[BACK]Return to alglin1.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari / src / basemath

Annotation of OpenXM_contrib/pari/src/basemath/alglin1.c, Revision 1.1.1.1

1.1       maekawa     1: /********************************************************************/
                      2: /**                                                                **/
                      3: /**                         LINEAR ALGEBRA                         **/
                      4: /**                          (first part)                          **/
                      5: /**                                                                **/
                      6: /********************************************************************/
                      7: /* $Id: alglin1.c,v 1.1.1.1 1999/09/16 13:47:15 karim Exp $ */
                      8: #include "pari.h"
                      9:
                     10: /*******************************************************************/
                     11: /*                                                                 */
                     12: /*                         TRANSPOSE                               */
                     13: /*                                                                 */
                     14: /*******************************************************************/
                     15:
                     16: GEN
                     17: gtrans(GEN x)
                     18: {
                     19:   long i,j,lx,dx, tx=typ(x);
                     20:   GEN y,p1;
                     21:
                     22:   if (! is_matvec_t(tx)) err(typeer,"gtrans");
                     23:   switch(tx)
                     24:   {
                     25:     case t_VEC:
                     26:       y=gcopy(x); settyp(y,t_COL); break;
                     27:
                     28:     case t_COL:
                     29:       y=gcopy(x); settyp(y,t_VEC); break;
                     30:
                     31:     case t_MAT:
                     32:       lx=lg(x); if (lx==1) return cgetg(1,t_MAT);
                     33:       dx=lg(x[1]); y=cgetg(dx,tx);
                     34:       for (i=1; i<dx; i++)
                     35:       {
                     36:        p1=cgetg(lx,t_COL); y[i]=(long)p1;
                     37:        for (j=1; j<lx; j++) p1[j]=lcopy(gcoeff(x,i,j));
                     38:       }
                     39:       break;
                     40:
                     41:     default: y=gcopy(x); break;
                     42:   }
                     43:   return y;
                     44: }
                     45:
                     46: /*******************************************************************/
                     47: /*                                                                 */
                     48: /*                    CONCATENATION & EXTRACTION                   */
                     49: /*                                                                 */
                     50: /*******************************************************************/
                     51:
                     52: static GEN
                     53: strconcat(GEN x, GEN y)
                     54: {
                     55:   long flx=0,fly=0,l;
                     56:   char *sx,*sy,*str;
                     57:
                     58:   if (typ(x)==t_STR) sx = GSTR(x); else { flx=1; sx = GENtostr(x); }
                     59:   if (typ(y)==t_STR) sy = GSTR(y); else { fly=1; sy = GENtostr(y); }
                     60:   l = strlen(sx) + strlen(sy) + 1;
                     61:   l = (l+BYTES_IN_LONG) >> TWOPOTBYTES_IN_LONG;
                     62:   x = cgetg(l+1, t_STR); str = GSTR(x);
                     63:   strcpy(str,sx);
                     64:   strcat(str,sy);
                     65:   if (flx) free(sx);
                     66:   if (fly) free(sy);
                     67:   return x;
                     68: }
                     69:
                     70: GEN
                     71: concatsp(GEN x, GEN y)
                     72: {
                     73:   long tx=typ(x),ty=typ(y),lx=lg(x),ly=lg(y),i;
                     74:   GEN z,p1;
                     75:
                     76:   if (tx==t_LIST || ty==t_LIST) return listconcat(x,y);
                     77:   if (tx==t_STR  || ty==t_STR)  return strconcat(x,y);
                     78:
                     79:   if (tx==t_MAT && lx==1)
                     80:   {
                     81:     if (ty!=t_VEC || ly==1) return gtomat(y);
                     82:     err(concater);
                     83:   }
                     84:   if (ty==t_MAT && ly==1)
                     85:   {
                     86:     if (tx!=t_VEC || lx==1) return gtomat(x);
                     87:     err(concater);
                     88:   }
                     89:
                     90:   if (! is_matvec_t(tx))
                     91:   {
                     92:     if (! is_matvec_t(ty))
                     93:     {
                     94:       z=cgetg(3,t_VEC); z[1]=(long)x; z[2]=(long)y;
                     95:       return z;
                     96:     }
                     97:     z=cgetg(ly+1,ty);
                     98:     if (ty != t_MAT) p1 = x;
                     99:     else
                    100:     {
                    101:       if (lg(y[1])!=2) err(concater);
                    102:       p1=cgetg(2,t_COL); p1[1]=(long)x;
                    103:     }
                    104:     for (i=2; i<=ly; i++) z[i]=y[i-1];
                    105:     z[1]=(long)p1; return z;
                    106:   }
                    107:   if (! is_matvec_t(ty))
                    108:   {
                    109:     z=cgetg(lx+1,tx);
                    110:     if (tx != t_MAT) p1 = y;
                    111:     else
                    112:     {
                    113:       if (lg(x[1])!=2) err(concater);
                    114:       p1=cgetg(2,t_COL); p1[1]=(long)y;
                    115:     }
                    116:     for (i=1; i<lx; i++) z[i]=x[i];
                    117:     z[lx]=(long)p1; return z;
                    118:   }
                    119:
                    120:   if (tx == ty)
                    121:   {
                    122:     if (tx == t_MAT && lg(x[1]) != lg(y[1])) err(concater);
                    123:     z=cgetg(lx+ly-1,tx);
                    124:     for (i=1; i<lx; i++) z[i]=x[i];
                    125:     for (i=1; i<ly; i++) z[lx+i-1]=y[i];
                    126:     return z;
                    127:   }
                    128:
                    129:   switch(tx)
                    130:   {
                    131:     case t_VEC:
                    132:       switch(ty)
                    133:       {
                    134:        case t_COL:
                    135:          if (lx<=2) return (lx==1)? y: concatsp((GEN) x[1],y);
                    136:           if (ly>=3) break;
                    137:           return (ly==1)? x: concatsp(x,(GEN) y[1]);
                    138:        case t_MAT:
                    139:          z=cgetg(ly,ty); if (lx != ly) break;
                    140:          for (i=1; i<ly; i++) z[i]=(long)concatsp((GEN) x[i],(GEN) y[i]);
                    141:           return z;
                    142:       }
                    143:       break;
                    144:
                    145:     case t_COL:
                    146:       switch(ty)
                    147:       {
                    148:        case t_VEC:
                    149:          if (lx<=2) return (lx==1)? y: concatsp((GEN) x[1],y);
                    150:          if (ly>=3) break;
                    151:          return (ly==1)? x: concatsp(x,(GEN) y[1]);
                    152:        case t_MAT:
                    153:          if (lx != lg(y[1])) break;
                    154:          z=cgetg(ly+1,ty); z[1]=(long)x;
                    155:          for (i=2; i<=ly; i++) z[i]=y[i-1];
                    156:           return z;
                    157:       }
                    158:       break;
                    159:
                    160:     case t_MAT:
                    161:       switch(ty)
                    162:       {
                    163:        case t_VEC:
                    164:          z=cgetg(lx,tx); if (ly != lx) break;
                    165:          for (i=1; i<lx; i++) z[i]=(long)concatsp((GEN) x[i],(GEN) y[i]);
                    166:           return z;
                    167:        case t_COL:
                    168:          if (ly != lg(x[1])) break;
                    169:          z=cgetg(lx+1,tx); z[lx]=(long)y;
                    170:          for (i=1; i<lx; i++) z[i]=x[i];
                    171:           return z;
                    172:       }
                    173:       break;
                    174:   }
                    175:   err(concater);
                    176:   return NULL; /* not reached */
                    177: }
                    178:
                    179: GEN
                    180: concat(GEN x, GEN y)
                    181: {
                    182:   long tx = typ(x), lx,ty,ly,i;
                    183:   GEN z,p1;
                    184:
                    185:   if (!y)
                    186:   {
                    187:     long av = avma, tetpil;
                    188:     if (tx == t_LIST)
                    189:       { lx = lgef(x); i = 2; }
                    190:     else if (tx == t_VEC)
                    191:       { lx = lg(x); i = 1; }
                    192:     else err(concater);
                    193:     if (i>=lx) err(talker,"trying to concat elements of an empty vector");
                    194:     y = (GEN)x[i++];
                    195:     for (; i<lx; i++) y = concatsp(y, (GEN)x[i]);
                    196:     tetpil = avma; return gerepile(av,tetpil,gcopy(y));
                    197:   }
                    198:   ty = typ(y);
                    199:   if (tx==t_LIST || ty==t_LIST) return listconcat(x,y);
                    200:   if (tx==t_STR  || ty==t_STR)  return strconcat(x,y);
                    201:   lx=lg(x); ly=lg(y);
                    202:
                    203:   if (tx==t_MAT && lx==1)
                    204:   {
                    205:     if (ty!=t_VEC || ly==1) return gtomat(y);
                    206:     err(concater);
                    207:   }
                    208:   if (ty==t_MAT && ly==1)
                    209:   {
                    210:     if (tx!=t_VEC || lx==1) return gtomat(x);
                    211:     err(concater);
                    212:   }
                    213:
                    214:   if (! is_matvec_t(tx))
                    215:   {
                    216:     if (! is_matvec_t(ty))
                    217:     {
                    218:       z=cgetg(3,t_VEC); z[1]=lcopy(x); z[2]=lcopy(y);
                    219:       return z;
                    220:     }
                    221:     z=cgetg(ly+1,ty);
                    222:     if (ty != t_MAT) p1 = gcopy(x);
                    223:     else
                    224:     {
                    225:       if (lg(y[1])!=2) err(concater);
                    226:       p1=cgetg(2,t_COL); p1[1]=lcopy(x);
                    227:     }
                    228:     for (i=2; i<=ly; i++) z[i]=lcopy((GEN) y[i-1]);
                    229:     z[1]=(long)p1; return z;
                    230:   }
                    231:   if (! is_matvec_t(ty))
                    232:   {
                    233:     z=cgetg(lx+1,tx);
                    234:     if (tx != t_MAT) p1 = gcopy(y);
                    235:     else
                    236:     {
                    237:       if (lg(x[1])!=2) err(concater);
                    238:       p1=cgetg(2,t_COL); p1[1]=lcopy(y);
                    239:     }
                    240:     for (i=1; i<lx; i++) z[i]=lcopy((GEN) x[i]);
                    241:     z[lx]=(long)p1; return z;
                    242:   }
                    243:
                    244:   if (tx == ty)
                    245:   {
                    246:     if (tx == t_MAT && lg(x[1]) != lg(y[1])) err(concater);
                    247:     z=cgetg(lx+ly-1,tx);
                    248:     for (i=1; i<lx; i++) z[i]=lcopy((GEN) x[i]);
                    249:     for (i=1; i<ly; i++) z[lx+i-1]=lcopy((GEN) y[i]);
                    250:     return z;
                    251:   }
                    252:
                    253:   switch(tx)
                    254:   {
                    255:     case t_VEC:
                    256:       switch(ty)
                    257:       {
                    258:        case t_COL:
                    259:          if (lx<=2) return (lx==1)? gcopy(y): concat((GEN) x[1],y);
                    260:           if (ly>=3) break;
                    261:           return (ly==1)? gcopy(x): concat(x,(GEN) y[1]);
                    262:        case t_MAT:
                    263:          z=cgetg(ly,ty); if (lx != ly) break;
                    264:          for (i=1; i<ly; i++) z[i]=lconcat((GEN) x[i],(GEN) y[i]);
                    265:           return z;
                    266:       }
                    267:       break;
                    268:
                    269:     case t_COL:
                    270:       switch(ty)
                    271:       {
                    272:        case t_VEC:
                    273:          if (lx<=2) return (lx==1)? gcopy(y): concat((GEN) x[1],y);
                    274:          if (ly>=3) break;
                    275:          return (ly==1)? gcopy(x): concat(x,(GEN) y[1]);
                    276:        case t_MAT:
                    277:          if (lx != lg(y[1])) break;
                    278:          z=cgetg(ly+1,ty); z[1]=lcopy(x);
                    279:          for (i=2; i<=ly; i++) z[i]=lcopy((GEN) y[i-1]);
                    280:           return z;
                    281:       }
                    282:       break;
                    283:
                    284:     case t_MAT:
                    285:       switch(ty)
                    286:       {
                    287:        case t_VEC:
                    288:          z=cgetg(lx,tx); if (ly != lx) break;
                    289:          for (i=1; i<lx; i++) z[i]=lconcat((GEN) x[i],(GEN) y[i]);
                    290:           return z;
                    291:        case t_COL:
                    292:          if (ly != lg(x[1])) break;
                    293:          z=cgetg(lx+1,tx); z[lx]=lcopy(y);
                    294:          for (i=1; i<lx; i++) z[i]=lcopy((GEN) x[i]);
                    295:           return z;
                    296:       }
                    297:       break;
                    298:   }
                    299:   err(concater);
                    300:   return NULL; /* not reached */
                    301: }
                    302:
                    303: static long
                    304: str_to_long(char *s, char **pt)
                    305: {
                    306:   long a = atol(s);
                    307:   while (isspace((int)*s)) s++;
                    308:   if (*s == '-' || *s == '+') s++;
                    309:   while (isdigit((int)*s) || isspace((int)*s)) s++;
                    310:   *pt = s; return a;
                    311: }
                    312:
                    313: static int
                    314: get_range(char *s, long *a, long *b, long *compl, long lx)
                    315: {
                    316:   long max = lx - 1;
                    317:
                    318:   *a = 1; *b = max;
                    319:   if (*s == '^') { *compl = 1; s++; } else *compl = 0;
                    320:   if (*s == 0) return 0;
                    321:   if (*s != '.')
                    322:   {
                    323:     *a = str_to_long(s, &s);
                    324:     if (*a < 0) *a += lx;
                    325:     if (*a<1 || *a>max) return 0;
                    326:   }
                    327:   if (*s == '.')
                    328:   {
                    329:     s++; if (*s != '.') return 0;
                    330:     do s++; while (isspace((int)*s));
                    331:     if (*s)
                    332:     {
                    333:       *b = str_to_long(s, &s);
                    334:       if (*b < 0) *b += lx;
                    335:       if (*b<1 || *b>max || *s) return 0;
                    336:     }
                    337:     return 1;
                    338:   }
                    339:   if (*s) return 0;
                    340:   *b = *a; return 1;
                    341: }
                    342:
                    343: GEN
                    344: extract(GEN x, GEN l)
                    345: {
                    346:   long av,i,j, tl = typ(l), tx = typ(x), lx = lg(x);
                    347:   GEN y;
                    348:
                    349:   if (! is_matvec_t(tx)) err(typeer,"extract");
                    350:   if (tl==t_INT)
                    351:   {
                    352:     /* extract components of x as per the bits of mask l */
                    353:     if (!signe(l)) return cgetg(1,tx);
                    354:     av=avma; y = (GEN) gpmalloc(lx*sizeof(long));
                    355:     i = j = 1; while (!mpodd(l)) { l=shifti(l,-1); i++; }
                    356:     while (signe(l) && i<lx)
                    357:     {
                    358:       if (mod2(l)) y[j++] = x[i];
                    359:       i++; l=shifti(l,-1);
                    360:     }
                    361:     if (signe(l)) err(talker,"mask too large in vecextract");
                    362:     y[0] = evaltyp(tx) | evallg(j);
                    363:     avma=av; x = gcopy(y); free(y); return x;
                    364:   }
                    365:   if (tl==t_STR)
                    366:   {
                    367:     char *s = GSTR(l);
                    368:     long first, last, compl;
                    369:     if (! get_range(s, &first, &last, &compl, lx))
                    370:       err(talker, "incorrect range in extract");
                    371:     if (lx == 1) return gcopy(x);
                    372:     if (compl)
                    373:     {
                    374:       if (first <= last)
                    375:       {
                    376:         y = cgetg(lx - (last - first + 1),tx);
                    377:         for (j=1; j<first; j++) y[j] = lcopy((GEN)x[j]);
                    378:         for (i=last+1; i<lx; i++,j++) y[j] = lcopy((GEN)x[i]);
                    379:       }
                    380:       else
                    381:       {
                    382:         y = cgetg(lx - (first - last + 1),tx);
                    383:         for (j=1,i=lx-1; i>first; i--,j++) y[j] = lcopy((GEN)x[i]);
                    384:         for (i=last-1; i>0; i--,j++) y[j] = lcopy((GEN)x[i]);
                    385:       }
                    386:     }
                    387:     else
                    388:     {
                    389:       if (first <= last)
                    390:       {
                    391:         y = cgetg(last-first+2,tx);
                    392:         for (i=first,j=1; i<=last; i++,j++) y[j] = lcopy((GEN)x[i]);
                    393:       }
                    394:       else
                    395:       {
                    396:         y = cgetg(first-last+2,tx);
                    397:         for (i=first,j=1; i>=last; i--,j++) y[j] = lcopy((GEN)x[i]);
                    398:       }
                    399:     }
                    400:     return y;
                    401:   }
                    402:
                    403:   if (is_vec_t(tl))
                    404:   {
                    405:     long ll=lg(l); y=cgetg(ll,tx);
                    406:     for (i=1; i<ll; i++)
                    407:     {
                    408:       j = itos((GEN) l[i]);
                    409:       if (j>=lx || j<=0) err(talker,"no such component in vecextract");
                    410:       y[i] = lcopy((GEN) x[j]);
                    411:     }
                    412:     return y;
                    413:   }
                    414:   if (tl == t_VECSMALL)
                    415:   {
                    416:     long ll=lg(l); y=cgetg(ll,tx);
                    417:     for (i=1; i<ll; i++)
                    418:     {
                    419:       j = l[i];
                    420:       if (j>=lx || j<=0) err(talker,"no such component in vecextract");
                    421:       y[i] = lcopy((GEN) x[j]);
                    422:     }
                    423:     return y;
                    424:   }
                    425:   err(talker,"incorrect mask in vecextract");
                    426:   return NULL; /* not reached */
                    427: }
                    428:
                    429: GEN
                    430: matextract(GEN x, GEN l1, GEN l2)
                    431: {
                    432:   long av = avma, tetpil;
                    433:
                    434:   if (typ(x)!=t_MAT) err(typeer,"matextract");
                    435:   x = extract(gtrans(extract(x,l2)),l1); tetpil=avma;
                    436:   return gerepile(av,tetpil, gtrans(x));
                    437: }
                    438:
                    439: GEN
                    440: extract0(GEN x, GEN l1, GEN l2)
                    441: {
                    442:   if (! l2) return extract(x,l1);
                    443:   return matextract(x,l1,l2);
                    444: }
                    445:
                    446: /*******************************************************************/
                    447: /*                                                                 */
                    448: /*                     SCALAR-MATRIX OPERATIONS                    */
                    449: /*                                                                 */
                    450: /*******************************************************************/
                    451:
                    452: /* create the square nxn matrix equal to z*Id */
                    453: static GEN
                    454: gscalmat_proto(GEN z, GEN myzero, long n, int flag)
                    455: {
                    456:   long i,j;
                    457:   GEN y = cgetg(n+1,t_MAT);
                    458:   if (n < 0) err(talker,"negative size in scalmat");
                    459:   if (flag) z = (flag==1)? stoi((long)z): gcopy(z);
                    460:   for (i=1; i<=n; i++)
                    461:   {
                    462:     y[i]=lgetg(n+1,t_COL);
                    463:     for (j=1; j<=n; j++)
                    464:       coeff(y,j,i) = (i==j)? (long)z: (long)myzero;
                    465:   }
                    466:   return y;
                    467: }
                    468:
                    469: GEN
                    470: gscalmat(GEN x, long n) { return gscalmat_proto(x,gzero,n,2); }
                    471:
                    472: GEN
                    473: gscalsmat(long x, long n) { return gscalmat_proto((GEN)x,gzero,n,1); }
                    474:
                    475: GEN
                    476: idmat(long n) { return gscalmat_proto(gun,gzero,n,0); }
                    477:
                    478: GEN
                    479: idmat_intern(long n,GEN myun,GEN z) { return gscalmat_proto(myun,z,n,0); }
                    480:
                    481: GEN
                    482: gscalcol_proto(GEN z, GEN myzero, long n)
                    483: {
                    484:   GEN y = cgetg(n+1,t_COL);
                    485:   long i;
                    486:
                    487:   if (n)
                    488:   {
                    489:     y[1]=(long)z;
                    490:     for (i=2; i<=n; i++) y[i]=(long)myzero;
                    491:   }
                    492:   return y;
                    493: }
                    494:
                    495: GEN
                    496: zerocol(long n)
                    497: {
                    498:   GEN y = cgetg(n+1,t_COL);
                    499:   long i;
                    500:   for (i=1; i<=n; i++) y[i]=zero;
                    501:   return y;
                    502: }
                    503:
                    504: GEN
                    505: gscalcol(GEN x, long n) { return gscalcol_proto(gcopy(x),gzero,n); }
                    506:
                    507: GEN
                    508: gscalcol_i(GEN x, long n) { return gscalcol_proto(x,gzero,n); }
                    509:
                    510: GEN
                    511: gtomat(GEN x)
                    512: {
                    513:   long tx,lx,i;
                    514:   GEN y,p1;
                    515:
                    516:   if (!x) return cgetg(1, t_MAT);
                    517:   tx = typ(x);
                    518:   if (! is_matvec_t(tx))
                    519:   {
                    520:     y=cgetg(2,t_MAT); p1=cgetg(2,t_COL); y[1]=(long)p1;
                    521:     p1[1]=lcopy(x); return y;
                    522:   }
                    523:   switch(tx)
                    524:   {
                    525:     case t_VEC:
                    526:       lx=lg(x); y=cgetg(lx,t_MAT);
                    527:       for (i=1; i<lx; i++)
                    528:       {
                    529:        p1=cgetg(2,t_COL); y[i]=(long)p1;
                    530:        p1[1]=lcopy((GEN) x[i]);
                    531:       }
                    532:       break;
                    533:     case t_COL:
                    534:       y=cgetg(2,t_MAT); y[1]=lcopy(x); break;
                    535:     case t_MAT:
                    536:       y=gcopy(x); break;
                    537:   }
                    538:   return y;
                    539: }
                    540:
                    541: long
                    542: isdiagonal(GEN x)
                    543: {
                    544:   long nco,i,j;
                    545:
                    546:   if (typ(x)!=t_MAT) err(typeer,"isdiagonal");
                    547:   nco=lg(x)-1; if (!nco) return 1;
                    548:   if (nco != lg(x[1])-1) return 0;
                    549:
                    550:   for (j=1; j<=nco; j++)
                    551:   {
                    552:     GEN *col = (GEN*) x[j];
                    553:     for (i=1; i<=nco; i++)
                    554:       if (i!=j && !gcmp0(col[i])) return 0;
                    555:   }
                    556:   return 1;
                    557: }
                    558:
                    559: /* create the diagonal matrix, whose diagonal is given by x */
                    560: GEN
                    561: diagonal(GEN x)
                    562: {
                    563:   long i,j,lx,tx=typ(x);
                    564:   GEN y,p1;
                    565:
                    566:   if (! is_matvec_t(tx)) return gscalmat(x,1);
                    567:   if (tx==t_MAT)
                    568:   {
                    569:     if (isdiagonal(x)) return gcopy(x);
                    570:     err(talker,"incorrect object in diagonal");
                    571:   }
                    572:   lx=lg(x); y=cgetg(lx,t_MAT);
                    573:   for (j=1; j<lx; j++)
                    574:   {
                    575:     p1=cgetg(lx,t_COL); y[j]=(long)p1;
                    576:     for (i=1; i<lx; i++)
                    577:       p1[i] = (i==j)? lcopy((GEN) x[i]): zero;
                    578:   }
                    579:   return y;
                    580: }
                    581:
                    582: /* compute m*diagonal(d) */
                    583: GEN
                    584: matmuldiagonal(GEN m, GEN d)
                    585: {
                    586:   long j=typ(d),lx=lg(m);
                    587:   GEN y;
                    588:
                    589:   if (typ(m)!=t_MAT) err(typeer,"matmuldiagonal");
                    590:   if (! is_vec_t(j) || lg(d)!=lx)
                    591:     err(talker,"incorrect vector in matmuldiagonal");
                    592:   y=cgetg(lx,t_MAT);
                    593:   for (j=1; j<lx; j++) y[j] = lmul((GEN) d[j],(GEN) m[j]);
                    594:   return y;
                    595: }
                    596:
                    597: /* compute m*n assuming the result is a diagonal matrix */
                    598: GEN
                    599: matmultodiagonal(GEN m, GEN n)
                    600: {
                    601:   long lx,i,j;
                    602:   GEN s,y;
                    603:
                    604:   if (typ(m)!=t_MAT || typ(n)!=t_MAT) err(typeer,"matmultodiagonal");
                    605:   lx=lg(n); y=idmat(lx-1);
                    606:   if (lx == 1)
                    607:     { if (lg(m) != 1) err(consister,"matmultodiagonal"); }
                    608:   else
                    609:     { if (lg(m) != lg(n[1])) err(consister,"matmultodiagonal"); }
                    610:   for (i=1; i<lx; i++)
                    611:   {
                    612:     s = gzero;
                    613:     for (j=1; j<lx; j++)
                    614:       s = gadd(s,gmul(gcoeff(m,i,j),gcoeff(n,j,i)));
                    615:     coeff(y,i,i) = (long)s;
                    616:   }
                    617:   return y;
                    618: }
                    619:
                    620: /* [m[1,1], ..., m[l,l]] */
                    621: GEN
                    622: mattodiagonal(GEN m)
                    623: {
                    624:   long i, lx = lg(m);
                    625:   GEN y = cgetg(lx,t_VEC);
                    626:
                    627:   if (typ(m)!=t_MAT) err(typeer,"mattodiagonal");
                    628:   if (lx == 1) return y;
                    629:   for (i=1; i<lx; i++) y[i] = lcopy(gcoeff(m,i,i));
                    630:   return y;
                    631: }
                    632:
                    633: /*******************************************************************/
                    634: /*                                                                 */
                    635: /*                    ADDITION SCALAR + MATRIX                     */
                    636: /*                                                                 */
                    637: /*******************************************************************/
                    638:
                    639: /* create the square matrix x*Id + y */
                    640: GEN
                    641: gaddmat(GEN x, GEN y)
                    642: {
                    643:   long ly,dy,i,j;
                    644:   GEN z;
                    645:
                    646:   ly=lg(y); if (ly==1) err(gadderf,"Scalar","t_MAT");
                    647:   dy=lg(y[1]);
                    648:   if (typ(y)!=t_MAT || ly!=dy) err(mattype1,"gaddmat");
                    649:   z=cgetg(ly,t_MAT);
                    650:   for (i=1; i<ly; i++)
                    651:   {
                    652:     z[i]=lgetg(dy,t_COL);
                    653:     for (j=1; j<dy; j++)
                    654:       coeff(z,j,i) = i==j? ladd(x,gcoeff(y,j,i)): lcopy(gcoeff(y,j,i));
                    655:   }
                    656:   return z;
                    657: }
                    658:
                    659: /*******************************************************************/
                    660: /*                                                                 */
                    661: /*                       Solve A*X=B (Gauss pivot)                 */
                    662: /*                                                                 */
                    663: /*******************************************************************/
                    664: #define swap(x,y) { long _t=x; x=y; y=_t; }
                    665:
                    666: /* Assume x is a non-empty matrix. Return 0 if maximal pivot should not be
                    667:  * used, and the matrix precision (min real precision of coeffs) otherwise.
                    668:  */
                    669: static long
                    670: matprec(GEN x)
                    671: {
                    672:   long tx,i,j,l, k = VERYBIGINT, lx = lg(x), ly = lg(x[1]);
                    673:   GEN p1;
                    674:   for (i=1; i<lx; i++)
                    675:     for (j=1; j<ly; j++)
                    676:     {
                    677:       p1 = gmael(x,i,j); tx = typ(p1);
                    678:       if (!is_scalar_t(tx)) return 0;
                    679:       l = precision(p1); if (l && l<k) k = l;
                    680:     }
                    681:   return (k==VERYBIGINT)? 0: k;
                    682: }
                    683:
                    684: /* As above, returning 1 if the precision would be non-zero, 0 otherwise */
                    685: static long
                    686: use_maximal_pivot(GEN x)
                    687: {
                    688:   long tx,i,j, lx = lg(x), ly = lg(x[1]);
                    689:   GEN p1;
                    690:   for (i=1; i<lx; i++)
                    691:     for (j=1; j<ly; j++)
                    692:     {
                    693:       p1 = gmael(x,i,j); tx = typ(p1);
                    694:       if (!is_scalar_t(tx)) return 0;
                    695:       if (precision(p1)) return 1;
                    696:     }
                    697:   return 0;
                    698: }
                    699:
                    700: static GEN
                    701: check_b(GEN b, long nbli)
                    702: {
                    703:   GEN col;
                    704:   if (!b) return idmat(nbli);
                    705:   b = dummycopy(b);
                    706:   col = (typ(b) == t_MAT)? (GEN)b[1]: b;
                    707:   if (nbli == lg(col)-1) return b;
                    708:   err(talker,"incompatible matrix dimensions in gauss");
                    709:   return NULL; /* not reached */
                    710: }
                    711:
                    712: GEN
                    713: gauss_get_col(GEN a, GEN b, GEN p, long nbli)
                    714: {
                    715:   GEN m, u=cgetg(nbli+1,t_COL);
                    716:   long i,j;
                    717:
                    718:   u[nbli] = ldiv((GEN) b[nbli],p);
                    719:   for (i=nbli-1; i>0; i--)
                    720:   {
                    721:     m = gneg_i((GEN)b[i]);
                    722:     for (j=i+1; j<=nbli; j++)
                    723:       m = gadd(m, gmul(gcoeff(a,i,j),(GEN) u[j]));
                    724:     u[i] = ldiv(gneg_i(m), gcoeff(a,i,i));
                    725:   }
                    726:   return u;
                    727: }
                    728:
                    729: /* Gauss pivot.
                    730:  * Compute a^(-1)*b, where nblig(a) = nbcol(a) = nblig(b).
                    731:  * b is a matrix or column vector, NULL meaning: take the identity matrix
                    732:  * Be careful, if a or b is empty, the result is the empty matrix...
                    733:  */
                    734: GEN
                    735: gauss(GEN a, GEN b)
                    736: {
                    737:   long inexact,ismat,nbli,nbco,i,j,k,av,tetpil,lim;
                    738:   GEN p,m,u;
                    739:   /* nbli: nb lines of b = nb columns of a */
                    740:   /* nbco: nb columns of b (if matrix) */
                    741:
                    742:   if (typ(a)!=t_MAT) err(mattype1,"gauss");
                    743:   if (b && typ(b)!=t_COL && typ(b)!=t_MAT) err(typeer,"gauss");
                    744:   if (lg(a) == 1)
                    745:   {
                    746:     if (b && lg(b)!=1) err(consister,"gauss");
                    747:     if (DEBUGLEVEL)
                    748:       err(warner,"in Gauss lg(a)=%ld lg(b)=%ld",lg(a),b?lg(b):-1);
                    749:     return cgetg(1,t_MAT);
                    750:   }
                    751:   av=avma; lim=stack_lim(av,1);
                    752:   nbli = lg(a)-1; if (nbli!=lg(a[1])-1) err(mattype1,"gauss");
                    753:   a = dummycopy(a);
                    754:   b = check_b(b,nbli);
                    755:   nbco = lg(b)-1;
                    756:   inexact = use_maximal_pivot(a);
                    757:   ismat   = (typ(b)==t_MAT);
                    758:   if(DEBUGLEVEL>4)
                    759:     fprintferr("Entering gauss with inexact=%ld ismat=%ld\n",inexact,ismat);
                    760:
                    761:   for (i=1; i<nbli; i++)
                    762:   {
                    763:     /* k is the line where we find the pivot */
                    764:     p=gcoeff(a,i,i); k=i;
                    765:     if (inexact) /* maximal pivot */
                    766:     {
                    767:       long e, ex = gexpo(p);
                    768:       for (j=i+1; j<=nbli; j++)
                    769:       {
                    770:         e = gexpo(gcoeff(a,j,i));
                    771:         if (e > ex) { ex=e; k=j; }
                    772:       }
                    773:       if (gcmp0(gcoeff(a,k,i))) err(matinv1);
                    774:     }
                    775:     else if (gcmp0(p)) /* first non-zero pivot */
                    776:     {
                    777:       do k++; while (k<=nbli && gcmp0(gcoeff(a,k,i)));
                    778:       if (k>nbli) err(matinv1);
                    779:     }
                    780:
                    781:     /* if (k!=i), exchange the lines s.t. k = i */
                    782:     if (k != i)
                    783:     {
                    784:       for (j=i; j<=nbli; j++) swap(coeff(a,i,j), coeff(a,k,j));
                    785:       if (ismat)
                    786:       {
                    787:         for (j=1; j<=nbco; j++) swap(coeff(b,i,j), coeff(b,k,j));
                    788:       }
                    789:       else
                    790:         swap(b[i],b[k]);
                    791:       p = gcoeff(a,i,i);
                    792:     }
                    793:
                    794:     for (k=i+1; k<=nbli; k++)
                    795:     {
                    796:       m=gcoeff(a,k,i);
                    797:       if (!gcmp0(m))
                    798:       {
                    799:        m = gneg_i(gdiv(m,p));
                    800:        for (j=i+1; j<=nbli; j++)
                    801:        {
                    802:          u = gmul(m,gcoeff(a,i,j));
                    803:          coeff(a,k,j) = ladd(gcoeff(a,k,j),u);
                    804:        }
                    805:        if (ismat) for (j=1; j<=nbco; j++)
                    806:        {
                    807:          u = gmul(m,gcoeff(b,i,j));
                    808:          coeff(b,k,j) = ladd(gcoeff(b,k,j),u);
                    809:        }
                    810:        else
                    811:        {
                    812:          u = gmul(m,(GEN) b[i]);
                    813:          b[k] = ladd((GEN) b[k],u);
                    814:        }
                    815:       }
                    816:     }
                    817:     if (low_stack(lim, stack_lim(av,1)))
                    818:     {
                    819:       GEN *gptr[2];
                    820:       if(DEBUGMEM>1) err(warnmem,"gauss. i=%ld",i);
                    821:       gptr[0]=&a; gptr[1]=&b;
                    822:       gerepilemany(av,gptr,2);
                    823:     }
                    824:   }
                    825:
                    826:   if(DEBUGLEVEL>4) fprintferr("Solving the triangular system\n");
                    827:   p=gcoeff(a,nbli,nbli);
                    828:   if (!inexact && gcmp0(p)) err(matinv1);
                    829:   if (!ismat) u = gauss_get_col(a,b,p,nbli);
                    830:   else
                    831:   {
                    832:     long av1 = avma;
                    833:     lim = stack_lim(av1,1); u=cgetg(nbco+1,t_MAT);
                    834:     for (j=2; j<=nbco; j++) u[j] = zero; /* dummy */
                    835:     for (j=1; j<=nbco; j++)
                    836:     {
                    837:       u[j] = (long)gauss_get_col(a,(GEN)b[j],p,nbli);
                    838:       if (low_stack(lim, stack_lim(av1,1)))
                    839:       {
                    840:         if(DEBUGMEM>1) err(warnmem,"gauss[2]. j=%ld", j);
                    841:         tetpil=avma; u = gerepile(av1,tetpil,gcopy(u));
                    842:       }
                    843:     }
                    844:   }
                    845:   tetpil=avma; return gerepile(av,tetpil,gcopy(u));
                    846: }
                    847:
                    848: /* x a matrix with integer coefficients. Return a multiple of the determinant
                    849:  * of the lattice generated by the columns of x (to be used with hnfmod)
                    850:  */
                    851: GEN
                    852: detint(GEN x)
                    853: {
                    854:   GEN pass,c,v,det1,piv,pivprec,vi,p1;
                    855:   long i,j,k,rg,n,m,m1,av=avma,av1,lim;
                    856:
                    857:   if (typ(x)!=t_MAT) err(typeer,"detint");
                    858:   n=lg(x)-1; if (!n) return gun;
                    859:   m1=lg(x[1]); m=m1-1; lim=stack_lim(av,1);
                    860:   c=new_chunk(m1); for (k=1; k<=m; k++) c[k]=0;
                    861:   av1=avma; pass=cgetg(m1,t_MAT);
                    862:   for (j=1; j<=m; j++)
                    863:   {
                    864:     p1=cgetg(m1,t_COL); pass[j]=(long)p1;
                    865:     for (i=1; i<=m; i++) p1[i]=zero;
                    866:   }
                    867:   v=cgetg(m1,t_COL);
                    868:   det1=gzero; piv=pivprec=gun;
                    869:   for (rg=0,k=1; k<=n; k++)
                    870:   {
                    871:     long t = 0;
                    872:     for (i=1; i<=m; i++)
                    873:       if (!c[i])
                    874:       {
                    875:        vi=mulii(piv,gcoeff(x,i,k));
                    876:        for (j=1; j<=m; j++)
                    877:          if (c[j]) vi=addii(vi,mulii(gcoeff(pass,i,j),gcoeff(x,j,k)));
                    878:        v[i]=(long)vi; if (!t && signe(vi)) t=i;
                    879:       }
                    880:     if (t)
                    881:     {
                    882:       if (rg == m-1)
                    883:         { det1=mppgcd((GEN)v[t],det1); c[t]=0; }
                    884:       else
                    885:       {
                    886:         rg++; pivprec = piv; piv=(GEN)v[t]; c[t]=k;
                    887:        for (i=1; i<=m; i++)
                    888:          if (!c[i])
                    889:          {
                    890:             GEN p2 = negi((GEN)v[i]);
                    891:            for (j=1; j<=m; j++)
                    892:              if (c[j] && j!=t)
                    893:              {
                    894:                p1 = addii(mulii(gcoeff(pass,i,j), piv),
                    895:                           mulii(gcoeff(pass,t,j), p2));
                    896:                 if (rg>1) p1 = divii(p1,pivprec);
                    897:                coeff(pass,i,j) = (long)p1;
                    898:              }
                    899:            coeff(pass,i,t) = (long)p2;
                    900:          }
                    901:       }
                    902:     }
                    903:     if (low_stack(lim, stack_lim(av,1)))
                    904:     {
                    905:       GEN *gptr[5];
                    906:       if(DEBUGMEM>1) err(warnmem,"detint. k=%ld",k);
                    907:       gptr[0]=&det1; gptr[1]=&piv; gptr[2]=&pivprec;
                    908:       gptr[3]=&pass; gptr[4]=&v; gerepilemany(av1,gptr,5);
                    909:     }
                    910:   }
                    911:   return gerepileupto(av, absi(det1));
                    912: }
                    913:
                    914: static void
                    915: gerepile_gauss_keep(GEN x, long m, long n, long k, long t, long av)
                    916: {
                    917:   long tetpil = avma,dec,u,A,i;
                    918:
                    919:   if (DEBUGMEM > 1) err(warnmem,"gauss_pivot_keep. k=%ld, n=%ld",k,n);
                    920:   for (u=t+1; u<=m; u++) copyifstack(coeff(x,u,k), coeff(x,u,k));
                    921:   for (i=k+1; i<=n; i++)
                    922:     for (u=1; u<=m; u++) copyifstack(coeff(x,u,i), coeff(x,u,i));
                    923:
                    924:   (void)gerepile(av,tetpil,NULL); dec = av-tetpil;
                    925:   for (u=t+1; u<=m; u++)
                    926:   {
                    927:     A=coeff(x,u,k);
                    928:     if (A<av && A>=bot) coeff(x,u,k)+=dec;
                    929:   }
                    930:   for (i=k+1; i<=n; i++)
                    931:     for (u=1; u<=m; u++)
                    932:     {
                    933:       A=coeff(x,u,i);
                    934:       if (A<av && A>=bot) coeff(x,u,i)+=dec;
                    935:     }
                    936: }
                    937:
                    938: static void
                    939: gerepile_gauss_keep_mod_p(GEN x, GEN p, long m, long n, long k, long t, long av)
                    940: {
                    941:   long tetpil = avma,dec,u,A,i;
                    942:
                    943:   if (DEBUGMEM > 1) err(warnmem,"gauss_pivot_keep. k=%ld, n=%ld",k,n);
                    944:   for (u=t+1; u<=m; u++)
                    945:     if (isonstack(coeff(x,u,k))) coeff(x,u,k) = lmodii(gcoeff(x,u,k),p);
                    946:   for (i=k+1; i<=n; i++)
                    947:     for (u=1; u<=m; u++)
                    948:       if (isonstack(coeff(x,u,i))) coeff(x,u,i) = lmodii(gcoeff(x,u,i),p);
                    949:
                    950:   (void)gerepile(av,tetpil,NULL); dec = av-tetpil;
                    951:   for (u=t+1; u<=m; u++)
                    952:   {
                    953:     A=coeff(x,u,k);
                    954:     if (A<av && A>=bot) coeff(x,u,k)+=dec;
                    955:   }
                    956:   for (i=k+1; i<=n; i++)
                    957:     for (u=1; u<=m; u++)
                    958:     {
                    959:       A=coeff(x,u,i);
                    960:       if (A<av && A>=bot) coeff(x,u,i)+=dec;
                    961:     }
                    962: }
                    963:
                    964: /* special gerepile for huge matrices */
                    965:
                    966: static void
                    967: gerepile_gauss(GEN x,long m,long n,long k,long t,long av, long j, GEN c)
                    968: {
                    969:   long tetpil = avma,dec,u,A,i;
                    970:
                    971:   if (DEBUGMEM > 1) err(warnmem,"gauss_pivot. k=%ld, n=%ld",k,n);
                    972:   for (u=t+1; u<=m; u++)
                    973:     if (u==j || !c[u]) copyifstack(coeff(x,u,k), coeff(x,u,k));
                    974:   for (u=1; u<=m; u++)
                    975:     if (u==j || !c[u])
                    976:       for (i=k+1; i<=n; i++) copyifstack(coeff(x,u,i), coeff(x,u,i));
                    977:
                    978:   (void)gerepile(av,tetpil,NULL); dec = av-tetpil;
                    979:   for (u=t+1; u<=m; u++)
                    980:     if (u==j || !c[u])
                    981:     {
                    982:       A=coeff(x,u,k);
                    983:       if (A<av && A>=bot) coeff(x,u,k)+=dec;
                    984:     }
                    985:   for (u=1; u<=m; u++)
                    986:     if (u==j || !c[u])
                    987:       for (i=k+1; i<=n; i++)
                    988:       {
                    989:         A=coeff(x,u,i);
                    990:         if (A<av && A>=bot) coeff(x,u,i)+=dec;
                    991:       }
                    992: }
                    993:
                    994: /*******************************************************************/
                    995: /*                                                                 */
                    996: /*                    KERNEL of an m x n matrix                    */
                    997: /*          return n - rk(x) linearly independant vectors          */
                    998: /*                                                                 */
                    999: /*******************************************************************/
                   1000:
                   1001: /* x has INTEGER coefficients */
                   1002: GEN
                   1003: keri(GEN x)
                   1004: {
                   1005:   GEN c,d,y,p,pp;
                   1006:   long i,j,k,r,t,n,m,av,av0,tetpil,lim;
                   1007:
                   1008:   if (typ(x)!=t_MAT) err(typeer,"keri");
                   1009:   n=lg(x)-1; if (!n) return cgetg(1,t_MAT);
                   1010:
                   1011:   av0=avma; m=lg(x[1])-1; r=0;
                   1012:   pp=cgetg(n+1,t_COL);
                   1013:   x=dummycopy(x); p=gun;
                   1014:   c=new_chunk(m+1); for (k=1; k<=m; k++) c[k]=0;
                   1015:   d=new_chunk(n+1); av=avma; lim=stack_lim(av,1);
                   1016:   for (k=1; k<=n; k++)
                   1017:   {
                   1018:     j=1;
                   1019:     while (j<=m && (c[j] || !signe(gcoeff(x,j,k))) ) j++;
                   1020:     if (j>m)
                   1021:     {
                   1022:       r++; d[k]=0;
                   1023:       for(j=1; j<k; j++)
                   1024:        if (d[j]) coeff(x,d[j],k) = lclone(gcoeff(x,d[j],k));
                   1025:       pp[k]=lclone(p);
                   1026:     }
                   1027:     else
                   1028:     {
                   1029:       GEN p0 = p;
                   1030:       long av1;
                   1031:
                   1032:       c[j]=k; d[k]=j; p = gcoeff(x,j,k);
                   1033:
                   1034:       for (t=1; t<=m; t++)
                   1035:        if (t!=j)
                   1036:        {
                   1037:          GEN q=gcoeff(x,t,k), p1,p2;
                   1038:          for (i=k+1; i<=n; i++)
                   1039:          {
                   1040:            av1=avma; (void)new_chunk(lgefint(p0));
                   1041:            p1=mulii(q,gcoeff(x,j,i));
                   1042:            p2=mulii(p,gcoeff(x,t,i));
                   1043:            p1=subii(p2,p1); avma=av1;
                   1044:            coeff(x,t,i) = ldivii(p1,p0);
                   1045:          }
                   1046:          if (low_stack(lim, stack_lim(av,1)))
                   1047:           {
                   1048:             p1 = gclone(p);
                   1049:             gerepile_gauss_keep(x,m,n,k,t,av);
                   1050:             p = gcopy(p1); gunclone(p1);
                   1051:           }
                   1052:        }
                   1053:     }
                   1054:   }
                   1055:   if (!r) { avma=av0; y=cgetg(1,t_MAT); return y; }
                   1056:
                   1057:   /* non trivial kernel */
                   1058:   tetpil=avma; y=cgetg(r+1,t_MAT);
                   1059:   for (j=k=1; j<=r; j++,k++)
                   1060:   {
                   1061:     p = cgetg(n+1, t_COL);
                   1062:     y[j]=(long)p; while (d[k]) k++;
                   1063:     for (i=1; i<k; i++)
                   1064:       if (d[i])
                   1065:       {
                   1066:        c=gcoeff(x,d[i],k);
                   1067:        p[i] = (long) forcecopy(c); gunclone(c);
                   1068:       }
                   1069:       else
                   1070:        p[i] = zero;
                   1071:     p[k]=lnegi((GEN)pp[k]); gunclone((GEN)pp[k]);
                   1072:     for (i=k+1; i<=n; i++) p[i]=zero;
                   1073:   }
                   1074:   return gerepile(av0,tetpil,y);
                   1075: }
                   1076:
                   1077: GEN
                   1078: deplin(GEN x)
                   1079: {
                   1080:   long i,j,k,t,nc,nl, av=avma;
                   1081:   GEN y,q,c,l,d;
                   1082:
                   1083:   if (typ(x) != t_MAT) err(typeer,"deplin");
                   1084:   nc=lg(x)-1; if (!nc) err(talker,"empty matrix in deplin");
                   1085:   nl=lg(x[1])-1;
                   1086:   c=new_chunk(nl+1);
                   1087:   l=new_chunk(nc+1);
                   1088:   d=cgetg(nl+1,t_VEC);
                   1089:   for (i=1; i<=nl; i++) { d[i]=un; c[i]=0; }
                   1090:   k=1; t=1;
                   1091:   while (t<=nl && k<=nc)
                   1092:   {
                   1093:     for (j=1; j<k; j++)
                   1094:      for (i=1; i<=nl; i++)
                   1095:       if (i!=l[j])
                   1096:        coeff(x,i,k)=lsub(gmul((GEN) d[j],gcoeff(x,i,k)),
                   1097:                          gmul(gcoeff(x,i,j),gcoeff(x,l[j],k)));
                   1098:     t=1;
                   1099:     while ( t<=nl && (c[t] || gcmp0(gcoeff(x,t,k))) ) t++;
                   1100:     if (t<=nl)
                   1101:     {
                   1102:       d[k]=coeff(x,t,k);
                   1103:       c[t]=k; l[k++]=t;
                   1104:     }
                   1105:   }
                   1106:   if (k>nc)
                   1107:   {
                   1108:     avma=av; y=cgetg(nc+1,t_COL);
                   1109:     for (j=1; j<=nc; j++) y[j]=zero;
                   1110:     return y;
                   1111:   }
                   1112:   y=cgetg(nc+1,t_COL);
                   1113:   y[1]=(k>1)? coeff(x,l[1],k): un;
                   1114:   for (q=gun,j=2; j<k; j++)
                   1115:   {
                   1116:     q=gmul(q,(GEN) d[j-1]);
                   1117:     y[j]=lmul(gcoeff(x,l[j],k),q);
                   1118:   }
                   1119:   if (k>1) y[k]=lneg(gmul(q,(GEN) d[k-1]));
                   1120:   for (j=k+1; j<=nc; j++) y[j]=zero;
                   1121:   d=content(y); t=avma;
                   1122:   return gerepile(av,t,gdiv(y,d));
                   1123: }
                   1124:
                   1125: /*******************************************************************/
                   1126: /*                                                                 */
                   1127: /*         GAUSS REDUCTION OF MATRICES  (m lines x n cols)         */
                   1128: /*           (kernel, image, complementary image, rank)            */
                   1129: /*                                                                 */
                   1130: /*******************************************************************/
                   1131: static long gauss_ex;
                   1132: static int (*gauss_is_zero)(GEN);
                   1133:
                   1134: static int
                   1135: real0(GEN x)
                   1136: {
                   1137:   return gcmp0(x) || (gexpo(x) < gauss_ex);
                   1138: }
                   1139:
                   1140: static void
                   1141: gauss_get_prec(GEN x, long prec)
                   1142: {
                   1143:   long pr = matprec(x);
                   1144:
                   1145:   if (!pr) { gauss_is_zero = &gcmp0; return; }
                   1146:   if (pr > prec) prec = pr;
                   1147:
                   1148:   gauss_ex = - (long)(0.85 * bit_accuracy(prec));
                   1149:   gauss_is_zero = &real0;
                   1150: }
                   1151:
                   1152: /* return the transform of x under a standard Gauss pivot. r = dim ker(x).
                   1153:  * d[k] contains the index of the first non-zero pivot in column k
                   1154:  */
                   1155: static GEN
                   1156: gauss_pivot_keep(GEN x, long prec, GEN *dd, long *rr)
                   1157: {
                   1158:   GEN c,d,p,mun;
                   1159:   long i,j,k,r,t,n,m,av,lim;
                   1160:
                   1161:   if (typ(x)!=t_MAT) err(typeer,"gauss_pivot");
                   1162:   n=lg(x)-1; if (!n) { *dd=NULL; *rr=0; return cgetg(1,t_MAT); }
                   1163:
                   1164:   gauss_get_prec(x,prec); m=lg(x[1])-1; r=0;
                   1165:   x=dummycopy(x); mun=negi(gun);
                   1166:   c=new_chunk(m+1); for (k=1; k<=m; k++) c[k]=0;
                   1167:   d=(GEN)gpmalloc((n+1)*sizeof(long));
                   1168:   av=avma; lim=stack_lim(av,1);
                   1169:   for (k=1; k<=n; k++)
                   1170:   {
                   1171:     j=1; while (j<=m && (c[j] || gauss_is_zero(gcoeff(x,j,k)))) j++;
                   1172:     if (j>m)
                   1173:     {
                   1174:       r++; d[k]=0;
                   1175:       for(j=1; j<k; j++)
                   1176:         if (d[j]) coeff(x,d[j],k) = lclone(gcoeff(x,d[j],k));
                   1177:     }
                   1178:     else
                   1179:     {
                   1180:       c[j]=k; d[k]=j; p = gdiv(mun,gcoeff(x,j,k));
                   1181:       coeff(x,j,k) = (long)mun;
                   1182:       for (i=k+1; i<=n; i++)
                   1183:        coeff(x,j,i) = lmul(p,gcoeff(x,j,i));
                   1184:       for (t=1; t<=m; t++)
                   1185:        if (t!=j)
                   1186:        {
                   1187:          p=gcoeff(x,t,k); coeff(x,t,k)=zero;
                   1188:          for (i=k+1; i<=n; i++)
                   1189:            coeff(x,t,i) = ladd(gcoeff(x,t,i),gmul(p,gcoeff(x,j,i)));
                   1190:           if (low_stack(lim, stack_lim(av,1)))
                   1191:             gerepile_gauss_keep(x,m,n,k,t,av);
                   1192:        }
                   1193:     }
                   1194:   }
                   1195:   *dd=d; *rr=r; return x;
                   1196: }
                   1197:
                   1198: /* r = dim ker(x).
                   1199:  * d[k] contains the index of the first non-zero pivot in column k
                   1200:  */
                   1201: static void
                   1202: gauss_pivot(GEN x, long prec, GEN *dd, long *rr)
                   1203: {
                   1204:   GEN c,d,mun,p;
                   1205:   long i,j,k,r,t,n,m,av,lim;
                   1206:
                   1207:   if (typ(x)!=t_MAT) err(typeer,"gauss_pivot");
                   1208:   n=lg(x)-1; if (!n) { *dd=NULL; *rr=0; return; }
                   1209:
                   1210:   gauss_get_prec(x,prec); m=lg(x[1])-1; r=0;
                   1211:   x=dummycopy(x); mun=negi(gun);
                   1212:   c=new_chunk(m+1); for (k=1; k<=m; k++) c[k]=0;
                   1213:   d=(GEN)gpmalloc((n+1)*sizeof(long)); av=avma; lim=stack_lim(av,1);
                   1214:   for (k=1; k<=n; k++)
                   1215:   {
                   1216:     j=1; while (j<=m && (c[j] || gauss_is_zero(gcoeff(x,j,k)))) j++;
                   1217:     if (j>m) { r++; d[k]=0; }
                   1218:     else
                   1219:     {
                   1220:       c[j]=k; d[k]=j; p = gdiv(mun,gcoeff(x,j,k));
                   1221:       for (i=k+1; i<=n; i++)
                   1222:        coeff(x,j,i) = lmul(p,gcoeff(x,j,i));
                   1223:
                   1224:       for (t=1; t<=m; t++)
                   1225:         if (!c[t]) /* no pivot on that line yet */
                   1226:         {
                   1227:           p=gcoeff(x,t,k); coeff(x,t,k)=zero;
                   1228:           for (i=k+1; i<=n; i++)
                   1229:             coeff(x,t,i) = ladd(gcoeff(x,t,i), gmul(p,gcoeff(x,j,i)));
                   1230:           if (low_stack(lim, stack_lim(av,1)))
                   1231:             gerepile_gauss(x,m,n,k,t,av,j,c);
                   1232:         }
                   1233:       for (i=k; i<=n; i++) coeff(x,j,i) = zero; /* dummy */
                   1234:     }
                   1235:   }
                   1236:   *dd=d; *rr=r;
                   1237: }
                   1238:
                   1239: static GEN
                   1240: ker0(GEN x, long prec)
                   1241: {
                   1242:   GEN d,y;
                   1243:   long i,j,k,r,n, av = avma, tetpil;
                   1244:
                   1245:   x=gauss_pivot_keep(x,prec,&d,&r);
                   1246:   if (!r)
                   1247:   {
                   1248:     avma=av; if (d) free(d);
                   1249:     return cgetg(1,t_MAT);
                   1250:   }
                   1251:   n = lg(x)-1; tetpil=avma; y=cgetg(r+1,t_MAT);
                   1252:   for (j=k=1; j<=r; j++,k++)
                   1253:   {
                   1254:     GEN p = cgetg(n+1,t_COL);
                   1255:
                   1256:     y[j]=(long)p; while (d[k]) k++;
                   1257:     for (i=1; i<k; i++)
                   1258:       if (d[i])
                   1259:       {
                   1260:        GEN p1=gcoeff(x,d[i],k);
                   1261:        p[i] = (long)forcecopy(p1); gunclone(p1);
                   1262:       }
                   1263:       else
                   1264:        p[i] = zero;
                   1265:     p[k]=un; for (i=k+1; i<=n; i++) p[i]=zero;
                   1266:   }
                   1267:   free(d); return gerepile(av,tetpil,y);
                   1268: }
                   1269:
                   1270: GEN
                   1271: ker(GEN x) /* Programme pour types exacts */
                   1272: {
                   1273:   return ker0(x,0);
                   1274: }
                   1275:
                   1276: GEN
                   1277: matker0(GEN x,long flag)
                   1278: {
                   1279:   return flag? keri(x): ker(x);
                   1280: }
                   1281:
                   1282: static GEN
                   1283: image0(GEN x, long prec)
                   1284: {
                   1285:   GEN d,y;
                   1286:   long j,k,r, av = avma;
                   1287:
                   1288:   gauss_pivot(x,prec,&d,&r);
                   1289:
                   1290:   /* r = dim ker(x) */
                   1291:   if (!r) { avma=av; if (d) free(d); return gcopy(x); }
                   1292:
                   1293:   /* r = dim Im(x) */
                   1294:   r = lg(x)-1 - r; avma=av;
                   1295:   y=cgetg(r+1,t_MAT);
                   1296:   for (j=k=1; j<=r; k++)
                   1297:     if (d[k]) y[j++] = lcopy((GEN)x[k]);
                   1298:   free(d); return y;
                   1299: }
                   1300:
                   1301: GEN
                   1302: image(GEN x) /* Programme pour types exacts */
                   1303: {
                   1304:   return image0(x,0);
                   1305: }
                   1306:
                   1307: GEN
                   1308: imagereel(GEN x, long prec) /* Programme pour types inexacts */
                   1309: {
                   1310:   return image0(x,prec);
                   1311: }
                   1312:
                   1313: static GEN
                   1314: imagecompl0(GEN x, long prec)
                   1315: {
                   1316:   GEN d,y;
                   1317:   long j,i,r,av = avma;
                   1318:
                   1319:   gauss_pivot(x,prec,&d,&r);
                   1320:   avma=av; y=cgetg(r+1,t_VEC);
                   1321:   for (i=j=1; j<=r; i++)
                   1322:     if (!d[i]) y[j++]=lstoi(i);
                   1323:   if (d) free(d); return y;
                   1324: }
                   1325:
                   1326: /* for hnfspec: imagecompl(trans(x)) + image(trans(x)) */
                   1327: static GEN
                   1328: imagecomplspec(GEN x, long *nlze)
                   1329: {
                   1330:   GEN d,y;
                   1331:   long i,j,k,l,r,av = avma;
                   1332:
                   1333:   x = gtrans(x); l = lg(x);
                   1334:   gauss_pivot(x,0,&d,&r);
                   1335:   avma=av; y = cgetg(l,t_VECSMALL);
                   1336:   for (i=j=1, k=r+1; i<l; i++)
                   1337:     if (d[i]) y[k++]=i; else y[j++]=i;
                   1338:   *nlze = r;
                   1339:   if (d) free(d); return y;
                   1340: }
                   1341:
                   1342: GEN
                   1343: imagecompl(GEN x) /* Programme pour types exacts */
                   1344: {
                   1345:   return imagecompl0(x,0);
                   1346: }
                   1347:
                   1348: static GEN
                   1349: sinverseimage(GEN mat, GEN y)
                   1350: {
                   1351:   long av=avma,tetpil,i, nbcol = lg(mat);
                   1352:   GEN col,p1 = cgetg(nbcol+1,t_MAT);
                   1353:
                   1354:   if (nbcol==1) return NULL;
                   1355:   if (lg(y) != lg(mat[1])) err(consister,"inverseimage");
                   1356:
                   1357:   p1[nbcol] = (long)y;
                   1358:   for (i=1; i<nbcol; i++) p1[i]=mat[i];
                   1359:   p1 = ker(p1); i=lg(p1)-1;
                   1360:   if (!i) return NULL;
                   1361:
                   1362:   col = (GEN)p1[i]; p1 = (GEN) col[nbcol];
                   1363:   if (gcmp0(p1)) return NULL;
                   1364:
                   1365:   p1 = gneg_i(p1); setlg(col,nbcol); tetpil=avma;
                   1366:   return gerepile(av,tetpil, gdiv(col, p1));
                   1367: }
                   1368:
                   1369: /* Calcule l'image reciproque de v par m */
                   1370: GEN
                   1371: inverseimage(GEN m,GEN v)
                   1372: {
                   1373:   long av=avma,j,lv,tv=typ(v);
                   1374:   GEN y,p1;
                   1375:
                   1376:   if (typ(m)!=t_MAT) err(typeer,"inverseimage");
                   1377:   if (tv==t_COL)
                   1378:   {
                   1379:     p1 = sinverseimage(m,v);
                   1380:     if (p1) return p1;
                   1381:     avma = av; return cgetg(1,t_MAT);
                   1382:   }
                   1383:   if (tv!=t_MAT) err(typeer,"inverseimage");
                   1384:
                   1385:   lv=lg(v)-1; y=cgetg(lv+1,t_MAT);
                   1386:   for (j=1; j<=lv; j++)
                   1387:   {
                   1388:     p1 = sinverseimage(m,(GEN)v[j]);
                   1389:     if (!p1) { avma = av; return cgetg(1,t_MAT); }
                   1390:     y[j] = (long)p1;
                   1391:   }
                   1392:   return y;
                   1393: }
                   1394:
                   1395: /* x is an n x k matrix, rank(x) = k <= n. Return an invertible n x n matrix
                   1396:  * whose first k columns are given by x. If rank(x)<k, the result may be wrong
                   1397:  */
                   1398: GEN
                   1399: suppl_intern(GEN x, GEN myid)
                   1400: {
                   1401:   long av = avma, lx = lg(x), n,i,j;
                   1402:   GEN y,p1;
                   1403:   stackzone *zone;
                   1404:
                   1405:   if (typ(x) != t_MAT) err(typeer,"suppl");
                   1406:   if (lx==1) err(talker,"empty matrix in suppl");
                   1407:   n=lg(x[1]); if (lx>n) err(suppler2);
                   1408:
                   1409:   zone  = switch_stack(NULL, n*n);
                   1410:   switch_stack(zone,1);
                   1411:   y = myid? dummycopy(myid): idmat(n-1);
                   1412:   switch_stack(zone,0);
                   1413:   for (i=1; i<lx; i++)
                   1414:   {
                   1415:     p1=gauss(y,(GEN)x[i]); j=i;
                   1416:     while (j<n && gcmp0((GEN)p1[j])) j++;
                   1417:     if (j>=n) err(suppler2);
                   1418:     p1=(GEN)y[i]; y[i]=x[i]; if (i!=j) y[j]=(long)p1;
                   1419:   }
                   1420:   avma = av; y = gcopy(y);
                   1421:   free(zone); return y;
                   1422: }
                   1423:
                   1424: GEN
                   1425: suppl(GEN x)
                   1426: {
                   1427:   return suppl_intern(x,NULL);
                   1428: }
                   1429:
                   1430: GEN
                   1431: image2(GEN x)
                   1432: {
                   1433:   long av=avma,tetpil,k,n,i;
                   1434:   GEN p1,p2;
                   1435:
                   1436:   if (typ(x)!=t_MAT) err(typeer,"image2");
                   1437:   k=lg(x)-1; if (!k) return gcopy(x);
                   1438:   n=lg(x[1])-1; p1=ker(x); k=lg(p1)-1;
                   1439:   if (k) { p1=suppl(p1); n=lg(p1)-1; }
                   1440:   else p1=idmat(n);
                   1441:
                   1442:   tetpil=avma; p2=cgetg(n-k+1,t_MAT);
                   1443:   for (i=k+1; i<=n; i++) p2[i-k]=lmul(x,(GEN) p1[i]);
                   1444:   return gerepile(av,tetpil,p2);
                   1445: }
                   1446:
                   1447: GEN
                   1448: matimage0(GEN x,long flag)
                   1449: {
                   1450:   switch(flag)
                   1451:   {
                   1452:     case 0: return image(x);
                   1453:     case 1: return image2(x);
                   1454:     default: err(flagerr,"matimage");
                   1455:   }
                   1456:   return NULL; /* not reached */
                   1457: }
                   1458:
                   1459: long
                   1460: rank(GEN x)
                   1461: {
                   1462:   long av = avma, r;
                   1463:   GEN d;
                   1464:
                   1465:   gauss_pivot(x,0,&d,&r);
                   1466:   /* yield r = dim ker(x) */
                   1467:
                   1468:   avma=av; if (d) free(d);
                   1469:   return lg(x)-1 - r;
                   1470: }
                   1471:
                   1472: GEN
                   1473: indexrank(GEN x)
                   1474: {
                   1475:   long av = avma, i,j,n,r;
                   1476:   GEN res,d,p1,p2;
                   1477:
                   1478:   /* yield r = dim ker(x) */
                   1479:   gauss_pivot(x,0,&d,&r);
                   1480:
                   1481:   /* now r = dim Im(x) */
                   1482:   n = lg(x)-1; r = n - r;
                   1483:
                   1484:   avma=av; res=cgetg(3,t_VEC);
                   1485:   p1=cgetg(r+1,t_VEC); res[1]=(long)p1;
                   1486:   p2=cgetg(r+1,t_VEC); res[2]=(long)p2;
                   1487:   if (d)
                   1488:   {
                   1489:     for (i=0,j=1; j<=n; j++)
                   1490:       if (d[j]) { i++; p1[i]=d[j]; p2[i]=j; }
                   1491:     free(d);
                   1492:     qsort(p1+1,r,sizeof(long),(QSCOMP)pari_compare_long);
                   1493:   }
                   1494:   for (i=1;i<=r;i++) { p1[i]=lstoi(p1[i]); p2[i]=lstoi(p2[i]); }
                   1495:   return res;
                   1496: }
                   1497:
                   1498: /*******************************************************************/
                   1499: /*                                                                 */
                   1500: /*                    LINEAR ALGEBRA MODULO P                      */
                   1501: /*                                                                 */
                   1502: /*******************************************************************/
                   1503: #ifdef LONG_IS_64BIT
                   1504: #  define MASK (0x7fffffff00000000UL)
                   1505: #else
                   1506: #  define MASK (0x7fff0000UL)
                   1507: #endif
                   1508: static GEN
                   1509: ker_mod_p_small(GEN x, GEN pp, long nontriv)
                   1510: {
                   1511:   GEN y,c,d;
                   1512:   long a,i,j,k,r,t,n,m,av0,tetpil, p = pp[2], piv;
                   1513:
                   1514:   n = lg(x)-1;
                   1515:   m=lg(x[1])-1; r=0; av0 = avma;
                   1516:   x = dummycopy(x);
                   1517:   for (i=1; i<=n; i++)
                   1518:   {
                   1519:     GEN p1 = (GEN)x[i];
                   1520:     for (j=1; j<=m; j++) p1[j] = itos((GEN)p1[j]);
                   1521:   }
                   1522:   c=new_chunk(m+1); for (k=1; k<=m; k++) c[k]=0;
                   1523:   d=new_chunk(n+1);
                   1524:   for (k=1; k<=n; k++)
                   1525:   {
                   1526:     for (j=1; j<=m; j++)
                   1527:       if (!c[j])
                   1528:       {
                   1529:         a = coeff(x,j,k) % p;
                   1530:         if (a) break;
                   1531:       }
                   1532:     if (j>m)
                   1533:     {
                   1534:       if (nontriv) { avma=av0; return NULL; }
                   1535:       r++; d[k]=0;
                   1536:     }
                   1537:     else
                   1538:     {
                   1539:       c[j]=k; d[k]=j;
                   1540:       {
                   1541:         long av1 = avma;
                   1542:         GEN p1 = mpinvmod(stoi(a), pp);
                   1543:         piv = -itos(p1); avma = av1;
                   1544:       }
                   1545:       coeff(x,j,k) = -1;
                   1546:       for (i=k+1; i<=n; i++)
                   1547:        coeff(x,j,i) = (piv * coeff(x,j,i)) % p;
                   1548:       for (t=1; t<=m; t++)
                   1549:        if (t!=j)
                   1550:        {
                   1551:          piv = coeff(x,t,k) % p;
                   1552:           if (piv)
                   1553:           {
                   1554:             coeff(x,t,k) = 0;
                   1555:             for (i=k+1; i<=n; i++)
                   1556:             {
                   1557:               a = coeff(x,t,i) + piv * coeff(x,j,i);
                   1558:               if (a & MASK) a %= p;
                   1559:               coeff(x,t,i) = a;
                   1560:             }
                   1561:           }
                   1562:        }
                   1563:     }
                   1564:   }
                   1565:
                   1566:   tetpil=avma; y=cgetg(r+1,t_MAT);
                   1567:   for (j=k=1; j<=r; j++,k++)
                   1568:   {
                   1569:     GEN c = cgetg(n+1,t_COL);
                   1570:
                   1571:     y[j]=(long)c; while (d[k]) k++;
                   1572:     for (i=1; i<k; i++)
                   1573:       if (d[i])
                   1574:       {
                   1575:         long a = coeff(x,d[i],k) % p;
                   1576:         if (a < 0) a += p;
                   1577:        c[i] = lstoi(a);
                   1578:       }
                   1579:       else
                   1580:        c[i] = zero;
                   1581:     c[k]=un; for (i=k+1; i<=n; i++) c[i]=zero;
                   1582:   }
                   1583:   return gerepile(av0,tetpil,y);
                   1584: }
                   1585:
                   1586: static GEN
                   1587: ker_mod_p_i(GEN x, GEN p, long nontriv)
                   1588: {
                   1589:   GEN y,c,d,piv,mun;
                   1590:   long i,j,k,r,t,n,m,av0,av,lim,tetpil;
                   1591:
                   1592:   if (typ(x)!=t_MAT) err(typeer,"ker_mod_p");
                   1593:   n=lg(x)-1; if (!n) return cgetg(1,t_MAT);
                   1594:   if (!is_bigint(p) && p[2] < (MAXHALFULONG>>1))
                   1595:     return ker_mod_p_small(x, p, nontriv);
                   1596:
                   1597:   m=lg(x[1])-1; r=0; av0 = avma;
                   1598:   x=dummycopy(x); mun=negi(gun);
                   1599:   c=new_chunk(m+1); for (k=1; k<=m; k++) c[k]=0;
                   1600:   d=new_chunk(n+1);
                   1601:   av=avma; lim=stack_lim(av,1);
                   1602:   for (k=1; k<=n; k++)
                   1603:   {
                   1604:     for (j=1; j<=m; j++)
                   1605:       if (!c[j])
                   1606:       {
                   1607:         coeff(x,j,k) = lmodii(gcoeff(x,j,k), p);
                   1608:         if (signe(coeff(x,j,k))) break;
                   1609:       }
                   1610:     if (j>m)
                   1611:     {
                   1612:       if (nontriv) { avma = av0; return NULL; }
                   1613:       r++; d[k]=0;
                   1614:       for(j=1; j<k; j++)
                   1615:         if (d[j]) coeff(x,d[j],k) = lclone(gcoeff(x,d[j],k));
                   1616:     }
                   1617:     else
                   1618:     {
                   1619:       c[j]=k; d[k]=j; piv = negi(mpinvmod(gcoeff(x,j,k), p));
                   1620:       coeff(x,j,k) = (long)mun;
                   1621:       for (i=k+1; i<=n; i++)
                   1622:        coeff(x,j,i) = lmodii(mulii(piv,gcoeff(x,j,i)), p);
                   1623:       for (t=1; t<=m; t++)
                   1624:        if (t!=j)
                   1625:        {
                   1626:          piv = modii(gcoeff(x,t,k), p);
                   1627:           if (signe(piv))
                   1628:           {
                   1629:             coeff(x,t,k)=zero;
                   1630:             for (i=k+1; i<=n; i++)
                   1631:               coeff(x,t,i) = laddii(gcoeff(x,t,i),mulii(piv,gcoeff(x,j,i)));
                   1632:             if (low_stack(lim, stack_lim(av,1)))
                   1633:               gerepile_gauss_keep_mod_p(x,p,m,n,k,t,av);
                   1634:           }
                   1635:        }
                   1636:     }
                   1637:   }
                   1638:
                   1639:   tetpil=avma; y=cgetg(r+1,t_MAT);
                   1640:   for (j=k=1; j<=r; j++,k++)
                   1641:   {
                   1642:     GEN c = cgetg(n+1,t_COL);
                   1643:
                   1644:     y[j]=(long)c; while (d[k]) k++;
                   1645:     for (i=1; i<k; i++)
                   1646:       if (d[i])
                   1647:       {
                   1648:        GEN p1=gcoeff(x,d[i],k);
                   1649:        c[i] = lmodii(p1, p); gunclone(p1);
                   1650:       }
                   1651:       else
                   1652:        c[i] = zero;
                   1653:     c[k]=un; for (i=k+1; i<=n; i++) c[i]=zero;
                   1654:   }
                   1655:   return gerepile(av0,tetpil,y);
                   1656: }
                   1657:
                   1658: static void
                   1659: gauss_pivot_mod_p(GEN x, GEN p, GEN *dd, long *rr)
                   1660: {
                   1661:   GEN c,d,piv;
                   1662:   long i,j,k,r,t,n,m,av,lim;
                   1663:
                   1664:   if (typ(x)!=t_MAT) err(typeer,"gauss_pivot_mod_p");
                   1665:   n=lg(x)-1; if (!n) { *dd=NULL; *rr=0; return; }
                   1666:
                   1667:   m=lg(x[1])-1; r=0;
                   1668:   x=dummycopy(x);
                   1669:   c=new_chunk(m+1); for (k=1; k<=m; k++) c[k]=0;
                   1670:   d=(GEN)gpmalloc((n+1)*sizeof(long)); av=avma; lim=stack_lim(av,1);
                   1671:   for (k=1; k<=n; k++)
                   1672:   {
                   1673:     for (j=1; j<=m; j++)
                   1674:       if (!c[j])
                   1675:       {
                   1676:         coeff(x,j,k) = lmodii(gcoeff(x,j,k), p);
                   1677:         if (signe(coeff(x,j,k))) break;
                   1678:       }
                   1679:     if (j>m) { r++; d[k]=0; }
                   1680:     else
                   1681:     {
                   1682:       c[j]=k; d[k]=j; piv = negi(mpinvmod(gcoeff(x,j,k), p));
                   1683:       for (i=k+1; i<=n; i++)
                   1684:        coeff(x,j,i) = lmodii(mulii(piv,gcoeff(x,j,i)), p);
                   1685:       for (t=1; t<=m; t++)
                   1686:         if (!c[t]) /* no pivot on that line yet */
                   1687:         {
                   1688:           piv=gcoeff(x,t,k);
                   1689:           if (signe(piv))
                   1690:           {
                   1691:             coeff(x,t,k)=zero;
                   1692:             for (i=k+1; i<=n; i++)
                   1693:               coeff(x,t,i) = laddii(gcoeff(x,t,i), mulii(piv,gcoeff(x,j,i)));
                   1694:             if (low_stack(lim, stack_lim(av,1)))
                   1695:               gerepile_gauss(x,m,n,k,t,av,j,c);
                   1696:           }
                   1697:         }
                   1698:       for (i=k; i<=n; i++) coeff(x,j,i) = zero; /* dummy */
                   1699:     }
                   1700:   }
                   1701:   *dd=d; *rr=r;
                   1702: }
                   1703:
                   1704: GEN
                   1705: ker_mod_p(GEN x, GEN p)
                   1706: {
                   1707:   return ker_mod_p_i(x, p, 0);
                   1708: }
                   1709:
                   1710: int
                   1711: ker_trivial_mod_p(GEN x, GEN p)
                   1712: {
                   1713:   return ker_mod_p_i(x, p, 1)==NULL;
                   1714: }
                   1715:
                   1716: GEN
                   1717: image_mod_p(GEN x, GEN p)
                   1718: {
                   1719:   GEN d,y;
                   1720:   long j,k,r, av = avma;
                   1721:
                   1722:   gauss_pivot_mod_p(x,p,&d,&r);
                   1723:
                   1724:   /* r = dim ker(x) */
                   1725:   if (!r) { avma=av; if (d) free(d); return gcopy(x); }
                   1726:
                   1727:   /* r = dim Im(x) */
                   1728:   r = lg(x)-1 - r; avma=av;
                   1729:   y=cgetg(r+1,t_MAT);
                   1730:   for (j=k=1; j<=r; k++)
                   1731:     if (d[k]) y[j++] = lcopy((GEN)x[k]);
                   1732:   free(d); return y;
                   1733: }
                   1734:
                   1735: /*******************************************************************/
                   1736: /*                                                                 */
                   1737: /*                        EIGENVECTORS                             */
                   1738: /*   (independent eigenvectors, sorted by increasing eigenvalue)   */
                   1739: /*                                                                 */
                   1740: /*******************************************************************/
                   1741:
                   1742: GEN
                   1743: eigen(GEN x, long prec)
                   1744: {
                   1745:   GEN y,z,rr,p,ssesp,r1,r2,r3;
                   1746:   long i,k,l,ly,av,tetpil,nbrac,ex, n = lg(x);
                   1747:
                   1748:   if (typ(x)!=t_MAT) err(typeer,"eigen");
                   1749:   if (n != 1 && n != lg(x[1])) err(mattype1,"eigen");
                   1750:   if (n<=2) return gcopy(x);
                   1751:
                   1752:   av=avma; ex = 16 - bit_accuracy(prec);
                   1753:   y=cgetg(n,t_MAT); z=dummycopy(x);
                   1754:   p=caradj(x,0,NULL); rr=roots(p,prec); nbrac=lg(rr)-1;
                   1755:   for (i=1; i<=nbrac; i++)
                   1756:   {
                   1757:     GEN p1 = (GEN)rr[i];
                   1758:     if (!signe(p1[2])) rr[i]=p1[1];
                   1759:   }
                   1760:   ly=1; k=1; r2=(GEN)rr[1];
                   1761:   for(;;)
                   1762:   {
                   1763:     r3 = ground(r2); if (gexpo(gsub(r2,r3)) < ex) r2 = r3;
                   1764:     for (i=1; i<n; i++)
                   1765:       coeff(z,i,i) = lsub(gcoeff(x,i,i),r2);
                   1766:     ssesp=ker0(z,prec); l=lg(ssesp);
                   1767:     if (l == 1)
                   1768:       err(talker, "precision too low in eigen");
                   1769:     for (i=1; i<l; ) y[ly++]=ssesp[i++]; /* done with this eigenspace */
                   1770:
                   1771:     r1=r2; /* try to find a different eigenvalue */
                   1772:     do
                   1773:     {
                   1774:       if (k==nbrac)
                   1775:       {
                   1776:         tetpil=avma; setlg(y,ly); /* x may not be diagonalizable */
                   1777:         return gerepile(av,tetpil,gcopy(y));
                   1778:       }
                   1779:       k++; r2=(GEN)rr[k];
                   1780:     }
                   1781:     while (gexpo(gsub(r1,r2)) < ex);
                   1782:   }
                   1783: }
                   1784:
                   1785: /*******************************************************************/
                   1786: /*                                                                 */
                   1787: /*                           DETERMINANT                           */
                   1788: /*                                                                 */
                   1789: /*******************************************************************/
                   1790:
                   1791: GEN
                   1792: det0(GEN a,long flag)
                   1793: {
                   1794:   switch(flag)
                   1795:   {
                   1796:     case 0: return det(a);
                   1797:     case 1: return det2(a);
                   1798:     default: err(flagerr,"matdet");
                   1799:   }
                   1800:   return NULL; /* not reached */
                   1801: }
                   1802:
                   1803: /* Exact types: choose the first non-zero pivot. Otherwise: maximal pivot */
                   1804: static GEN
                   1805: det_simple_gauss(GEN a, long inexact)
                   1806: {
                   1807:   long i,j,k,av,av1,s, nbco = lg(a)-1;
                   1808:   GEN x,p;
                   1809:
                   1810:   av=avma; s=1; x=gun; a=dummycopy(a);
                   1811:   for (i=1; i<nbco; i++)
                   1812:   {
                   1813:     p=gcoeff(a,i,i); k=i;
                   1814:     if (inexact)
                   1815:     {
                   1816:       long e, ex = gexpo(p);
                   1817:       GEN p1;
                   1818:
                   1819:       for (j=i+1; j<=nbco; j++)
                   1820:       {
                   1821:         e = gexpo(gcoeff(a,i,j));
                   1822:         if (e > ex) { ex=e; k=j; }
                   1823:       }
                   1824:       p1 = gcoeff(a,i,k);
                   1825:       if (gcmp0(p1)) return gerepileupto(av, gcopy(p1));
                   1826:     }
                   1827:     else if (gcmp0(p))
                   1828:     {
                   1829:       do k++; while(k<=nbco && gcmp0(gcoeff(a,i,k)));
                   1830:       if (k>nbco) return gerepileupto(av, gcopy(p));
                   1831:     }
                   1832:     if (k != i)
                   1833:     {
                   1834:       swap(a[i],a[k]); s = -s;
                   1835:       p = gcoeff(a,i,i);
                   1836:     }
                   1837:
                   1838:     x = gmul(x,p);
                   1839:     for (k=i+1; k<=nbco; k++)
                   1840:     {
                   1841:       GEN m = gcoeff(a,i,k);
                   1842:       if (!gcmp0(m))
                   1843:       {
                   1844:        m = gneg_i(gdiv(m,p));
                   1845:        for (j=i+1; j<=nbco; j++)
                   1846:          coeff(a,j,k) = ladd(gcoeff(a,j,k), gmul(m,gcoeff(a,j,i)));
                   1847:       }
                   1848:     }
                   1849:   }
                   1850:   if (s<0) x = gneg_i(x);
                   1851:   av1=avma; return gerepile(av,av1,gmul(x,gcoeff(a,nbco,nbco)));
                   1852: }
                   1853:
                   1854: /* a has integer entries, N = P^n */
                   1855: GEN
                   1856: det_mod_P_n(GEN a, GEN N, GEN P)
                   1857: {
                   1858:   long va,i,j,k,s, av = avma, nbco = lg(a)-1;
                   1859:   GEN x,p;
                   1860:
                   1861:   s=1; va=0; x=gun; a=dummycopy(a);
                   1862:   for (i=1; i<nbco; i++)
                   1863:   {
                   1864:     long fl = 0;
                   1865:     for(;;)
                   1866:     {
                   1867:       for (k=i; k<=nbco; k++)
                   1868:       {
                   1869:         p=gcoeff(a,i,k);
                   1870:         if (signe(p))
                   1871:         {
                   1872:           fl = 1;
                   1873:           if (resii(p,P) != gzero) break;
                   1874:         }
                   1875:       }
                   1876:       if (k <= nbco) break;
                   1877:       va++; N = divii(N, P);
                   1878:       if (!fl || is_pm1(N)) { avma=av; return gzero; }
                   1879:       for (k=i; k<=nbco; k++) coeff(a,i,k) = ldivii(gcoeff(a,i,k), P);
                   1880:     }
                   1881:     if (k != i) { swap(a[i],a[k]); s = -s; }
                   1882:
                   1883:     x = gmul(x,p); p = mpinvmod(p,N);
                   1884:     for (k=i+1; k<=nbco; k++)
                   1885:     {
                   1886:       GEN m = resii(gcoeff(a,i,k), N);
                   1887:       coeff(a,i,k) = zero;
                   1888:       if (signe(m))
                   1889:       {
                   1890:        m = negi(resii(mulii(m,p), N));
                   1891:        for (j=i+1; j<=nbco; j++)
                   1892:          coeff(a,j,k) = lresii(addii(gcoeff(a,j,k),
                   1893:                                 mulii(m,gcoeff(a,j,i))), N);
                   1894:       }
                   1895:     }
                   1896:   }
                   1897:   if (s<0) x = negi(x);
                   1898:   x = resii(mulii(x,gcoeff(a,nbco,nbco)), N);
                   1899:   return gerepileuptoint(av, mulii(x, gpowgs(P,va)));
                   1900: }
                   1901:
                   1902: GEN
                   1903: det2(GEN a)
                   1904: {
                   1905:   long nbco = lg(a)-1;
                   1906:   if (typ(a)!=t_MAT) err(mattype1,"det2");
                   1907:   if (!nbco) return gun;
                   1908:   if (nbco != lg(a[1])-1) err(mattype1,"det2");
                   1909:   return det_simple_gauss(a,use_maximal_pivot(a));
                   1910: }
                   1911:
                   1912: /* determinant in a ring A: all computations are done within A
                   1913:  * (Gauss-Bareiss algorithm)
                   1914:  */
                   1915: GEN
                   1916: det(GEN a)
                   1917: {
                   1918:   long nbco = lg(a)-1,i,j,k,av,s;
                   1919:   GEN p,pprec;
                   1920:
                   1921:   if (typ(a)!=t_MAT) err(mattype1,"det");
                   1922:   if (!nbco) return gun;
                   1923:   if (nbco != lg(a[1])-1) err(mattype1,"det");
                   1924:   if (use_maximal_pivot(a)) return det_simple_gauss(a,1);
                   1925:
                   1926:   av=avma; a=dummycopy(a); s=1;
                   1927:   if (DEBUGLEVEL > 7) timer2();
                   1928:   for (pprec=gun,i=1; i<nbco; i++,pprec=p)
                   1929:   {
                   1930:     GEN *ci, *ck, m, p1;
                   1931:     int diveuc = (gcmp1(pprec)==0);
                   1932:
                   1933:     p = gcoeff(a,i,i);
                   1934:     if (gcmp0(p))
                   1935:     {
                   1936:       k=i+1; while (k<=nbco && gcmp0(gcoeff(a,i,k))) k++;
                   1937:       if (k>nbco) return gerepileupto(av, gcopy(p));
                   1938:       swap(a[k], a[i]); s = -s;
                   1939:       p=gcoeff(a,i,i);
                   1940:     }
                   1941:     ci = (GEN*)a[i];
                   1942:     for (k=i+1; k<=nbco; k++)
                   1943:     {
                   1944:       ck = (GEN*)a[k]; m = (GEN)ck[i];
                   1945:       if (gcmp0(m))
                   1946:       {
                   1947:         if (gcmp1(p))
                   1948:         {
                   1949:           if (!gcmp1(pprec))
                   1950:             a[k] = (long)gdivexact((GEN)a[k], pprec);
                   1951:         }
                   1952:         else
                   1953:           for (j=i+1; j<=nbco; j++)
                   1954:           {
                   1955:             p1 = gmul(p,ck[j]);
                   1956:             if (diveuc) p1 = gdivexact(p1,pprec);
                   1957:             ck[j] = p1;
                   1958:           }
                   1959:       }
                   1960:       else
                   1961:       {
                   1962:         m = gneg_i(m);
                   1963:         for (j=i+1; j<=nbco; j++)
                   1964:         {
                   1965:           p1 = gadd(gmul(p,ck[j]), gmul(m,ci[j]));
                   1966:           if (diveuc) p1 = gdivexact(p1,pprec);
                   1967:           ck[j] = p1;
                   1968:         }
                   1969:       }
                   1970:     }
                   1971:     if (DEBUGLEVEL > 7) msgtimer("det, col %ld / %ld",i,nbco-1);
                   1972:   }
                   1973:   p = gcoeff(a,nbco,nbco);
                   1974:   if (s < 0) p = gneg(p); else if (nbco==1) p = gcopy(p);
                   1975:   return gerepileupto(av, p);
                   1976: }
                   1977:
                   1978: /*******************************************************************/
                   1979: /*                                                                 */
                   1980: /*                SPECIAL HNF (FOR INTERNAL USE !!!)               */
                   1981: /*                                                                 */
                   1982: /*******************************************************************/
                   1983: GEN lincomb_integral(GEN u, GEN v, GEN X, GEN Y);
                   1984: GEN vconcat(GEN Q1, GEN Q2);
                   1985:
                   1986: static int
                   1987: count(long **mat, long row, long len, long *firstnonzero)
                   1988: {
                   1989:   int j, n=0;
                   1990:
                   1991:   for (j=1; j<=len; j++)
                   1992:   {
                   1993:     long p = mat[j][row];
                   1994:     if (p)
                   1995:     {
                   1996:       if (labs(p)!=1) return -1;
                   1997:       n++; *firstnonzero=j;
                   1998:     }
                   1999:   }
                   2000:   return n;
                   2001: }
                   2002:
                   2003: static int
                   2004: count2(long **mat, long row, long len)
                   2005: {
                   2006:   int j;
                   2007:   for (j=len; j; j--)
                   2008:     if (labs(mat[j][row]) == 1) return j;
                   2009:   return 0;
                   2010: }
                   2011:
                   2012: static GEN
                   2013: hnffinal(GEN matgen,GEN perm,GEN* ptdep,GEN* ptB,GEN* ptC)
                   2014: {
                   2015:   GEN p1,p2,U,H,Hnew,Bnew,Cnew,diagH1;
                   2016:   GEN B = *ptB, C = *ptC, dep = *ptdep, depnew;
                   2017:   long av,i,j,k,s,i1,j1,lim,zc;
                   2018:   long co = lg(C);
                   2019:   long col = lg(matgen)-1;
                   2020:   long lnz, nlze, lig;
                   2021:
                   2022:   if (col == 0) return matgen;
                   2023:   lnz = lg(matgen[1])-1; /* was called lnz-1 - nr in hnfspec */
                   2024:   nlze = lg(dep[1])-1;
                   2025:   lig = nlze + lnz;
                   2026:   if (DEBUGLEVEL>5)
                   2027:   {
                   2028:     fprintferr("Entering hnffinal:\n");
                   2029:     if (DEBUGLEVEL>6)
                   2030:     {
                   2031:       if (nlze) fprintferr("dep = %Z\n",dep);
                   2032:       fprintferr("mit = %Z\n",matgen);
                   2033:       fprintferr("B = %Z\n",B);
                   2034:     }
                   2035:   }
                   2036: /* [LLLKERIM]
                   2037:   u1u2=lllkerim(matgen); u1=(GEN)u1u2[1]; u2=(GEN)u1u2[2];
                   2038:   if (DEBUGLEVEL>6) fprintferr("lllkerim done\n");
                   2039:   if (lg(u2)<=lnz)
                   2040:     err(talker,"matrix not of maximal rank in hermite spec");
                   2041:   p1=gmul(matgen,u2);
                   2042:   detmat=absi(det(p1));
                   2043:   if (DEBUGLEVEL>6) fprintferr("det done\n");
                   2044:   H=hnfmod(p1,detmat);
                   2045:   if (DEBUGLEVEL>6) fprintferr("hnfmod done\n");
                   2046:   p2=gmul(u1,lllint(u1));
                   2047:   if (DEBUGLEVEL>6) fprintferr("lllint done\n");
                   2048:   p3=gmul(u2,gauss(p1,H));
                   2049:   if (DEBUGLEVEL>6) fprintferr("gauss done\n");
                   2050:   U=cgetg(col+1,t_MAT);
                   2051:   for (j=1; j<lg(p2); j++) U[j]=p2[j];
                   2052:   for (j=lg(p2); j<=col; j++) U[j]=p3[j+1-lg(p2)]; */
                   2053:
                   2054: /* [HNFHAVAS]
                   2055:
                   2056:   p2=hnfhavas(matgen); p1=(GEN)p2[1]; U=(GEN)p2[2]; p5=(GEN)p2[3];
                   2057:   if (DEBUGLEVEL>6) fprintferr("hnfhavas done\n");
                   2058:   for (i=1; i < lg(p1) && gcmp0(p1[i]); i++);
                   2059:   i1=i-1;
                   2060:   u1=cgetg(i,t_MAT); for (j=1; j<i; j++) u1[j]=U[j];
                   2061:   H=cgetg(j1=lg(p1)-i1,t_MAT); for (j=1; j<j1; j++) H[j]=p1[i1+j];
                   2062:   p2=cgetg(lg(p5),t_VEC);
                   2063:   for (i=1; i<lg(p5); i++) p2[i]=lstoi(perm[nlze+itos(p5[i])]);
                   2064:   for (i=1; i<lg(p5); i++) perm[nlze+i]=itos(p2[i]);
                   2065:   p2=u1;
                   2066:   p1=cgetg(j1,t_MAT); for (j=1; j<j1; j++) p1[j]=U[i1+j];
                   2067:   Bnew=cgetg(co-col,t_MAT);
                   2068:   for (j=1; j<co-col; j++)
                   2069:   {
                   2070:   p3=cgetg(lig+1,t_COL); Bnew[j]=(long)p3;
                   2071:   for (i=1; i<=nlze; i++) p3[i]=coeff(B,i,j);
                   2072:   for (; i<=lig; i++) p3[i]=coeff(B,nlze+itos(p5[i-nlze]),j);
                   2073:   }
                   2074:   B=Bnew; */
                   2075:
                   2076: /* [HNFBATUT] */
                   2077:   p1 = hnfall(matgen);
                   2078:   H = (GEN)p1[1]; /* lnz x lnz */
                   2079:   U = (GEN)p1[2]; /* col x col */
                   2080:   /* Only keep the part above the H (above the 0s is 0 since the dep rows
                   2081:    * are dependant from the ones in matgen) */
                   2082:   zc = col - lnz; /* # of 0 columns, correspond to units */
                   2083:   if (nlze) { dep = gmul(dep,U); dep += zc; }
                   2084:
                   2085:   diagH1 = new_chunk(lnz+1); /* diagH1[i] = 0 iff H[i,i] != 1 (set later) */
                   2086:
                   2087:   av = avma; lim = stack_lim(av,1);
                   2088:   Cnew = cgetg(co,t_MAT);
                   2089:   setlg(C, col+1);
                   2090:   p1 = gmul(C,U); setlg(C, co);
                   2091:   for (j=1; j<=col; j++) Cnew[j] = p1[j];
                   2092:   for (   ; j<co ; j++)  Cnew[j] = C[j];
                   2093:   if (DEBUGLEVEL>5) fprintferr("    hnfall done\n");
                   2094:
                   2095:   /* Clean up B using new H */
                   2096:   for (s=0,i=lnz; i; i--)
                   2097:   {
                   2098:     GEN h = gcoeff(H,i,i);
                   2099:     if ( (diagH1[i] = gcmp1(h)) ) { h = NULL; s++; }
                   2100:     for (j=col+1; j<co; j++)
                   2101:     {
                   2102:       GEN z = (GEN)B[j-col];
                   2103:       p1 = (GEN)z[i+nlze]; if (h) p1 = gdivent(p1,h);
                   2104:       for (k=1; k<=nlze; k++)
                   2105:        z[k] = lsubii((GEN)z[k], mulii(p1, gcoeff(dep,k,i)));
                   2106:       for (   ; k<=lig; k++)
                   2107:        z[k] = lsubii((GEN)z[k], mulii(p1, gcoeff(H,k-nlze,i)));
                   2108:       Cnew[j] = lsub((GEN)Cnew[j], gmul(p1, (GEN)Cnew[i+zc]));
                   2109:     }
                   2110:     if (low_stack(lim, stack_lim(av,1)))
                   2111:     {
                   2112:       GEN *gptr[2]; gptr[0]=&Cnew; gptr[1]=&B;
                   2113:       if(DEBUGMEM>1) err(warnmem,"hnffinal, i = %ld",i);
                   2114:       gerepilemany(av,gptr,2);
                   2115:     }
                   2116:   }
                   2117:   p1 = cgetg(lnz+1,t_VEC); p2 = perm + nlze;
                   2118:   for (i1=0, j1=lnz-s, i=1; i<=lnz; i++) /* push the 1 rows down */
                   2119:     if (diagH1[i])
                   2120:       p1[++j1] = p2[i];
                   2121:     else
                   2122:       p2[++i1] = p2[i];
                   2123:   for (i=i1+1; i<=lnz; i++) p2[i] = p1[i];
                   2124:   if (DEBUGLEVEL>5) fprintferr("    first pass in hnffinal done\n");
                   2125:
                   2126:   /* s = # extra redundant generators taken from H
                   2127:    *          zc  col-s  co   zc = col ­ lnz
                   2128:    *       [ 0 |dep |     ]    i = lnze + lnz - s = lig - s
                   2129:    *  nlze [--------|  B' ]
                   2130:    *       [ 0 | H' |     ]    H' = H minus the s rows with a 1 on diagonal
                   2131:    *     i [--------|-----] lig-s           (= "1-rows")
                   2132:    *       [   0    | Id  ]
                   2133:    *       [        |     ] li */
                   2134:   lig -= s; col -= s; lnz -= s;
                   2135:   Hnew = cgetg(lnz+1,t_MAT);
                   2136:   if (nlze) depnew = cgetg(lnz+1,t_MAT);
                   2137:   Bnew = cgetg(co-col,t_MAT);
                   2138:   C = dummycopy(Cnew);
                   2139:   for (j=1,i1=j1=0; j<=lnz+s; j++)
                   2140:   {
                   2141:     GEN z = (GEN)H[j];
                   2142:     if (diagH1[j])
                   2143:     { /* hit exactly s times */
                   2144:       i1++; p1 = cgetg(lig+1,t_COL); Bnew[i1] = (long)p1;
                   2145:       C[i1+col] = Cnew[j+zc];
                   2146:       for (i=1; i<=nlze; i++) p1[i] = coeff(dep,i,j);
                   2147:       p1 += nlze;
                   2148:     }
                   2149:     else
                   2150:     {
                   2151:       j1++; p1 = cgetg(lnz+1,t_COL); Hnew[j1] = (long)p1;
                   2152:       C[j1+zc] = Cnew[j+zc];
                   2153:       if (nlze) depnew[j1] = dep[j];
                   2154:     }
                   2155:     for (i=k=1; k<=lnz; i++)
                   2156:       if (!diagH1[i]) p1[k++] = z[i];
                   2157:   }
                   2158:   for (j=s+1; j<co-col; j++)
                   2159:   {
                   2160:     GEN z = (GEN)B[j-s];
                   2161:     p1 = cgetg(lig+1,t_COL); Bnew[j] = (long)p1;
                   2162:     for (i=1; i<=nlze; i++) p1[i] = z[i];
                   2163:     z += nlze; p1 += nlze;
                   2164:     for (i=k=1; k<=lnz; i++)
                   2165:       if (!diagH1[i]) p1[k++] = z[i];
                   2166:   }
                   2167:   if (DEBUGLEVEL>5)
                   2168:   {
                   2169:     fprintferr("Leaving hnffinal\n");
                   2170:     if (DEBUGLEVEL>6)
                   2171:     {
                   2172:       if (nlze) fprintferr("dep = %Z\n",depnew);
                   2173:       fprintferr("mit = %Z\n",Hnew); outerr(Hnew);
                   2174:       fprintferr("B = %Z\n",Bnew);
                   2175:       fprintferr("C = %Z\n",C);
                   2176:     }
                   2177:   }
                   2178:   if (nlze) *ptdep = depnew;
                   2179:   *ptC = C;
                   2180:   *ptB = Bnew; return Hnew;
                   2181: }
                   2182:
                   2183: /* for debugging */
                   2184: static void
                   2185: p_mat(long **mat, long *perm, long k0)
                   2186: {
                   2187:   long av=avma, i,j;
                   2188:   GEN p1, matj, matgen;
                   2189:   long co = lg(mat);
                   2190:   long li = lg(perm);
                   2191:
                   2192:   fprintferr("Permutation: %Z\n",perm);
                   2193:   matgen = cgetg(co,t_MAT);
                   2194:   for (j=1; j<co; j++)
                   2195:   {
                   2196:     p1 = cgetg(li-k0,t_COL); matgen[j]=(long)p1;
                   2197:     p1 -= k0; matj = mat[j];
                   2198:     for (i=k0+1; i<li; i++) p1[i] = lstoi(matj[perm[i]]);
                   2199:   }
                   2200:   if (DEBUGLEVEL > 6) fprintferr("matgen = %Z\n",matgen);
                   2201:   avma=av;
                   2202: }
                   2203:
                   2204: #define gswap(x,y) { long *_t=x; x=y; y=_t; }
                   2205:
                   2206: /* HNF reduce a relation matrix (column operations + row permutation)
                   2207: ** Input:
                   2208: **   mat = (li-1) x (co-1) matrix of long
                   2209: **   C   = r x (co-1) matrix of GEN
                   2210: **   perm= permutation vector (length li-1), indexing the rows of mat: easier
                   2211: **     to maintain perm than to copy rows. For columns we can do it directly
                   2212: **     using e.g. swap(mat[i], mat[j])
                   2213: **   k0 = integer. The k0 first lines of mat are dense, the others are sparse.
                   2214: ** Output: cf ASCII art in the function body
                   2215: **
                   2216: ** row permutations applied to perm
                   2217: ** column operations applied to C.
                   2218: **/
                   2219: GEN
                   2220: hnfspec(long** mat, GEN perm, GEN* ptdep, GEN* ptB, GEN* ptC, long k0)
                   2221: {
                   2222:   long av=avma,av2,*p,i,j,k,lk0,col,lig,*matj;
                   2223:   long n,s,t,lim,nlze,lnz,nr;
                   2224:   GEN p1,p2,matb,matbnew,vmax,matt,T,extramat;
                   2225:   GEN B,H,dep,permpro;
                   2226:   GEN *gptr[4];
                   2227:   long co = lg(mat);
                   2228:   long li = lg(perm); /* = lg(mat[1]) */
                   2229:   int updateT = 1;
                   2230:
                   2231:   if (DEBUGLEVEL>5)
                   2232:   {
                   2233:     fprintferr("Entering hnfspec\n");
                   2234:     p_mat(mat,perm,0);
                   2235:   }
                   2236:   matt = cgetg(co,t_MAT); /* dense part of mat (top) */
                   2237:   for (j=1; j<co; j++)
                   2238:   {
                   2239:     p1=cgetg(k0+1,t_COL); matt[j]=(long)p1; matj = mat[j];
                   2240:     for (i=1; i<=k0; i++) p1[i] = lstoi(matj[perm[i]]);
                   2241:   }
                   2242:   vmax = cgetg(co,t_VECSMALL);
                   2243:   av2 = avma; lim = stack_lim(av2,1);
                   2244:
                   2245:   i=lig=li-1; col=co-1; lk0=k0;
                   2246:   if (k0 || (lg(*ptC) > 1 && lg((*ptC)[1]) > 1)) T = idmat(col);
                   2247:   else
                   2248:   { /* dummy ! */
                   2249:     GEN z = cgetg(1,t_COL);
                   2250:     T = cgetg(co, t_MAT); updateT = 0;
                   2251:     for (j=1; j<co; j++) T[j] = (long)z;
                   2252:   }
                   2253:   /* Look for lines with a single non­0 entry, equal to ±1 */
                   2254:   while (i > lk0)
                   2255:     switch( count(mat,perm[i],col,&n) )
                   2256:     {
                   2257:       case 0: /* move zero lines between k0+1 and lk0 */
                   2258:        lk0++; swap(perm[i], perm[lk0]);
                   2259:         i=lig; continue;
                   2260:
                   2261:       case 1: /* move trivial generator between lig+1 and li */
                   2262:        swap(perm[i], perm[lig]);
                   2263:         swap(T[n], T[col]);
                   2264:        gswap(mat[n], mat[col]); p = mat[col];
                   2265:        if (p[perm[lig]] < 0) /* = -1 */
                   2266:        { /* convert relation -g = 0 to g = 0 */
                   2267:          for (i=lk0+1; i<lig; i++) p[perm[i]] = -p[perm[i]];
                   2268:           if (updateT)
                   2269:           {
                   2270:             p1 = (GEN)T[col];
                   2271:             for (i=1; ; i++)
                   2272:               if (signe((GEN)p1[i])) { p1[i] = lnegi((GEN)p1[i]); break; }
                   2273:           }
                   2274:        }
                   2275:        lig--; col--; i=lig; continue;
                   2276:
                   2277:       default: i--;
                   2278:     }
                   2279:   if (DEBUGLEVEL>5)
                   2280:   {
                   2281:     fprintferr("    after phase1:\n");
                   2282:     p_mat(mat,perm,0);
                   2283:   }
                   2284:
                   2285: #define absmax(s,z) {long _z = labs(z); if (_z > s) s = _z;}
                   2286:
                   2287: #if 0 /* TODO: check, and put back in */
                   2288:   /* Get rid of all lines containing only 0 and ± 1, keeping track of column
                   2289:    * operations in T. Leave the rows 1..lk0 alone [up to k0, coeff
                   2290:    * explosion, between k0+1 and lk0, row is 0]
                   2291:    */
                   2292:   s = 0;
                   2293:   while (lig > lk0 && s < (HIGHBIT>>1))
                   2294:   {
                   2295:     for (i=lig; i>lk0; i--)
                   2296:       if (count(mat,perm[i],col,&n) >= 0) break;
                   2297:     if (i == lk0) break;
                   2298:
                   2299:     /* only 0, ±1 entries, at least 2 of them non-zero */
                   2300:     swap(perm[i], perm[lig]);
                   2301:     swap(T[n], T[col]); p1 = (GEN)T[col];
                   2302:     gswap(mat[n], mat[col]); p = mat[col];
                   2303:     if (p[perm[lig]] < 0)
                   2304:     {
                   2305:       for (i=lk0+1; i<=lig; i++) p[perm[i]] = -p[perm[i]];
                   2306:       T[col] = lneg(p1);
                   2307:     }
                   2308:     for (j=1; j<n; j++)
                   2309:     {
                   2310:       matj = mat[j];
                   2311:       if (! (t = matj[perm[lig]]) ) continue;
                   2312:       if (t == 1)
                   2313:       { /* t = 1 */
                   2314:         for (i=lk0+1; i<=lig; i++)
                   2315:           absmax(s, matj[perm[i]] -= p[perm[i]]);
                   2316:         T[j] = lsub((GEN)T[j], p1);
                   2317:       }
                   2318:       else
                   2319:       { /* t = -1 */
                   2320:         for (i=lk0+1; i<=lig; i++)
                   2321:           absmax(s, matj[perm[i]] += p[perm[i]]);
                   2322:         T[j] = ladd((GEN)T[j], p1);
                   2323:       }
                   2324:     }
                   2325:     lig--; col--;
                   2326:     if (low_stack(lim, stack_lim(av2,1)))
                   2327:     {
                   2328:       if(DEBUGMEM>1) err(warnmem,"hnfspec[1]");
                   2329:       T = gerepileupto(av2, gcopy(T));
                   2330:     }
                   2331:   }
                   2332: #endif
                   2333:   /* As above with lines containing a ±1 (no other assumption).
                   2334:    * Stop when single precision becomes dangerous */
                   2335:   for (j=1; j<=col; j++)
                   2336:   {
                   2337:     matj = mat[j];
                   2338:     for (s=0, i=lk0+1; i<=lig; i++) absmax(s, matj[i]);
                   2339:     vmax[j] = s;
                   2340:   }
                   2341:   while (lig > lk0)
                   2342:   {
                   2343:     for (i=lig; i>lk0; i--)
                   2344:       if ( (n = count2(mat,perm[i],col)) ) break;
                   2345:     if (i == lk0) break;
                   2346:
                   2347:     swap(perm[i], perm[lig]);
                   2348:     swap(vmax[n], vmax[col]);
                   2349:     gswap(mat[n], mat[col]); p = mat[col];
                   2350:     swap(T[n], T[col]); p1 = (GEN)T[col];
                   2351:     if (p[perm[lig]] < 0)
                   2352:     {
                   2353:       for (i=lk0+1; i<=lig; i++) p[perm[i]] = -p[perm[i]];
                   2354:       p1 = gneg(p1); T[col] = (long)p1;
                   2355:     }
                   2356:     for (j=1; j<col; j++)
                   2357:     {
                   2358:       matj = mat[j];
                   2359:       if (! (t = matj[perm[lig]]) ) continue;
                   2360:       if (vmax[col] && labs(t) >= (HIGHBIT-vmax[j]) / vmax[col]) goto END2;
                   2361:
                   2362:       for (s=0, i=lk0+1; i<=lig; i++)
                   2363:         absmax(s, matj[perm[i]] -= t*p[perm[i]]);
                   2364:       vmax[j] = s;
                   2365:       T[j] = (long)lincomb_integral(gun,stoi(-t), (GEN)T[j],p1);
                   2366:     }
                   2367:     lig--; col--;
                   2368:     if (low_stack(lim, stack_lim(av2,1)))
                   2369:     {
                   2370:       if(DEBUGMEM>1) err(warnmem,"hnfspec[2]");
                   2371:       T = gerepileupto(av2,gcopy(T));
                   2372:     }
                   2373:   }
                   2374:
                   2375: END2: /* clean up mat: remove everything to the right of the 1s on diagonal */
                   2376:   /* go multiprecision first */
                   2377:   matb = cgetg(co,t_MAT); /* bottom part (complement of matt) */
                   2378:   for (j=1; j<co; j++)
                   2379:   {
                   2380:     p1 = cgetg(li-k0,t_COL); matb[j] = (long)p1;
                   2381:     p1 -= k0; matj = mat[j];
                   2382:     for (i=k0+1; i<li; i++) p1[i] = lstoi(matj[perm[i]]);
                   2383:   }
                   2384:   if (DEBUGLEVEL>5)
                   2385:   {
                   2386:     fprintferr("    after phase2:\n");
                   2387:     p_mat(mat,perm,k0);
                   2388:   }
                   2389:   for (i=li-2; i>lig; i--)
                   2390:   {
                   2391:     long i1, i0 = i - k0, k = i + co-li;
                   2392:     GEN Bk = (GEN)matb[k];
                   2393:     GEN Tk = (GEN)T[k];
                   2394:     for (j=k+1; j<co; j++)
                   2395:     {
                   2396:       p1=(GEN)matb[j]; p2=(GEN)p1[i0];
                   2397:       if (! (s=signe(p2)) ) continue;
                   2398:
                   2399:       p1[i0] = zero;
                   2400:       if (is_pm1(p2))
                   2401:       {
                   2402:         if (s > 0)
                   2403:         { /* p2 = 1 */
                   2404:           for (i1=1; i1<i0; i1++)
                   2405:             p1[i1] = lsubii((GEN)p1[i1], (GEN)Bk[i1]);
                   2406:           T[j] = lsub((GEN)T[j], Tk);
                   2407:         }
                   2408:         else
                   2409:         { /* p2 = -1 */
                   2410:           for (i1=1; i1<i0; i1++)
                   2411:             p1[i1] = laddii((GEN)p1[i1], (GEN)Bk[i1]);
                   2412:           T[j] = ladd((GEN)T[j], Tk);
                   2413:         }
                   2414:       }
                   2415:       else
                   2416:       {
                   2417:         for (i1=1; i1<i0; i1++)
                   2418:           p1[i1] = lsubii((GEN)p1[i1], mulii(p2,(GEN) Bk[i1]));
                   2419:         T[j] = (long)lincomb_integral(gun,negi(p2), (GEN)T[j],Tk);
                   2420:       }
                   2421:     }
                   2422:     if (low_stack(lim, stack_lim(av2,1)))
                   2423:     {
                   2424:       if(DEBUGMEM>1) err(warnmem,"hnfspec[3], i = %ld", i);
                   2425:       for (j=1; j<co; j++) setlg(matb[j], i0+1); /* bottom can be forgotten */
                   2426:       gptr[0]=&T; gptr[1]=&matb; gerepilemany(av2,gptr,2);
                   2427:     }
                   2428:   }
                   2429:   gptr[0]=&T; gptr[1]=&matb; gerepilemany(av2,gptr,2);
                   2430:   if (DEBUGLEVEL>5)
                   2431:   {
                   2432:     fprintferr("    matb cleaned up (using Id block)\n");
                   2433:     if (DEBUGLEVEL>6) outerr(matb);
                   2434:   }
                   2435:
                   2436:   nlze = lk0 - k0;  /* # of 0 rows */
                   2437:   lnz = lig-nlze+1; /* 1 + # of non-0 rows (!= 0...0 1 0 ... 0) */
                   2438:   if (updateT) matt = gmul(matt,T); /* update top rows */
                   2439:   extramat = cgetg(col+1,t_MAT); /* = new C minus the 0 rows */
                   2440:   for (j=1; j<=col; j++)
                   2441:   {
                   2442:     GEN z = (GEN)matt[j];
                   2443:     GEN t = ((GEN)matb[j]) + nlze - k0;
                   2444:     p2=cgetg(lnz,t_COL); extramat[j]=(long)p2;
                   2445:     for (i=1; i<=k0; i++) p2[i] = z[i]; /* top k0 rows */
                   2446:     for (   ; i<lnz; i++) p2[i] = t[i]; /* other non-0 rows */
                   2447:   }
                   2448:   permpro = imagecomplspec(extramat, &nr); /* lnz = lg(permpro) */
                   2449:
                   2450:   if (nlze)
                   2451:   { /* put the nlze 0 rows (trivial generators) at the top */
                   2452:     p1 = new_chunk(lk0+1);
                   2453:     for (i=1; i<=nlze; i++) p1[i] = perm[i + k0];
                   2454:     for (   ; i<=lk0; i++)  p1[i] = perm[i - nlze];
                   2455:     for (i=1; i<=lk0; i++)  perm[i] = p1[i];
                   2456:   }
                   2457:   /* sort other rows according to permpro (nr redundant generators first) */
                   2458:   p1 = new_chunk(lnz); p2 = perm + nlze;
                   2459:   for (i=1; i<lnz; i++) p1[i] = p2[permpro[i]];
                   2460:   for (i=1; i<lnz; i++) p2[i] = p1[i];
                   2461:   /* perm indexes the rows of mat
                   2462:    *   |_0__|__redund__|__dense__|__too big__|_____done______|
                   2463:    *   0  nlze                              lig             li
                   2464:    *         \___nr___/ \___k0__/
                   2465:    *         \____________lnz ______________/
                   2466:    *
                   2467:    *               col   co
                   2468:    *       [dep     |     ]
                   2469:    *    i0 [--------|  B  ] (i0 = nlze + nr)
                   2470:    *       [matbnew |     ] matbnew has maximal rank = lnz-1 - nr
                   2471:    * mat = [--------|-----] lig
                   2472:    *       [   0    | Id  ]
                   2473:    *       [        |     ] li */
                   2474:
                   2475:   matbnew = cgetg(col+1,t_MAT); /* dense+toobig, maximal rank. For hnffinal */
                   2476:   dep    = cgetg(col+1,t_MAT); /* rows dependant from the ones in matbnew */
                   2477:   for (j=1; j<=col; j++)
                   2478:   {
                   2479:     GEN z = (GEN)extramat[j];
                   2480:     p1 = cgetg(nlze+nr+1,t_COL); dep[j]=(long)p1;
                   2481:     p2 = cgetg(lnz-nr,t_COL); matbnew[j]=(long)p2;
                   2482:     for (i=1; i<=nlze; i++) p1[i]=zero;
                   2483:     p1 += nlze; for (i=1; i<=nr; i++) p1[i] = z[permpro[i]];
                   2484:     p2 -= nr;   for (   ; i<lnz; i++) p2[i] = z[permpro[i]];
                   2485:   }
                   2486:
                   2487:   /* redundant generators in terms of the genuine generators
                   2488:    * (x_i) = - (g_i) B */
                   2489:   B = cgetg(co-col,t_MAT);
                   2490:   for (j=col+1; j<co; j++)
                   2491:   {
                   2492:     GEN y = (GEN)matt[j];
                   2493:     GEN z = (GEN)matb[j];
                   2494:     p1=cgetg(lig+1,t_COL); B[j-col]=(long)p1;
                   2495:     for (i=1; i<=nlze; i++) p1[i] = z[i];
                   2496:     p1 += nlze; z += nlze-k0;
                   2497:     for (k=1; k<lnz; k++)
                   2498:     {
                   2499:       i = permpro[k];
                   2500:       p1[k] = (i <= k0)? y[i]: z[i];
                   2501:     }
                   2502:   }
                   2503:   if (updateT) *ptC = gmul(*ptC,T);
                   2504:   *ptdep = dep;
                   2505:   *ptB = B;
                   2506:   H = hnffinal(matbnew,perm,ptdep,ptB,ptC);
                   2507:   gptr[0]=ptC;
                   2508:   gptr[1]=ptdep;
                   2509:   gptr[2]=ptB;
                   2510:   gptr[3]=&H; gerepilemany(av,gptr,4);
                   2511:   if (DEBUGLEVEL)
                   2512:     msgtimer("hnfspec [%ld x %ld] --> [%ld x %ld]",li-1,co-1, lig-1,col-1);
                   2513:   return H;
                   2514: }
                   2515:
                   2516: /* HNF reduce x, apply same transforms to C */
                   2517: GEN
                   2518: mathnfspec(GEN x, GEN *ptperm, GEN *ptdep, GEN *ptB, GEN *ptC)
                   2519: {
                   2520:   long i,j,ly,lx = lg(x);
                   2521:   GEN p1,p2,z,perm;
                   2522:   if (lx == 1) return gcopy(x);
                   2523:   ly = lg(x[1]);
                   2524:   z = cgetg(lx,t_MAT);
                   2525:   perm = cgetg(ly,t_VECSMALL); *ptperm = perm;
                   2526:   for (i=1; i<ly; i++) perm[i] = i;
                   2527:   for (i=1; i<lx; i++)
                   2528:   {
                   2529:     p1 = cgetg(ly,t_COL); z[i] = (long)p1;
                   2530:     p2 = (GEN)x[i];
                   2531:     for (j=1; j<ly; j++) p1[j] = itos((GEN)p2[j]);
                   2532:   }
                   2533:   /*  [ dep |     ]
                   2534:    *  [-----|  B  ]
                   2535:    *  [  H  |     ]
                   2536:    *  [-----|-----]
                   2537:    *  [  0  | Id  ] */
                   2538:   return hnfspec((long**)z,perm, ptdep, ptB, ptC, 0);
                   2539: }
                   2540:
                   2541: /* add new relations to a matrix treated by hnfspec (extramat / extraC) */
                   2542: GEN
                   2543: hnfadd(GEN H, GEN perm, GEN* ptdep, GEN* ptB, GEN* ptC, /* cf hnfspec */
                   2544:        GEN extramat,GEN extraC)
                   2545: {
                   2546:   GEN p1,p2,p3,matb,extratop,Cnew,permpro;
                   2547:   GEN B=*ptB, C=*ptC, dep=*ptdep, *gptr[4];
                   2548:   long av = avma, i,j,lextra,colnew;
                   2549:   long li = lg(perm);
                   2550:   long co = lg(C);
                   2551:   long lB = lg(B);
                   2552:   long lig = li - lB;
                   2553:   long col = co - lB;
                   2554:   long lH = lg(H)-1;
                   2555:   long nlze = lH? lg(dep[1])-1: lg(B[1])-1;
                   2556:
                   2557:   if (DEBUGLEVEL>5)
                   2558:   {
                   2559:     fprintferr("Entering hnfadd:\n");
                   2560:     if (DEBUGLEVEL>6) fprintferr("extramat = %Z\n",extramat);
                   2561:   }
                   2562:  /*               col    co
                   2563:   *       [ 0 |dep |     ]
                   2564:   *  nlze [--------|  B  ]
                   2565:   *       [ 0 | H  |     ]
                   2566:   *       [--------|-----] lig
                   2567:   *       [   0    | Id  ]
                   2568:   *       [        |     ] li */
                   2569:   lextra = lg(extramat)-1;
                   2570:   extratop = cgetg(lextra+1,t_MAT); /* [1..lig] part (top) */
                   2571:   p2 = cgetg(lextra+1,t_MAT); /* bottom */
                   2572:   for (j=1; j<=lextra; j++)
                   2573:   {
                   2574:     GEN z = (GEN)extramat[j];
                   2575:     p1=cgetg(lig+1,t_COL); extratop[j] = (long)p1;
                   2576:     for (i=1; i<=lig; i++) p1[i] = z[i];
                   2577:     p1=cgetg(lB,t_COL); p2[j] = (long)p1;
                   2578:     p1 -= lig;
                   2579:     for (   ; i<li; i++) p1[i] = z[i];
                   2580:   }
                   2581:   if (li-1 != lig)
                   2582:   { /* zero out bottom part, using the Id block */
                   2583:     GEN A = cgetg(lB,t_MAT);
                   2584:     for (j=1; j<lB; j++) A[j] = C[j+col];
                   2585:     extraC   = gsub(extraC,  gmul(A,p2));
                   2586:     extratop = gsub(extratop,gmul(B,p2));
                   2587:   }
                   2588:
                   2589:   colnew = lH + lextra;
                   2590:   extramat = cgetg(colnew+1,t_MAT);
                   2591:   Cnew = cgetg(lB+colnew,t_MAT);
                   2592:   for (j=1; j<=lextra; j++)
                   2593:   {
                   2594:     extramat[j] = extratop[j];
                   2595:     Cnew[j] = extraC[j];
                   2596:   }
                   2597:   for (   ; j<=colnew; j++)
                   2598:   {
                   2599:     p1 = cgetg(lig+1,t_COL); extramat[j] = (long)p1;
                   2600:     p2 = (GEN)dep[j-lextra]; for (i=1; i<=nlze; i++) p1[i] = p2[i];
                   2601:     p2 = (GEN)   H[j-lextra]; for (   ; i<=lig ; i++) p1[i] = p2[i-nlze];
                   2602:   }
                   2603:   for (j=lextra+1; j<lB+colnew; j++)
                   2604:     Cnew[j] = C[j-lextra+col-lH];
                   2605:   if (DEBUGLEVEL>5)
                   2606:   {
                   2607:     fprintferr("    1st phase done\n");
                   2608:     if (DEBUGLEVEL>6) fprintferr("extramat = %Z\n",extramat);
                   2609:   }
                   2610:   permpro = imagecomplspec(extramat, &nlze);
                   2611:   p1 = new_chunk(lig+1);
                   2612:   for (i=1; i<=lig; i++) p1[i] = perm[permpro[i]];
                   2613:   for (i=1; i<=lig; i++) perm[i] = p1[i];
                   2614:
                   2615:   matb = cgetg(colnew+1,t_MAT);
                   2616:   dep = cgetg(colnew+1,t_MAT);
                   2617:   for (j=1; j<=colnew; j++)
                   2618:   {
                   2619:     GEN z = (GEN)extramat[j];
                   2620:     p1=cgetg(nlze+1,t_COL); dep[j]=(long)p1;
                   2621:     p2=cgetg(lig+1-nlze,t_COL); matb[j]=(long)p2;
                   2622:     p2 -= nlze;
                   2623:     for (i=1; i<=nlze; i++) p1[i] = z[permpro[i]];
                   2624:     for (   ; i<= lig; i++) p2[i] = z[permpro[i]];
                   2625:   }
                   2626:   p3 = cgetg(lB,t_MAT);
                   2627:   for (j=1; j<lB; j++)
                   2628:   {
                   2629:     p2 = (GEN)B[j];
                   2630:     p1 = cgetg(lig+1,t_COL); p3[j] = (long)p1;
                   2631:     for (i=1; i<=lig; i++) p1[i] = p2[permpro[i]];
                   2632:   }
                   2633:   B = p3;
                   2634:   if (DEBUGLEVEL>5) fprintferr("    2nd phase done\n");
                   2635:   *ptdep = dep;
                   2636:   *ptB = B;
                   2637:   H = hnffinal(matb,perm,ptdep,ptB,&Cnew);
                   2638:   p1 = cgetg(co+lextra,t_MAT);
                   2639:   for (j=1; j <= col-lH; j++)   p1[j] = C[j];
                   2640:   C = Cnew - (col-lH);
                   2641:   for (   ; j < co+lextra; j++) p1[j] = C[j];
                   2642:
                   2643:   gptr[0]=ptC; *ptC=p1;
                   2644:   gptr[1]=ptdep;
                   2645:   gptr[2]=ptB;
                   2646:   gptr[3]=&H; gerepilemany(av,gptr,4);
                   2647:   if (DEBUGLEVEL)
                   2648:   {
                   2649:     if (DEBUGLEVEL>7)
                   2650:     {
                   2651:       fprintferr("mit = %Z\n",H);
                   2652:       fprintferr("C = %Z\n",p1);
                   2653:     }
                   2654:     msgtimer("hnfadd (%d)",lextra);
                   2655:   }
                   2656:   return H;
                   2657: }
                   2658:
                   2659: /* return a solution of congruence system sum M_{ i,j } X_j = Y_i mod D_i
                   2660:  * If ptu1 != NULL, put in *ptu1 a Z-basis of the homogeneous system
                   2661:  */
                   2662: static GEN
                   2663: gaussmoduloall(GEN M, GEN D, GEN Y, GEN *ptu1)
                   2664: {
                   2665:   long n,m,i,j,lM,av=avma,tetpil;
                   2666:   GEN p1,delta,H,U,u1,u2,x;
                   2667:
                   2668:   if (typ(M)!=t_MAT) err(typeer,"gaussmodulo");
                   2669:   lM = lg(M); m = lM-1;
                   2670:   if (!m)
                   2671:   {
                   2672:     if ((typ(Y)!=t_INT && lg(Y)!=1)
                   2673:      || (typ(D)!=t_INT && lg(D)!=1)) err(consister,"gaussmodulo");
                   2674:     return gzero;
                   2675:   }
                   2676:   n = lg(M[1])-1;
                   2677:   switch(typ(D))
                   2678:   {
                   2679:     case t_VEC:
                   2680:     case t_COL: delta=diagonal(D); break;
                   2681:     case t_INT: delta=gscalmat(D,n); break;
                   2682:     default: err(typeer,"gaussmodulo");
                   2683:   }
                   2684:   if (typ(Y) == t_INT)
                   2685:   {
                   2686:     p1 = cgetg(n+1,t_COL);
                   2687:     for (i=1; i<=n; i++) p1[i]=(long)Y;
                   2688:     Y = p1;
                   2689:   }
                   2690:   p1 = hnfall(concatsp(M,delta));
                   2691:   H = (GEN)p1[1]; U = (GEN)p1[2];
                   2692:   Y = gauss(H,Y);
                   2693:   if (!gcmp1(denom(Y))) return gzero;
                   2694:   u1 = cgetg(m+1,t_MAT);
                   2695:   u2 = cgetg(n+1,t_MAT);
                   2696:   for (j=1; j<=m; j++)
                   2697:   {
                   2698:     p1 = (GEN)U[j]; setlg(p1,lM);
                   2699:     u1[j] = (long)p1;
                   2700:   }
                   2701:   U += m;
                   2702:   for (j=1; j<=n; j++)
                   2703:   {
                   2704:     p1 = (GEN)U[j]; setlg(p1,lM);
                   2705:     u2[j] = (long)p1;
                   2706:   }
                   2707:   x = gmul(u2,Y);
                   2708:   tetpil=avma; x=lllreducemodmatrix(x,u1);
                   2709:   if (!ptu1) x = gerepile(av,tetpil,x);
                   2710:   else
                   2711:   {
                   2712:     GEN *gptr[2];
                   2713:     *ptu1=gcopy(u1); gptr[0]=ptu1; gptr[1]=&x;
                   2714:     gerepilemanysp(av,tetpil,gptr,2);
                   2715:   }
                   2716:   return x;
                   2717: }
                   2718:
                   2719: GEN
                   2720: matsolvemod0(GEN M, GEN D, GEN Y, long flag)
                   2721: {
                   2722:   long av;
                   2723:   GEN p1,y;
                   2724:
                   2725:   if (!flag) return gaussmoduloall(M,D,Y,NULL);
                   2726:
                   2727:   av=avma; y = cgetg(3,t_VEC);
                   2728:   p1 = gaussmoduloall(M,D,Y, (GEN*)y+2);
                   2729:   if (p1==gzero) { avma=av; return gzero; }
                   2730:   y[1] = (long)p1; return y;
                   2731: }
                   2732:
                   2733: GEN
                   2734: gaussmodulo2(GEN M, GEN D, GEN Y)
                   2735: {
                   2736:   return matsolvemod0(M,D,Y,1);
                   2737: }
                   2738:
                   2739: GEN
                   2740: gaussmodulo(GEN M, GEN D, GEN Y)
                   2741: {
                   2742:   return matsolvemod0(M,D,Y,0);
                   2743: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>