(false) otherwise. Note that many PARI functions will return a
                    627: pointer to \key{gzero} when they are aware that the result they return is
                    628: an exact zero, so it is almost always faster to test for pointer equality
                    629: first, and call \key{isexactzero} (or \key{gcmp0}) only when the first
                    630: test fails.
                    631:
                    632: \fun{int}{gcmp1}{GEN x} returns 1 (true) if \kbd{x} is equal to~1, 0~(false)
                    633: otherwise.
                    634:
                    635: \fun{int}{gcmp\_1}{GEN x} returns 1 (true) if \kbd{x} is equal to~$-1$,
                    636: 0~(false) otherwise.
                    637:
                    638: \fun{long}{gcmp}{GEN x, GEN y} comparison of \kbd{x} with \kbd{y} (returns
                    639: the sign of $\kbd{x}-\kbd{y}$).
                    640:
                    641: \fun{long}{gcmpsg}{long s, GEN x} comparison of the long \kbd{s} with~\kbd{x}.
                    642:
                    643: \fun{long}{gcmpgs}{GEN x, long s} comparison of \kbd{x} with the long~\kbd{s}.
                    644:
                    645: \fun{long}{lexcmp}{GEN x, GEN y} comparison of \kbd{x} with \kbd{y} for the
                    646: lexicographic ordering.
                    647:
                    648: \fun{long}{gegal}{GEN x, GEN y} returns 1 (true) if \kbd{x} is equal
                    649: to~\kbd{y}, 0~otherwise.
                    650:
                    651: \fun{long}{gegalsg}{long s, GEN x} returns 1 (true) if the long \kbd{s} is
                    652: equal to~\kbd{x}, 0~otherwise.
                    653:
                    654: \fun{long}{gegalgs}{GEN x, long s} returns 1 (true) if \kbd{x} is equal to
                    655: the long~\kbd{s}, 0~otherwise.
                    656:
                    657: \fun{long}{iscomplex}{GEN x} returns 1 (true) if \kbd{x} is a complex number
                    658: (of component types embeddable into the reals) but is not itself real, 0~if
                    659: \kbd{x} is a real (not necessarily of type \typ{REAL}), or raises an error
                    660: if \kbd{x} is not embeddable into the complex numbers.
                    661:
                    662: \fun{long}{ismonome}{GEN x} returns 1 (true) if \kbd{x} is a non-zero monomial
                    663: in its main variable, 0~otherwise.
                    664:
                    665: \fun{long}{ggval}{GEN x, GEN p} returns the greatest exponent~$e$ such that
                    666: $\kbd{p}^e$ divides~\kbd{x}, when this makes sense.
                    667:
                    668: \fun{long}{gval}{GEN x, long v} returns the highest power of the variable
                    669: number \kbd{v} dividing the polynomial~\kbd{x}.
                    670:
                    671: \fun{int}{pvaluation}{GEN x, GEN p, GEN *r} applied to non-zero integers
                    672: \kbd{x} and~\kbd{p}, returns the highest exponent $e$ such that
                    673: $\kbd{p}^{e}$ divides~\kbd{x}, creates the quotient $\kbd{x}/\kbd{p}^{e}$
                    674: and returns its address in~\kbd{*r}.
                    675: In particular, if \kbd{p} is a prime, this returns the valuation at \kbd{p}
                    676: of~\kbd{x}, and \kbd{*r} will obtain the prime-to-\kbd{p} part of~\kbd{x}.
                    677:
                    678: \subsec{Assignment statements}
                    679:
                    680: \fun{void}{gaffsg}{long s, GEN x} assigns the long \kbd{s} into the
                    681: object~\kbd{x}.
                    682:
                    683: \fun{void}{gaffect}{GEN x, GEN y} assigns the object \kbd{x} into the
                    684: object~\kbd{y}.
                    685:
                    686: \subsec{Unary operators}
                    687:
                    688: \fun{GEN}{gneg[\key{z}]}{GEN x[, GEN z]} yields $-\kbd{x}$.
                    689:
                    690: \fun{GEN}{gabs[\key{z}]}{GEN x[, GEN z]} yields $|\kbd{x}|$.
                    691:
                    692: \fun{GEN}{gsqr}{GEN x} creates the square of~\kbd{x}.
                    693:
                    694: \fun{GEN}{ginv}{GEN x} creates the inverse of~\kbd{x}.
                    695:
                    696: \fun{GEN}{gfloor}{GEN x} creates the floor of~\kbd{x}, i.e.\ the (true)
                    697: integral part.
                    698:
                    699: \fun{GEN}{gfrac}{GEN x} creates the fractional part of~\kbd{x}, i.e.\ \kbd{x}
                    700: minus the floor of~\kbd{x}.
                    701:
                    702: \fun{GEN}{gceil}{GEN x} creates the ceiling of~\kbd{x}.
                    703:
                    704: \fun{GEN}{ground}{GEN x} rounds the components of \kbd{x} to the nearest
                    705: integers. Exact half-integers are rounded towards~$+\infty$.
                    706:
                    707: \fun{GEN}{grndtoi}{GEN x, long *e} same as \key{round}, but in addition puts
                    708: minus the number of significant binary bits left after rounding into~\kbd{*e}.
                    709: If \kbd{*e} is positive, all significant bits have been lost. This kind of
                    710: situation raises an error message in \key{ground} but not in \key{grndtoi}.
                    711:
                    712: \fun{GEN}{gtrunc}{GEN x} truncates~\kbd{x}. This is the (false) integer part
                    713: if \kbd{x} is an integer (i.e.~the unique integer closest to \kbd{x} among
                    714: those between 0 and~\kbd{x}). If \kbd{x} is a series, it will be truncated
                    715: to a polynomial; if \kbd{x} is a rational function, this takes the
                    716: polynomial part.
                    717:
                    718: \fun{GEN}{gcvtoi}{GEN x, long *e} same as \key{grndtoi} except that
                    719: rounding is replaced by truncation.
                    720:
                    721: \fun{GEN}{gred[z]}{GEN x[, GEN z]} reduces \kbd{x} to lowest terms if \kbd{x}
                    722: is a fraction or rational function (types \typ{FRAC}, \typ{FRACN},
                    723: \typ{RFRAC} and \typ{RFRACN}), otherwise creates a copy of~\kbd{x}.
                    724:
                    725: \fun{GEN}{content}{GEN x} creates the GCD of all the components of~\kbd{x}.
                    726:
                    727: \fun{GEN}{normalize}{GEN x} applied to an unnormalized power series~\kbd{x}
                    728: (i.e.~type \typ{SER} with all coefficients correctly set except that \kbd{x[2]}
                    729: might be zero), normalizes \kbd{x} correctly in place. Returns~\kbd{x}.
                    730: For internal use.
                    731:
                    732: \fun{GEN}{normalizepol}{GEN x} applied to an unnormalized polynomial~\kbd{x}
                    733: (i.e.~type \typ{POL} with all coefficients correctly set except that \kbd{x[2]}
                    734: might be zero), normalizes \kbd{x} correctly in place and returns~\kbd{x}.
                    735: For internal use.
                    736:
                    737: \subsec{Binary operators}
                    738:
                    739: \fun{GEN}{gmax[z]}{GEN x, GEN y[, GEN z]} yields the maximum of the objects
                    740: \kbd{x} and~\kbd{y} if they can be compared.
                    741:
                    742: \fun{GEN}{gmaxsg[z]}{long s, GEN x[, GEN z]} yields the maximum of the long
                    743: \kbd{s} and the object~\kbd{x}.
                    744:
                    745: \fun{GEN}{gmaxgs[z]}{GEN x, long s[, GEN z]} yields the maximum of the object
                    746: \kbd{x} and the long~\kbd{s}.
                    747:
                    748: \fun{GEN}{gmin[z]}{GEN x, GEN y[, GEN z]} yields the minimum of the objects
                    749: \kbd{x} and~\kbd{y} if they can be compared.
                    750:
                    751: \fun{GEN}{gminsg[z]}{long s, GEN x[, GEN z]} yields the minimum of the long
                    752: \kbd{s} and the object~\kbd{x}.
                    753:
                    754: \fun{GEN}{gmings[z]}{GEN x, long s[, GEN z]} yields the minimum of the object
                    755: \kbd{x} and the long~\kbd{s}.
                    756:
                    757: \fun{GEN}{gadd[z]}{GEN x, GEN y[, GEN z]} yields the sum of the objects \kbd{x}
                    758: and~\kbd{y}.
                    759:
                    760: \fun{GEN}{gaddsg[z]}{long s, GEN x[, GEN z]} yields the sum of the long \kbd{s}
                    761: and the object~\kbd{x}.
                    762:
                    763: \fun{GEN}{gaddgs[z]}{GEN x, long s[, GEN z]} yields the sum of the object
                    764: \kbd{x} and the long~\kbd{s}.
                    765:
                    766: \fun{GEN}{gsub[z]}{GEN x, GEN y[, GEN z]} yields the difference of the objects
                    767: \kbd{x} and~\kbd{y}.
                    768:
                    769: \fun{GEN}{gsubgs[z]}{GEN x, long s[, GEN z]} yields the difference of the
                    770: object \kbd{x} and the long~\kbd{s}.
                    771:
                    772: \fun{GEN}{gsubsg[z]}{long s, GEN x[, GEN z]} yields the difference of the
                    773: long \kbd{s} and the object~\kbd{x}.
                    774:
                    775: \fun{GEN}{gmul[z]}{GEN x, GEN y[, GEN z]} yields the product of the objects
                    776: \kbd{x} and~\kbd{y}.
                    777:
                    778: \fun{GEN}{gmulsg[z]}{long s, GEN x[, GEN z]} yields the product of the long
                    779: \kbd{s} with the object~\kbd{x}.
                    780:
                    781: \fun{GEN}{gmulgs[z]}{GEN x, long s[, GEN z]} yields the product of the object
                    782: \kbd{x} with the long~\kbd{s}.
                    783:
                    784: \fun{GEN}{gshift[z]}{GEN x, long n[, GEN z]} yields the result of shifting
                    785: (the components of) \kbd{x} left by \kbd{n} (if \kbd{n} is non-negative)
                    786: or right by $-\kbd{n}$ (if \kbd{n} is negative).
                    787: Applies only to integers, reals and vectors/matrices of such. For other
                    788: types, it is simply multiplication by~$2^{\kbd{n}}$.
                    789:
                    790: \fun{GEN}{gmul2n[z]}{GEN x, long n[, GEN z]} yields the product of \kbd{x}
                    791: and~$2^{\kbd{n}}$. This is different from \kbd{gshift} when \kbd{n} is negative
                    792: and \kbd{x} is of type \typ{INT}: \key{gshift} truncates, while \key{gmul2n}
                    793: creates a fraction if necessary.
                    794:
                    795: \fun{GEN}{gdiv[z]}{GEN x, GEN y[, GEN z]} yields the quotient of the objects
                    796: \kbd{x} and~\kbd{y}.
                    797:
                    798: \fun{GEN}{gdivgs[z]}{GEN x, long s[, GEN z]} yields the quotient of the object
                    799: \kbd{x} and the long~\kbd{s}.
                    800:
                    801: \fun{GEN}{gdivsg[z]}{long s, GEN x[, GEN z]} yields the quotient of the long
                    802: \kbd{s} and the object~\kbd{x}.
                    803:
                    804: \fun{GEN}{gdivent[z]}{GEN x, GEN y[, GEN z]} yields the true Euclidean
                    805: quotient of \kbd{x} and the integer or polynomial~\kbd{y}.
                    806:
                    807: \fun{GEN}{gdiventsg[z]}{long s, GEN x[, GEN z]} yields the true Euclidean
                    808: quotient of the long \kbd{s} by the integer~\kbd{x}.
                    809:
                    810: \fun{GEN}{gdiventgs[z]}{GEN x, long s[, GEN z]} yields the true Euclidean
                    811: quotient of the integer \kbd{x} by the long~\kbd{s}.
                    812:
                    813: \fun{GEN}{gdiventres}{GEN x, GEN y} creates a 2-component vertical
                    814: vector whose components are the true Euclidean quotient and remainder
                    815: of \kbd{x} and~\kbd{y}.
                    816:
                    817: \fun{GEN}{gdivmod}{GEN x, GEN y, GEN *r} If \kbd{r} is not equal to
                    818: \kbd{NULL} or \kbd{ONLY\_REM}, creates the (false) Euclidean quotient of
                    819: \kbd{x} and~\kbd{y}, and puts (the address of) the remainder into~\kbd{*r}.
                    820: If \kbd{r} is equal to \kbd{NULL}, do not create the remainder, and if
                    821: \kbd{r} is equal to \kbd{ONLY\_REM}, create and output only the remainder.
                    822: The remainder is created after the quotient and can be disposed of
                    823: individually with a \kbd{cgiv(r)}.
                    824:
                    825: \fun{GEN}{poldivres}{GEN x, GEN y, GEN *r} same as \key{gdivmod} but
                    826: specifically for polynomials \kbd{x} and~\kbd{y}.
                    827:
                    828: \fun{GEN}{gdeuc}{GEN x, GEN y} creates the Euclidean quotient of the
                    829: polynomials \kbd{x} and~\kbd{y}.
                    830:
                    831: \fun{GEN}{gdivround}{GEN x, GEN y} if \kbd{x} and \kbd{y} are integers,
                    832: returns the quotient $\kbd{x}/\kbd{y}$ of \kbd{x} and~\kbd{y}, rounded to
                    833: the nearest integer. If $\kbd{x}/\kbd{y}$ falls exactly halfway between
                    834: two consecutive integers, then it is rounded towards~$+\infty$ (as for
                    835: \key{round}). If \kbd{x} and \kbd{y} are not both integers, the result
                    836: is the same as that of \key{gdivent}.
                    837:
                    838: \fun{GEN}{gmod[z]}{GEN x, GEN y[, GEN z]} yields the true remainder of \kbd{x}
                    839: modulo the integer or polynomial~\kbd{y}.
                    840:
                    841: \fun{GEN}{gmodsg[z]}{long s, GEN x[, GEN z]} yields the true remainder of the
                    842: long \kbd{s} modulo the integer~\kbd{x}.
                    843:
                    844: \fun{GEN}{gmodgs[z]}{GEN x, long s[, GEN z]} yields the true remainder of the
                    845: integer \kbd{x} modulo the long~\kbd{s}.
                    846:
                    847: \fun{GEN}{gres}{GEN x, GEN y} creates the Euclidean remainder of the
                    848: polynomial \kbd{x} divided by the polynomial~\kbd{y}.
                    849:
                    850: \fun{GEN}{ginvmod}{GEN x, GEN y} creates the inverse of \kbd{x} modulo \kbd{y}
                    851: when it exists.
                    852:
                    853: \fun{GEN}{gpow}{GEN x, GEN y, long l} creates $\kbd{x}^{\kbd{y}}$. The
                    854: precision \kbd{l} is taken into account only if \kbd{y} is not an integer
                    855: and \kbd{x} is an exact object. If \kbd{y} is an integer, binary powering
                    856: is done. Otherwise, the result is $\exp(\kbd{y}*\log(\kbd{x}))$ computed
                    857: to precision~\kbd{l}.
                    858:
                    859: \fun{GEN}{ggcd}{GEN x, GEN y} creates the GCD of \kbd{x} and~\kbd{y}.
                    860:
                    861: \fun{GEN}{glcm}{GEN x, GEN y} creates the LCM of \kbd{x} and~\kbd{y}.
                    862:
                    863: \fun{GEN}{subres}{GEN x, GEN y} creates the resultant of the polynomials
                    864: \kbd{x} and~\kbd{y} computed using the subresultant algorithm.
                    865:
                    866: \fun{GEN}{gpowgs}{GEN x, long n} creates $\kbd{x}^{\kbd{n}}$ using
                    867: binary powering.
                    868:
                    869: \fun{GEN}{gsubst}{GEN x, long v, GEN y} substitutes the object \kbd{y}
                    870: into~\kbd{x} for the variable number~\kbd{v}.
                    871:
                    872: \fun{int}{gdivise}{GEN x, GEN y}  returns 1 (true) if \kbd{y} divides~\kbd{x},
                    873: 0~otherwise.
                    874:
                    875: \fun{GEN}{gbezout}{GEN x, GEN y, GEN *u, GEN *v} creates the GCD of \kbd{x}
                    876: and~\kbd{y}, and puts (the adresses of) objects $u$ and~$v$ such that
                    877: $u\kbd{x}+v\kbd{y}=\gcd(\kbd{x},\kbd{y})$ into \kbd{*u} and~\kbd{*v}.
                    878: \vfill\eject

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>