Annotation of OpenXM_contrib/pari/doc/usersch5.tex, Revision 1.1.1.1
1.1 maekawa 1: \chapter{Technical Reference Guide for Low-Level Functions}
2: \def\B{\kbd{BIL}}
3: \def\op{{\it op\/}}
4: \def\fun#1#2#3{\noindent{\tt #1 \key{#2}(#3)}:}
5:
6: In this chapter, we give a description all public low-level functions of the
7: PARI system. These essentially include functions for handling all the PARI
8: types. Higher level functions, such as arithmetic or transcendental
9: functions, are described fully in Chapter~3 of this manual.
10:
11: Many other undocumented functions can be found throughout the source code.
12: These private functions are more efficient than the library functions that
13: call them, but much sloppier on argument checking and damage control. Use
14: them at your own risk!
15:
16: \section{Level 0 kernel (operations on unsigned longs)}
17:
18: \noindent
19: For the non-68k versions, we need level 0 operations simulating basic
20: operations of the 68020 processor (on which PARI was originally
21: implemented). The type \tet{ulong} is defined in the file \kbd{parigen.h} as
22: \kbd{unsigned long}. Note that in the prototypes below a \kbd{ulong} is
23: sometimes implicitly typecast to \kbd{int} or \kbd{long}.
24:
25: The global \kbd{ulong} variables \kbd{overflow} (which will contain
26: only 0 or 1) and \kbd{hiremainder} used to be declared in the file
27: \kbd{pariinl.h}. However, for certain architectures they are no longer
28: needed, and/or have been replaced with local variables for efficiency;
29: and the `functions' mentioned below are really chunks of assembler code which
30: will be inlined at each invocation by the compiler. If you really need to
31: use these lowest-level operations directly, make sure you know your way
32: through the PARI kernel sources, and understand the architecture dependencies.
33:
34: To make the following descriptions valid both for 32-bit and 64-bit
35: machines, we will set \B\ to be equal to 32 (resp.~64), an abbreviation of
36: \kbd{BITS\_IN\_LONG}, which is what is actually used in the source code.
37:
38: \fun{int}{addll}{int x, int y} adds the ulongs \kbd{x} and \kbd{y},
39: returns the lower \B\ bits and puts the carry bit into \kbd{overflow}.
40:
41: \fun{int}{addllx}{int x, int y} adds \kbd{overflow} to the sum of the
42: ulongs \kbd{x} and \kbd{y}, returns the lower \B\ bits and puts the
43: carry bit into \kbd{overflow}.
44:
45: \fun{int}{subll}{int x, int y} subtracts the ulongs \kbd{x} and \kbd{y},
46: returns the lower \B\ bits and put the carry (borrow) bit into \kbd{overflow}.
47:
48: \fun{int}{subllx}{int x, int y} subtracts \kbd{overflow} from the
49: difference of the ulongs \kbd{x} and \kbd{y}, returns the lower \B\ bits
50: and puts the carry (borrow) bit into \kbd{overflow}.
51:
52: \fun{int}{shiftl}{ulong x, ulong y} shifts the ulong \kbd{x} left by \kbd{y}
53: bits, returns the lower \B\ bits and stores the high-order \B\ bits into
54: \kbd{hiremainder}. We must have $1\le\kbd{y}\le\B$. In particular, \kbd{y}
55: must be non-zero; the caller is responsible for testing this.
56:
57: \fun{int}{shiftlr}{ulong x, ulong y} shifts the ulong \kbd{x << \B} right
58: by \kbd{y} bits, returns the higher \B\ bits and stores the low-order
59: \B\ bits into \kbd{hiremainder}. We must have $1\le\kbd{y}\le\B$. In
60: particular, \kbd{y} must be non-zero.
61:
62: % break ugly ff ligatures in bfffo
63: \fun{int}{b{}f{}f{}fo}{ulong x} returns the number of leading zero bits in the
64: ulong \kbd{x} (i.e. the number of bit positions by which it would have to be
65: shifted left until its leftmost bit first becomes equal to~1, which can be
66: between 0 and $\B-1$ for nonzero \kbd{x}). When \kbd{x} is~0, \B\ is returned.
67:
68: \fun{int}{mulll}{ulong x, ulong y} multiplies the ulong \kbd{x} by the ulong
69: \kbd{y}, returns the lower \B\ bits and stores the high-order \B\ bits into
70: \kbd{hiremainder}.
71:
72: \fun{int}{addmul}{ulong x, ulong y} adds \kbd{hiremainder} to the product
73: of the ulongs \kbd{x} and \kbd{y}, returns the lower \B\ bits and stores the
74: high-order \B\ bits into \kbd{hiremainder}.
75:
76: \fun{int}{divll}{ulong x, ulong y} returns the Euclidean quotient of
77: (\kbd{hiremainder << \B})${}+{}$\kbd{x} and the ulong divisor \kbd{y} and
78: stores the remainder into \kbd{hiremainder}. An error occurs if the quotient
79: cannot be represented by a ulong, i.e.~if $\kbd{hiremainder}\ge\kbd{y}$
80: initially.
81:
82: \section{Level 1 kernel (operations on longs, integers and reals)}
83:
84: \noindent
85: In this section as elsewhere, \kbd{long} denotes a \B-bit signed C-integer,
86: ``integer'' denotes a PARI multiprecise integer (type \typ{INT}), ``real''
87: denotes a PARI multiprecise real (type \typ{REAL}). Refer to Chapters
88: 1--2 and~4 for general background.
89:
90: \misctitle{Note:} Many functions consist of an elementary operation,
91: immediately followed by an assignment statement. All such functions are
92: obtained using macros (see the file \kbd{paricom.h}), hence you can easily
93: extend the list. Below, they will be introduced like in the following
94: example:
95:
96: \fun{GEN}{gadd[z]}{GEN x, GEN y[, GEN z]} followed by the explicit
97: description of the function
98:
99: \kbd{GEN \key{gadd}(GEN x, GEN y)}
100:
101: \noindent which creates its result on the stack, returning a \kbd{GEN} pointer
102: to it, and the parts in brackets indicate that there exists also a function
103:
104: \kbd{void \key{gaddz}(GEN x, GEN y, GEN z)}
105:
106: \noindent which assigns its result to the pre-existing object
107: \kbd{z}, leaving the stack unchanged.
108:
109: \subsec{Basic unit and subunit handling functions}
110:
111: \fun{long}{typ}{GEN x} returns the type number of~\kbd{x}. (The header files
112: included through \kbd{pari.h} will give you access to the symbolic constants
113: \typ{INT} etc., so you should never need to know the actual numerical values.)
114:
115: \fun{long}{lg}{GEN x} returns the length of~\kbd{x} in \B-bit words.
116:
117: \fun{long}{lgef}{GEN x} returns the effective length of the polynomial \kbd{x}
118: in \B-bit words.
119:
120: \fun{long}{lgefint}{GEN x} returns the effective length of the integer \kbd{x}
121: in \B-bit words.
122:
123: \fun{long}{signe}{GEN x} returns the sign ($-1$, 0 or 1) of~\kbd{x}. Can be
124: used for integers, reals, polynomials and power series (for the last two
125: types, only 0 or 1 are possible).
126:
127: \fun{long}{gsigne}{GEN x} same as \kbd{signe}, but also valid for rational
128: numbers (and marginally less efficient for the other types).
129:
130: \fun{long}{expo}{GEN x} returns the unbiased binary exponent of the real
131: number~\kbd{x}.
132:
133: \fun{long}{gexpo}{GEN x} same as \kbd{expo}, but also valid when \kbd{x}
134: is not a real number. When \kbd{x} is an exact~0, this returns
135: \hbox{\kbd{-HIGHEXPOBIT}}.
136:
137: \fun{long}{expi}{GEN x} returns the binary exponent of the real number equal
138: to the integer~\kbd{x}. This is a special case of \kbd{gexpo} above, covering
139: the case where \kbd{x} is of type~\typ{INT}.
140:
141: \fun{long}{valp}{GEN x} returns the unbiased 16-bit $p$-adic valuation (for
142: a $p$-adic) or $X$-adic valuation (for a power series, taken with respect
143: to the main variable) of~\kbd{x}.
144:
145: \fun{long}{precp}{GEN x} returns the precision of the $p$-adic~\kbd{x}.
146:
147: \fun{long}{varn}{GEN x} returns the variable number of \kbd{x} (between 0 and
148: \kbd{MAXVARN}). Should be used only for polynomials and power series.
149:
150: \fun{long}{gvar}{(GEN x)} returns the main variable number when any variable
151: at all occurs in the composite object~\kbd{x} (the smallest variable number
152: which occurs), and \kbd{BIGINT} otherwise.
153:
154: \fun{void}{settyp}{GEN x, long s} sets the type number of~\kbd{x} to~\kbd{s}.
155: This should be used with extreme care since usually the type is set
156: otherwise, and the components and further codeword fields (which are left
157: unchanged) may not match the PARI conventions for the new type.
158:
159: \fun{void}{setlg}{GEN x, long s} sets the length of~\kbd{x} to~\kbd{s}. Again
160: this should be used with extreme care since usually the length is set
161: otherwise, and increasing the length joins previously unrelated memory words
162: to the root node of~\kbd{x}. This is, however, an extremely efficient way of
163: truncating vectors or polynomials.
164:
165: \fun{void}{setlgef}{GEN x, long s} sets the effective length of \kbd{x}
166: to~\kbd{s}, where \kbd{x} is a polynomial. The number \kbd{s} must be less
167: than or equal to the length of~\kbd{x}.
168:
169: \fun{void}{setlgefint}{GEN x, long s} sets the effective length
170: of the integer \kbd{x} to~\kbd{s}. The number \kbd{s} must be less than or
171: equal to the length of~\kbd{x}.
172:
173: \fun{void}{setsigne}{GEN x, long s} sets the sign of~\kbd{x} to~\kbd{s}.
174: If \kbd{x} is an integer or real, \kbd{s} must be equal to $-1$, 0 or~1,
175: and if \kbd{x} is a polynomial or a power series, \kbd{s} must be equal to
176: 0 or~1.
177:
178: \fun{void}{setexpo}{GEN x, long s} sets the binary exponent of the real
179: number~\kbd{x} to \kbd{s}, after adding the appropriate bias. The unbiased
180: value \kbd{s} must be a 24-bit signed number.
181:
182: \fun{void}{setvalp}{GEN x, long s} sets the $p$-adic or $X$-adic valuation
183: of~\kbd{x} to~\kbd{s}, if \kbd{x} is a $p$-adic or a power series,
184: respectively.
185:
186: \fun{void}{setprecp}{GEN x, long s} sets the $p$-adic precision of the
187: $p$-adic number~\kbd{x} to~\kbd{s}.
188:
189: \fun{void}{setvarn}{GEN x, long s} sets the variable number of the polynomial
190: or power series~\kbd{x} to~\kbd{s} (where $0\le \kbd{s}\le\kbd{MAXVARN}$).
191:
192:
193: \subsec{Memory allocation on the PARI stack}
194:
195: \fun{GEN}{cgetg}{long n, long t} allocates memory on the PARI stack for
196: an object of length \kbd{n} and type~\kbd{t}, and initializes its first
197: codeword.
198:
199: \fun{GEN}{cgeti}{long n} allocates memory on the PARI stack for an
200: integer of length~\kbd{n}, and initializes its first codeword. Identical to
201: {\tt cgetg(n,\typ{INT})}.
202:
203: \fun{GEN}{cgetr}{long n} allocates memory on the PARI stack for a real
204: of length~\kbd{n}, and initializes its first codeword. Identical to
205: {\tt cgetg(n,\typ{REAL})}.
206:
207: \fun{void}{cgiv}{GEN x} frees object \kbd{x} if it is the last created on the
208: PARI stack (otherwise disaster occurs).
209:
210: \fun{GEN}{gerepile}{long p, long q, GEN x} general garbage collector
211: for the PARI stack. See \secref{se:garbage} for a detailed explanation and
212: many examples.
213:
214: \subsec{Assignments, conversions and integer parts}
215:
216: \fun{void}{mpaff}{GEN x, GEN z} assigns \kbd{x} into~\kbd{z} (where
217: \kbd{x} and \kbd{z} are integers or reals).
218:
219: \fun{void}{affsz}{long s, GEN z} assigns the long \kbd{s} into the integer or
220: real~\kbd{z}.
221:
222: \fun{void}{affsi}{long s, GEN z} assigns the long \kbd{s} into the
223: integer~\kbd{z}.
224:
225: \fun{void}{affsr}{long s, GEN z} assigns the long \kbd{s} into the
226: real~\kbd{z}.
227:
228: \fun{void}{affii}{GEN x, GEN z} assigns the integer \kbd{x} into the
229: integer~\kbd{z}.
230:
231: \fun{void}{affir}{GEN x, GEN z} assigns the integer \kbd{x} into the
232: real~\kbd{z}.
233:
234: \fun{void}{affrs}{GEN x, long s} assigns the real \kbd{x} into the
235: long~\kbd{s}\dots not. This is a forbidden assignment in PARI, so an error
236: message is issued.
237:
238: \fun{void}{affri}{GEN x, GEN z} assigns the real \kbd{x} into the
239: integer~\kbd{z}\dots no it doesn't. This is a forbidden assignment in PARI,
240: so an error message is issued.
241:
242: \fun{void}{affrr}{GEN x, GEN z} assigns the real \kbd{x} into the real~\kbd{z}.
243: \smallskip
244:
245: \fun{GEN}{stoi}{long s} creates the PARI integer corresponding to the
246: long~\kbd{s}.
247:
248: \fun{long}{itos}{GEN x} converts the PARI integer \kbd{x} to a C long (if
249: possible, otherwise an error message is issued).
250: \smallskip
251:
252: \fun{GEN}{mptrunc[z]}{GEN x[, GEN z]} truncates the integer or real~\kbd{x}
253: (not the same as the integer part if \kbd{x} is non-integer and negative).
254:
255: \fun{GEN}{mpent[z]}{GEN x[, GEN z]} true integer part of the integer or
256: real~\kbd{x} (i.e.~the \kbd{floor} function).
257:
258: \subsec{Valuation and shift}
259:
260: \fun{long}{vals}{long s} 2-adic valuation of the long~\kbd{s}. Returns $-1$
261: if \kbd{s} is equal to 0, with no error.
262:
263: \fun{long}{vali}{GEN x} 2-adic valuation of the integer~\kbd{x}. Returns $-1$
264: if \kbd{s} is equal to 0, with no error.
265:
266: \fun{GEN}{mpshift[z]}{GEN x, long n[, GEN z]} shifts the real or
267: integer \kbd{x} by~\kbd{n}. If \kbd{n} is positive, this is a left shift,
268: i.e.~multiplication by $2^{\kbd{n}}$. If \kbd{n} is negative, it is a right
269: shift by~$-\kbd{n}$, which amounts to the truncation of the quotient of \kbd{x}
270: by~$2^{-\kbd{n}}$.
271:
272: \fun{GEN}{shifts}{long s, long n} converts the long \kbd{s} into a PARI
273: integer and shifts the value by~\kbd{n}.
274:
275: \fun{GEN}{shifti}{GEN x, long n} shifts the integer~\kbd{x} by~\kbd{n}.
276:
277: \fun{GEN}{shiftr}{GEN x, long n} shifts the real~\kbd{x} by~\kbd{n}.
278:
279: \subsec{Unary operations}
280:
281: \noindent
282: Let ``\op'' be some unary operation of type \kbd{GEN (*)(GEN)}. The names and
283: prototypes of the low-level functions corresponding to \op\ will be as follows.
284:
285: \fun{GEN}{mp\op}{GEN x} creates the result of \op\ applied to the integer
286: or real~\kbd{x}.
287:
288: \fun{GEN}{\op s}{long s} creates the result of \op\ applied to the
289: long~\kbd{s}.
290:
291: \fun{GEN}{\op i}{GEN x} creates the result of \op\ applied to the
292: integer~\kbd{x}.
293:
294: \fun{GEN}{\op r}{GEN x} creates the result of \op\ applied to the real~\kbd{x}.
295:
296: \fun{GEN}{mp\op z}{GEN x, GEN z} assigns the result of applying \op\ to the
297: integer or real~\kbd{x} into the integer or real \kbd{z}.
298:
299: \misctitle{Remark:} it has not been considered useful to include the
300: functions {\tt void \op sz(long,GEN)}, {\tt void \op iz(GEN,GEN)} and
301: {\tt void \op rz(GEN, GEN)}.
302: \smallskip
303:
304: \noindent The above prototype schemes apply to the following operators:
305:
306: \op=\key{neg}: negation ($-$\kbd{x}). The result is of the same type
307: as~\kbd{x}.
308:
309: \op=\key{abs}: absolute value ($|\kbd{x}|$). The result is of the same type
310: as~\kbd{x}.
311:
312: \noindent In addition, there exist the following special unary functions with
313: assignment:
314:
315: \fun{void}{mpinvz}{GEN x, GEN z} assigns the inverse of the integer or
316: real \kbd{x} into the real~\kbd{z}. The inverse is computed as a quotient
317: of real numbers, not as a Euclidean division.
318:
319: \fun{void}{mpinvsr}{long s, GEN z} assigns the inverse of the long \kbd{s}
320: into the real~\kbd{z}.
321:
322: \fun{void}{mpinvir}{GEN x, GEN z} assigns the inverse of the integer \kbd{x}
323: into the real~\kbd{z}.
324:
325: \fun{void}{mpinvrr}{GEN x, GEN z} assigns the inverse of the real \kbd{x} into
326: the real~\kbd{z}.
327:
328: \subsec{Comparison operators}
329:
330: \fun{long}{mpcmp}{GEN x, GEN y} compares the integer or real \kbd{x} to the
331: integer or real~\kbd{y}. The result is the sign of $\kbd{x}-\kbd{y}$.
332:
333: \fun{long}{cmpss}{long s, long t} returns the sign of $\kbd{s}-\kbd{t}$.
334:
335: \fun{long}{cmpsi}{long s, GEN x} compares the long \kbd{s} to the
336: integer~\kbd{x}.
337:
338: \fun{long}{cmpsr}{long s, GEN x} compares the long \kbd{s} to the real~\kbd{x}.
339:
340: \fun{long}{cmpis}{GEN x, long s} compares the integer \kbd{x} to the
341: long~\kbd{s}.
342:
343: \fun{long}{cmpii}{GEN x, GEN y} compares the integer \kbd{x} to the
344: integer~\kbd{y}.
345:
346: \fun{long}{cmpir}{GEN x, GEN y} compares the integer \kbd{x} to the
347: real~\kbd{y}.
348:
349: \fun{long}{cmprs}{GEN x, long s} compares the real \kbd{x} to the
350: long~\kbd{s}.
351:
352: \fun{long}{cmpri}{GEN x, GEN y} compares the real \kbd{x} to the
353: integer~\kbd{y}.
354:
355: \fun{long}{cmprr}{GEN x, GEN y} compares the real \kbd{x} to the real~\kbd{y}.
356:
357: \subsec{Binary operations}
358:
359: \noindent
360: Let ``\op'' be some operation of type \kbd{GEN (*)(GEN,GEN)}. The names and
361: prototypes of the low-level functions corresponding to \op\ will be as follows.
362: In this section, the \kbd{z} argument in the \kbd{z}-functions must be of type
363: \typ{INT} or~\typ{REAL}.
364:
365: \fun{GEN}{mp\op[z]}{GEN x, GEN y[, GEN z]} applies \op\ to
366: the integer-or-reals \kbd{x} and~\kbd{y}.
367:
368: \fun{GEN}{\op ss[z]}{long s, long t[, GEN z]} applies \op\ to the longs
369: \kbd{s} and~\kbd{t}.
370:
371: \fun{GEN}{\op si[z]}{long s, GEN x[, GEN z]} applies \op\ to the long \kbd{s}
372: and the integer~\kbd{x}.
373:
374: \fun{GEN}{\op sr[z]}{long s, GEN x[, GEN z]} applies \op\ to the long \kbd{s}
375: and the real~\kbd{x}.
376:
377: \fun{GEN}{\op is[z]}{GEN x, long s[, GEN z]} applies \op\ to the
378: integer \kbd{x} and the long~\kbd{s}.
379:
380: \fun{GEN}{\op ii[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the
381: integers \kbd{x} and~\kbd{y}.
382:
383: \fun{GEN}{\op ir[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the
384: integer \kbd{x} and the real~\kbd{y}.
385:
386: \fun{GEN}{\op rs[z]}{GEN x, long s[, GEN z]} applies \op\ to the real \kbd{x}
387: and the long~\kbd{s}.
388:
389: \fun{GEN}{\op ri[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the real \kbd{x}
390: and the integer~\kbd{y}.
391:
392: \fun{GEN}{\op rr[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the reals \kbd{x}
393: and~\kbd{y}.
394: \smallskip
395: \noindent Each of the above can be used with the following operators.
396:
397: \op=\key{add}: addition (\kbd{x + y}). The result is real unless both \kbd{x}
398: and \kbd{y} are integers (or longs).
399:
400: \op=\key{sub}: subtraction (\kbd{x - y}). The result is real unless both
401: \kbd{x} and \kbd{y} are integers (or longs).
402:
403: \op=\key{mul}: multiplication (\kbd{x * y}). The result is real unless both
404: \kbd{x} and \kbd{y} are integers (or longs), OR if \kbd{x} or \kbd{y} is the
405: integer or long zero.
406:
407: \op=\key{div}: division (\kbd{x / y}). In the case where \kbd{x} and \kbd{y}
408: are both integers or longs, the result is the Euclidean quotient, where the
409: remainder has the same sign as the dividend~\kbd{x}. If one of \kbd{x} or
410: \kbd{y} is real, the result is real unless \kbd{x} is the integer or long
411: zero. A division-by-zero error occurs if \kbd{y} is equal to zero.
412:
413: \op=\key{res}: remainder (``\kbd{x \% y}''). This operation is defined only
414: when \kbd{x} and \kbd{y} are longs or integers. The result is the Euclidean
415: remainder corresponding to \kbd{div},~i.e. its sign is that of the
416: dividend~\kbd{x}. The result is always an integer.
417:
418: \op=\key{mod}: remainder (\kbd{x \% y}). This operation is defined only when
419: \kbd{x} and \kbd{y} are longs or integers. The result is the true Euclidean
420: remainder, i.e.~non-negative and less than the absolute value of~\kbd{y}.
421:
422: \subsec{Division with remainder}: the following functions return two objects,
423: unless specifically asked for only one of them~--- a quotient and a remainder.
424: The remainder will be created on the stack, and a \kbd{GEN} pointer to this
425: object will be returned through the variable whose address is passed as the
426: \kbd{r} argument.
427:
428: \fun{GEN}{dvmdss}{long s, long t, GEN *r} creates the Euclidean
429: quotient and remainder of the longs \kbd{s} and~\kbd{t}. If \kbd{r} is not
430: \kbd{NULL} or \kbd{ONLY\_REM}, this puts the remainder into \kbd{*r},
431: and returns the quotient. If \kbd{r} is equal to \kbd{NULL}, only the
432: quotient is returned. If \kbd{r} is equal to \kbd{ONLY\_REM}, the remainder
433: is returned instead of the quotient. In the generic case, the remainder is
434: created after the quotient and can be disposed of individually with a
435: \kbd{cgiv(r)}. The remainder is always of the sign of the dividend~\kbd{s}.
436:
437: \fun{GEN}{dvmdsi}{long s, GEN x, GEN *r} creates the Euclidean
438: quotient and remainder of the long \kbd{s} by the integer~\kbd{x}.
439: Obeys the same conventions with respect to~\kbd{r}.
440:
441: \fun{GEN}{dvmdis}{GEN x, long s, GEN *r} create the Euclidean
442: quotient and remainder of the integer x by the long~s.
443:
444: \fun{GEN}{dvmdii}{GEN x, GEN y, GEN *r} returns the Euclidean quotient
445: of the integer \kbd{x} by the integer \kbd{y} and puts the remainder
446: into~\kbd{*r}. If \kbd{r} is equal to \kbd{NULL}, the remainder is not
447: created, and if \kbd{r} is equal to \kbd{ONLY\_REM}, only the remainder
448: is created and returned. In the generic case, the remainder is created
449: after the quotient and can be disposed of individually with a \kbd{cgiv(r)}.
450: The remainder is always of the sign of the dividend~\kbd{x}.
451:
452: \fun{GEN}{truedvmdii}{GEN x, GEN y, GEN *r}, as \kbd{dvmdii} but with a
453: non-negative remainder.
454:
455: \fun{void}{mpdvmdz}{GEN x, GEN y, GEN z, GEN *r} assigns the Euclidean
456: quotient of the integers \kbd{x} and \kbd{y} into the integer or real~\kbd{z},
457: putting the remainder into~\kbd{*r} (unless \kbd{r} is equal to \kbd{NULL} or
458: \kbd{ONLY\_REM} as above).
459:
460: \fun{void}{dvmdssz}{long s, long t, GEN z, GEN *r} assigns the Euclidean
461: quotient of the longs \kbd{s} and \kbd{t} into the integer or real~\kbd{z},
462: putting the remainder into~\kbd{*r} (unless \kbd{r} is equal to \kbd{NULL} or
463: \kbd{ONLY\_REM} as above).
464:
465: \fun{void}{dvmdsiz}{long s, GEN x, GEN z, GEN *r} assigns the Euclidean
466: quotient of the long \kbd{s} and the integer \kbd{x} into the integer or
467: real~\kbd{z}, putting the remainder into \kbd{*r} (unless \kbd{r} is equal
468: to \kbd{NULL} or \kbd{ONLY\_REM} as above).
469:
470: \fun{void}{dvmdisz}{GEN x, long s, GEN z, GEN *r} assigns the Euclidean
471: quotient of the integer \kbd{x} and the long \kbd{s} into the integer or
472: real~\kbd{z}, putting the remainder into~\kbd{*r} (unless \kbd{r} is equal
473: to \kbd{NULL} or \kbd{ONLY\_REM} as above).
474:
475: \fun{void}{dvmdiiz}{GEN x, GEN y, GEN z, GEN *r} assigns the Euclidean
476: quotient of the integers \kbd{x} and \kbd{y} into the integer or real~\kbd{z},
477: putting the address of the remainder into~\kbd{*r} (unless \kbd{r} is equal
478: to \kbd{NULL} or \kbd{ONLY\_REM} as above).
479:
480: \subsec{Miscellaneous functions}
481:
482: \fun{void}{addsii}{long s, GEN x, GEN z} assigns the sum of the long \kbd{s}
483: and the integer \kbd{x} into the integer~\kbd{z} (essentially identical to
484: \kbd{addsiz} except that \kbd{z} is specifically an integer).
485:
486: \fun{long}{divise}{GEN x, GEN y} if the integer \kbd{y} divides the
487: integer~\kbd{x}, returns 1 (true), otherwise returns 0 (false).
488:
489: \fun{long}{divisii}{GEN x, long s, GEN z} assigns the Euclidean quotient of
490: the integer \kbd{x} and the long \kbd{s} into the integer \kbd{z}, and returns
491: the remainder as a long.
492:
493: \fun{long}{mpdivis}{GEN x, GEN y, GEN z} if the integer \kbd{y} divides the
494: integer~\kbd{x}, assigns the quotient to the integer~\kbd{z} and returns
495: 1 (true), otherwise returns 0 (false).
496:
497: \fun{void}{mulsii}{long s, GEN x, GEN z} assigns the product of the long
498: \kbd{s} and the integer \kbd{x} into the integer~\kbd{z} (essentially
499: dentical to \kbd{mulsiz} except that \kbd{z} is specifically an integer).
500:
501: \section{Level 2 kernel (operations on general PARI objects)}
502:
503: \noindent The functions available to handle subunits are the following.
504:
505: \fun{GEN}{compo}{GEN x, long n} creates a copy of the \kbd{n}-th true
506: component (i.e.\ not counting the codewords) of the object~\kbd{x}.
507:
508: \fun{GEN}{truecoeff}{GEN x, long n} creates a copy of the coefficient of
509: degree~\kbd{n} of~\kbd{x} if \kbd{x} is a scalar, polynomial or power series,
510: and otherwise of the \kbd{n}-th component of~\kbd{x}.
511:
512: \noindent % borderline case -- looks better like this [GN]
513: The remaining two are macros, NOT functions (see \secref{se:typecast} for a
514: detailed explanation):
515:
516: \fun{long}{coeff}{GEN x, long i, long j} applied to a matrix \kbd{x} (type
517: \typ{MAT}), this gives the address of the coefficient at row \kbd{i} and
518: column~\kbd{j} of~\kbd{x}.
519:
520: \fun{long}{mael$n$}{GEN x, long $a_1$, ..., long $a_n$} stands for
521: \kbd{x[$a_1$][$a_2$]...[$a_n$]}, where $2\le n \le 5$, with all the
522: necessary typecasts.
523:
524: \subsec{Copying and conversion}
525:
526: \fun{GEN}{cgetp}{GEN x} creates space sufficient to hold the $p$-adic~\kbd{x},
527: and sets the prime $p$ and the $p$-adic precision to those of~\kbd{x}, but
528: does not copy (the $p$-adic unit or zero representative and the modulus
529: of)~\kbd{x}.
530:
531: \fun{GEN}{gcopy}{GEN x} creates a new copy of the object~\kbd{x} on the PARI
532: stack. For permanent subobjects, only the pointer is copied.
533:
534: \fun{GEN}{forcecopy}{GEN x} same as \key{copy} except that even permanent
535: subobjects are copied onto the stack.
536:
537: \fun{long}{taille}{GEN x} returns the total number of \B-bit words occupied
538: by the tree representing~\kbd{x}.
539:
540: \fun{GEN}{gclone}{GEN x} creates a new permanent copy of the object \kbd{x}
541: on the heap.
542:
543: \fun{GEN}{greffe}{GEN x, long l, int use\_stack} applied to a
544: polynomial~\kbd{x} (type \typ{POL}), creates a power series (type \typ{SER})
545: of length~\kbd{l} starting with~\kbd{x}, but without actually copying the
546: coefficients, just the pointers. If \kbd{use\_stack} is zero, this is created
547: through malloc, and must be freed after use. Intended for internal use only.
548:
549: \fun{double}{rtodbl}{GEN x} applied to a real~\kbd{x} (type \typ{REAL}),
550: converts \kbd{x} into a C double if possible.
551:
552: \fun{GEN}{dbltor}{double x} converts the C double \kbd{x} into a PARI real.
553:
554: \fun{double}{gtodouble}{GEN x} if \kbd{x} is a real number (but not
555: necessarily of type \typ{REAL}), converts \kbd{x} into a C double if possible.
556:
557: \fun{long}{gtolong}{GEN x} if \kbd{x} is an integer (not a C long,
558: but not necessarily of type \typ{INT}), converts \kbd{x} into a C long
559: if possible.
560:
561: \fun{GEN}{gtopoly}{GEN x, long v} converts or truncates the object~\kbd{x}
562: into a polynomial with main variable number~\kbd{v}. A common application
563: would be the conversion of coefficient vectors.
564:
565: \fun{GEN}{gtopolyrev}{GEN x, long v} converts or truncates the object~\kbd{x}
566: into a polynomial with main variable number~\kbd{v}, but vectors are converted
567: in reverse order.
568:
569: \fun{GEN}{gtoser}{GEN x, long v} converts the object~\kbd{x} into a power
570: series with main variable number~\kbd{v}.
571:
572: \fun{GEN}{gtovec}{GEN x} converts the object~\kbd{x} into a (row) vector.
573:
574: \fun{GEN}{co8}{GEN x, long l} applied to a quadratic number~\kbd{x}
575: (type \typ{QUAD}), converts \kbd{x} into a real or complex number
576: depending on the sign of the discriminant of~\kbd{x}, to precision
577: \hbox{\kbd{l} \B-bit} words.% absolutely forbid line brk at hyphen here [GN]
578:
579: \fun{GEN}{gcvtop}{GEN x, GEN p, long l} converts \kbd{x} into a \kbd{p}-adic
580: number of precision~\kbd{l}.
581:
582: \fun{GEN}{gmodulcp}{GEN x, GEN y} creates the object \kbd{\key{Mod}(x,y)}
583: on the PARI stack, where \kbd{x} and \kbd{y} are either both integers, and
584: the result is an integermod (type \typ{INTMOD}), or \kbd{x} is a scalar or
585: a polynomial and \kbd{y} a polynomial, and the result is a polymod
586: (type \typ{POLMOD}).
587:
588: \fun{GEN}{gmodulgs}{GEN x, long y} same as \key{gmodulcp} except \kbd{y} is a
589: \kbd{long}.
590:
591: \fun{GEN}{gmodulss}{long x, long y} same as \key{gmodulcp} except both \kbd{x}
592: and \kbd{y} are \kbd{long}s.
593:
594: \fun{GEN}{gmodulo}{GEN x, GEN y} same as \key{gmodulcp} except that the
595: modulus \kbd{y} is copied onto the heap and not onto the PARI stack.
596:
597: \fun{long}{gexpo}{GEN x} returns the binary exponent of \kbd{x} or the maximal
598: binary exponent of the coefficients of~\kbd{x}. Returns
599: \hbox{\kbd{-HIGHEXPOBIT}} if \kbd{x} has no components or is an exact zero.
600:
601: \fun{long}{gsize}{GEN x} returns 0 if \kbd{x} is exactly~0. Otherwise,
602: returns \kbd{\key{gexpo}(x)} multiplied by $\log_{10}(2)$. This gives a
603: crude estimate for the maximal number of decimal digits of the components
604: of~\kbd{x}.
605:
606: \fun{long}{gsigne}{GEN x} returns the sign of~\kbd{x} ($-1$, 0 or 1) when
607: \kbd{x} is an integer, real or (irreducible or reducible) fraction. Raises
608: an error for all other types.
609:
610: \fun{long}{gvar}{GEN x} returns the main variable of~\kbd{x}. If no component
611: of~\kbd{x} is a polynomial or power series, this returns \kbd{BIGINT}.
612:
613: \fun{int}{precision}{GEN x} If \kbd{x} is of type \typ{REAL}, returns the
614: precision of~\kbd{x} (the length of \kbd{x} in \B-bit words if \kbd{x} is
615: not zero, and a reasonable quantity obtained from the exponent of \kbd{x}
616: if \kbd{x} is numerically equal to zero). If \kbd{x} is of type \typ{COMPLEX},
617: returns the minimum of the precisions of the real and imaginary part.
618: Otherwise, returns~0 (which stands in fact for infinite precision).
619:
620: \subsec{Comparison operators and valuations}
621:
622: \fun{int}{gcmp0}{GEN x} returns 1 (true) if \kbd{x} is equal to~0, 0~(false)
623: otherwise.
624:
625: \fun{int}{isexactzero}{GEN x} returns 1 (true) if \kbd{x} is exactly equal
626: to~0, 0~(false) otherwise. Note that many PARI functions will return a
627: pointer to \key{gzero} when they are aware that the result they return is
628: an exact zero, so it is almost always faster to test for pointer equality
629: first, and call \key{isexactzero} (or \key{gcmp0}) only when the first
630: test fails.
631:
632: \fun{int}{gcmp1}{GEN x} returns 1 (true) if \kbd{x} is equal to~1, 0~(false)
633: otherwise.
634:
635: \fun{int}{gcmp\_1}{GEN x} returns 1 (true) if \kbd{x} is equal to~$-1$,
636: 0~(false) otherwise.
637:
638: \fun{long}{gcmp}{GEN x, GEN y} comparison of \kbd{x} with \kbd{y} (returns
639: the sign of $\kbd{x}-\kbd{y}$).
640:
641: \fun{long}{gcmpsg}{long s, GEN x} comparison of the long \kbd{s} with~\kbd{x}.
642:
643: \fun{long}{gcmpgs}{GEN x, long s} comparison of \kbd{x} with the long~\kbd{s}.
644:
645: \fun{long}{lexcmp}{GEN x, GEN y} comparison of \kbd{x} with \kbd{y} for the
646: lexicographic ordering.
647:
648: \fun{long}{gegal}{GEN x, GEN y} returns 1 (true) if \kbd{x} is equal
649: to~\kbd{y}, 0~otherwise.
650:
651: \fun{long}{gegalsg}{long s, GEN x} returns 1 (true) if the long \kbd{s} is
652: equal to~\kbd{x}, 0~otherwise.
653:
654: \fun{long}{gegalgs}{GEN x, long s} returns 1 (true) if \kbd{x} is equal to
655: the long~\kbd{s}, 0~otherwise.
656:
657: \fun{long}{iscomplex}{GEN x} returns 1 (true) if \kbd{x} is a complex number
658: (of component types embeddable into the reals) but is not itself real, 0~if
659: \kbd{x} is a real (not necessarily of type \typ{REAL}), or raises an error
660: if \kbd{x} is not embeddable into the complex numbers.
661:
662: \fun{long}{ismonome}{GEN x} returns 1 (true) if \kbd{x} is a non-zero monomial
663: in its main variable, 0~otherwise.
664:
665: \fun{long}{ggval}{GEN x, GEN p} returns the greatest exponent~$e$ such that
666: $\kbd{p}^e$ divides~\kbd{x}, when this makes sense.
667:
668: \fun{long}{gval}{GEN x, long v} returns the highest power of the variable
669: number \kbd{v} dividing the polynomial~\kbd{x}.
670:
671: \fun{int}{pvaluation}{GEN x, GEN p, GEN *r} applied to non-zero integers
672: \kbd{x} and~\kbd{p}, returns the highest exponent $e$ such that
673: $\kbd{p}^{e}$ divides~\kbd{x}, creates the quotient $\kbd{x}/\kbd{p}^{e}$
674: and returns its address in~\kbd{*r}.
675: In particular, if \kbd{p} is a prime, this returns the valuation at \kbd{p}
676: of~\kbd{x}, and \kbd{*r} will obtain the prime-to-\kbd{p} part of~\kbd{x}.
677:
678: \subsec{Assignment statements}
679:
680: \fun{void}{gaffsg}{long s, GEN x} assigns the long \kbd{s} into the
681: object~\kbd{x}.
682:
683: \fun{void}{gaffect}{GEN x, GEN y} assigns the object \kbd{x} into the
684: object~\kbd{y}.
685:
686: \subsec{Unary operators}
687:
688: \fun{GEN}{gneg[\key{z}]}{GEN x[, GEN z]} yields $-\kbd{x}$.
689:
690: \fun{GEN}{gabs[\key{z}]}{GEN x[, GEN z]} yields $|\kbd{x}|$.
691:
692: \fun{GEN}{gsqr}{GEN x} creates the square of~\kbd{x}.
693:
694: \fun{GEN}{ginv}{GEN x} creates the inverse of~\kbd{x}.
695:
696: \fun{GEN}{gfloor}{GEN x} creates the floor of~\kbd{x}, i.e.\ the (true)
697: integral part.
698:
699: \fun{GEN}{gfrac}{GEN x} creates the fractional part of~\kbd{x}, i.e.\ \kbd{x}
700: minus the floor of~\kbd{x}.
701:
702: \fun{GEN}{gceil}{GEN x} creates the ceiling of~\kbd{x}.
703:
704: \fun{GEN}{ground}{GEN x} rounds the components of \kbd{x} to the nearest
705: integers. Exact half-integers are rounded towards~$+\infty$.
706:
707: \fun{GEN}{grndtoi}{GEN x, long *e} same as \key{round}, but in addition puts
708: minus the number of significant binary bits left after rounding into~\kbd{*e}.
709: If \kbd{*e} is positive, all significant bits have been lost. This kind of
710: situation raises an error message in \key{ground} but not in \key{grndtoi}.
711:
712: \fun{GEN}{gtrunc}{GEN x} truncates~\kbd{x}. This is the (false) integer part
713: if \kbd{x} is an integer (i.e.~the unique integer closest to \kbd{x} among
714: those between 0 and~\kbd{x}). If \kbd{x} is a series, it will be truncated
715: to a polynomial; if \kbd{x} is a rational function, this takes the
716: polynomial part.
717:
718: \fun{GEN}{gcvtoi}{GEN x, long *e} same as \key{grndtoi} except that
719: rounding is replaced by truncation.
720:
721: \fun{GEN}{gred[z]}{GEN x[, GEN z]} reduces \kbd{x} to lowest terms if \kbd{x}
722: is a fraction or rational function (types \typ{FRAC}, \typ{FRACN},
723: \typ{RFRAC} and \typ{RFRACN}), otherwise creates a copy of~\kbd{x}.
724:
725: \fun{GEN}{content}{GEN x} creates the GCD of all the components of~\kbd{x}.
726:
727: \fun{GEN}{normalize}{GEN x} applied to an unnormalized power series~\kbd{x}
728: (i.e.~type \typ{SER} with all coefficients correctly set except that \kbd{x[2]}
729: might be zero), normalizes \kbd{x} correctly in place. Returns~\kbd{x}.
730: For internal use.
731:
732: \fun{GEN}{normalizepol}{GEN x} applied to an unnormalized polynomial~\kbd{x}
733: (i.e.~type \typ{POL} with all coefficients correctly set except that \kbd{x[2]}
734: might be zero), normalizes \kbd{x} correctly in place and returns~\kbd{x}.
735: For internal use.
736:
737: \subsec{Binary operators}
738:
739: \fun{GEN}{gmax[z]}{GEN x, GEN y[, GEN z]} yields the maximum of the objects
740: \kbd{x} and~\kbd{y} if they can be compared.
741:
742: \fun{GEN}{gmaxsg[z]}{long s, GEN x[, GEN z]} yields the maximum of the long
743: \kbd{s} and the object~\kbd{x}.
744:
745: \fun{GEN}{gmaxgs[z]}{GEN x, long s[, GEN z]} yields the maximum of the object
746: \kbd{x} and the long~\kbd{s}.
747:
748: \fun{GEN}{gmin[z]}{GEN x, GEN y[, GEN z]} yields the minimum of the objects
749: \kbd{x} and~\kbd{y} if they can be compared.
750:
751: \fun{GEN}{gminsg[z]}{long s, GEN x[, GEN z]} yields the minimum of the long
752: \kbd{s} and the object~\kbd{x}.
753:
754: \fun{GEN}{gmings[z]}{GEN x, long s[, GEN z]} yields the minimum of the object
755: \kbd{x} and the long~\kbd{s}.
756:
757: \fun{GEN}{gadd[z]}{GEN x, GEN y[, GEN z]} yields the sum of the objects \kbd{x}
758: and~\kbd{y}.
759:
760: \fun{GEN}{gaddsg[z]}{long s, GEN x[, GEN z]} yields the sum of the long \kbd{s}
761: and the object~\kbd{x}.
762:
763: \fun{GEN}{gaddgs[z]}{GEN x, long s[, GEN z]} yields the sum of the object
764: \kbd{x} and the long~\kbd{s}.
765:
766: \fun{GEN}{gsub[z]}{GEN x, GEN y[, GEN z]} yields the difference of the objects
767: \kbd{x} and~\kbd{y}.
768:
769: \fun{GEN}{gsubgs[z]}{GEN x, long s[, GEN z]} yields the difference of the
770: object \kbd{x} and the long~\kbd{s}.
771:
772: \fun{GEN}{gsubsg[z]}{long s, GEN x[, GEN z]} yields the difference of the
773: long \kbd{s} and the object~\kbd{x}.
774:
775: \fun{GEN}{gmul[z]}{GEN x, GEN y[, GEN z]} yields the product of the objects
776: \kbd{x} and~\kbd{y}.
777:
778: \fun{GEN}{gmulsg[z]}{long s, GEN x[, GEN z]} yields the product of the long
779: \kbd{s} with the object~\kbd{x}.
780:
781: \fun{GEN}{gmulgs[z]}{GEN x, long s[, GEN z]} yields the product of the object
782: \kbd{x} with the long~\kbd{s}.
783:
784: \fun{GEN}{gshift[z]}{GEN x, long n[, GEN z]} yields the result of shifting
785: (the components of) \kbd{x} left by \kbd{n} (if \kbd{n} is non-negative)
786: or right by $-\kbd{n}$ (if \kbd{n} is negative).
787: Applies only to integers, reals and vectors/matrices of such. For other
788: types, it is simply multiplication by~$2^{\kbd{n}}$.
789:
790: \fun{GEN}{gmul2n[z]}{GEN x, long n[, GEN z]} yields the product of \kbd{x}
791: and~$2^{\kbd{n}}$. This is different from \kbd{gshift} when \kbd{n} is negative
792: and \kbd{x} is of type \typ{INT}: \key{gshift} truncates, while \key{gmul2n}
793: creates a fraction if necessary.
794:
795: \fun{GEN}{gdiv[z]}{GEN x, GEN y[, GEN z]} yields the quotient of the objects
796: \kbd{x} and~\kbd{y}.
797:
798: \fun{GEN}{gdivgs[z]}{GEN x, long s[, GEN z]} yields the quotient of the object
799: \kbd{x} and the long~\kbd{s}.
800:
801: \fun{GEN}{gdivsg[z]}{long s, GEN x[, GEN z]} yields the quotient of the long
802: \kbd{s} and the object~\kbd{x}.
803:
804: \fun{GEN}{gdivent[z]}{GEN x, GEN y[, GEN z]} yields the true Euclidean
805: quotient of \kbd{x} and the integer or polynomial~\kbd{y}.
806:
807: \fun{GEN}{gdiventsg[z]}{long s, GEN x[, GEN z]} yields the true Euclidean
808: quotient of the long \kbd{s} by the integer~\kbd{x}.
809:
810: \fun{GEN}{gdiventgs[z]}{GEN x, long s[, GEN z]} yields the true Euclidean
811: quotient of the integer \kbd{x} by the long~\kbd{s}.
812:
813: \fun{GEN}{gdiventres}{GEN x, GEN y} creates a 2-component vertical
814: vector whose components are the true Euclidean quotient and remainder
815: of \kbd{x} and~\kbd{y}.
816:
817: \fun{GEN}{gdivmod}{GEN x, GEN y, GEN *r} If \kbd{r} is not equal to
818: \kbd{NULL} or \kbd{ONLY\_REM}, creates the (false) Euclidean quotient of
819: \kbd{x} and~\kbd{y}, and puts (the address of) the remainder into~\kbd{*r}.
820: If \kbd{r} is equal to \kbd{NULL}, do not create the remainder, and if
821: \kbd{r} is equal to \kbd{ONLY\_REM}, create and output only the remainder.
822: The remainder is created after the quotient and can be disposed of
823: individually with a \kbd{cgiv(r)}.
824:
825: \fun{GEN}{poldivres}{GEN x, GEN y, GEN *r} same as \key{gdivmod} but
826: specifically for polynomials \kbd{x} and~\kbd{y}.
827:
828: \fun{GEN}{gdeuc}{GEN x, GEN y} creates the Euclidean quotient of the
829: polynomials \kbd{x} and~\kbd{y}.
830:
831: \fun{GEN}{gdivround}{GEN x, GEN y} if \kbd{x} and \kbd{y} are integers,
832: returns the quotient $\kbd{x}/\kbd{y}$ of \kbd{x} and~\kbd{y}, rounded to
833: the nearest integer. If $\kbd{x}/\kbd{y}$ falls exactly halfway between
834: two consecutive integers, then it is rounded towards~$+\infty$ (as for
835: \key{round}). If \kbd{x} and \kbd{y} are not both integers, the result
836: is the same as that of \key{gdivent}.
837:
838: \fun{GEN}{gmod[z]}{GEN x, GEN y[, GEN z]} yields the true remainder of \kbd{x}
839: modulo the integer or polynomial~\kbd{y}.
840:
841: \fun{GEN}{gmodsg[z]}{long s, GEN x[, GEN z]} yields the true remainder of the
842: long \kbd{s} modulo the integer~\kbd{x}.
843:
844: \fun{GEN}{gmodgs[z]}{GEN x, long s[, GEN z]} yields the true remainder of the
845: integer \kbd{x} modulo the long~\kbd{s}.
846:
847: \fun{GEN}{gres}{GEN x, GEN y} creates the Euclidean remainder of the
848: polynomial \kbd{x} divided by the polynomial~\kbd{y}.
849:
850: \fun{GEN}{ginvmod}{GEN x, GEN y} creates the inverse of \kbd{x} modulo \kbd{y}
851: when it exists.
852:
853: \fun{GEN}{gpow}{GEN x, GEN y, long l} creates $\kbd{x}^{\kbd{y}}$. The
854: precision \kbd{l} is taken into account only if \kbd{y} is not an integer
855: and \kbd{x} is an exact object. If \kbd{y} is an integer, binary powering
856: is done. Otherwise, the result is $\exp(\kbd{y}*\log(\kbd{x}))$ computed
857: to precision~\kbd{l}.
858:
859: \fun{GEN}{ggcd}{GEN x, GEN y} creates the GCD of \kbd{x} and~\kbd{y}.
860:
861: \fun{GEN}{glcm}{GEN x, GEN y} creates the LCM of \kbd{x} and~\kbd{y}.
862:
863: \fun{GEN}{subres}{GEN x, GEN y} creates the resultant of the polynomials
864: \kbd{x} and~\kbd{y} computed using the subresultant algorithm.
865:
866: \fun{GEN}{gpowgs}{GEN x, long n} creates $\kbd{x}^{\kbd{n}}$ using
867: binary powering.
868:
869: \fun{GEN}{gsubst}{GEN x, long v, GEN y} substitutes the object \kbd{y}
870: into~\kbd{x} for the variable number~\kbd{v}.
871:
872: \fun{int}{gdivise}{GEN x, GEN y} returns 1 (true) if \kbd{y} divides~\kbd{x},
873: 0~otherwise.
874:
875: \fun{GEN}{gbezout}{GEN x, GEN y, GEN *u, GEN *v} creates the GCD of \kbd{x}
876: and~\kbd{y}, and puts (the adresses of) objects $u$ and~$v$ such that
877: $u\kbd{x}+v\kbd{y}=\gcd(\kbd{x},\kbd{y})$ into \kbd{*u} and~\kbd{*v}.
878: \vfill\eject
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>