[BACK]Return to base4.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari / src / basemath

Annotation of OpenXM_contrib/pari/src/basemath/base4.c, Revision 1.1.1.1

1.1       maekawa     1: /*******************************************************************/
                      2: /*                                                                 */
                      3: /*                       BASIC NF OPERATIONS                       */
                      4: /*                           (continued)                           */
                      5: /*                                                                 */
                      6: /*******************************************************************/
                      7: /* $Id: base4.c,v 1.1.1.1 1999/09/16 13:47:22 karim Exp $ */
                      8: #include "pari.h"
                      9: #include "parinf.h"
                     10:
                     11: #define principalideal_aux(nf,x) (principalideal0((nf),(x),0))
                     12:
                     13: GEN element_muli(GEN nf, GEN x, GEN y);
                     14:
                     15: static GEN nfbezout(GEN nf, GEN a, GEN b, GEN ida, GEN idb, GEN *u, GEN *v, GEN *w, GEN *di);
                     16:
                     17: /*******************************************************************/
                     18: /*                                                                 */
                     19: /*                     IDEAL OPERATIONS                            */
                     20: /*                                                                 */
                     21: /*******************************************************************/
                     22:
                     23: /* A valid ideal is either principal (valid nf_element), or prime, or a matrix
                     24:  * on the integer basis (preferably HNF).
                     25:  * A prime ideal is of the form [p,a,e,f,b], where the ideal is p.Z_K+a.Z_K,
                     26:  * p is a rational prime, a belongs to Z_K, e=e(P/p), f=f(P/p), and b
                     27:  * Lenstra constant (p.P^(-1)= p Z_K + b Z_K).
                     28:  *
                     29:  * An idele is a couple[I,V] where I is a valid ideal and V a row vector
                     30:  * with r1+r2 components (real or complex). For instance, if M=(a), V
                     31:  * contains the complex logarithms of the first r1+r2 conjugates of a
                     32:  * (depends on the chosen generator a). All subroutines work with either
                     33:  * ideles or ideals (an omitted V is assumed to be 0).
                     34:  *
                     35:  * All the output ideals will be in HNF form.
                     36:  */
                     37:
                     38: /* types and conversions */
                     39:
                     40: static long
                     41: idealtyp(GEN *ideal, GEN *arch)
                     42: {
                     43:   GEN x = *ideal;
                     44:   long t,lx,tx = typ(x);
                     45:
                     46:   if (tx==t_VEC && lg(x)==3)
                     47:   { *arch = (GEN)x[2]; x = (GEN)x[1]; tx = typ(x); }
                     48:   else
                     49:     *arch = NULL;
                     50:   switch(tx)
                     51:   {
                     52:     case t_MAT: lx = lg(x);
                     53:       if (lx>2) t = id_MAT;
                     54:       else
                     55:       {
                     56:         t = id_PRINCIPAL;
                     57:         x = (lx==2)? (GEN)x[1]: gzero;
                     58:       }
                     59:       break;
                     60:
                     61:     case t_VEC: if (lg(x)!=6) err(idealer2);
                     62:       t = id_PRIME; break;
                     63:
                     64:     case t_POL: case t_POLMOD: case t_COL:
                     65:       t = id_PRINCIPAL; break;
                     66:     default:
                     67:       if (tx!=t_INT && !is_frac_t(tx)) err(idealer2);
                     68:       t = id_PRINCIPAL;
                     69:   }
                     70:   *ideal = x; return t;
                     71: }
                     72:
                     73: /* Assume ideal in HNF form */
                     74: long
                     75: ideal_is_zk(GEN ideal,long N)
                     76: {
                     77:   long i,j, lx = lg(ideal);
                     78:
                     79:   if (typ(ideal) != t_MAT || lx==1) return 0;
                     80:   N++; if (lx != N || lg(ideal[1]) != N) return 0;
                     81:   for (i=1; i<N; i++)
                     82:   {
                     83:     if (!gcmp1(gcoeff(ideal,i,i))) return 0;
                     84:     for (j=i+1; j<N; j++)
                     85:       if (!gcmp0(gcoeff(ideal,i,j))) return 0;
                     86:   }
                     87:   return 1;
                     88: }
                     89:
                     90: static GEN
                     91: prime_to_ideal_aux(GEN nf, GEN vp)
                     92: {
                     93:   GEN m,el;
                     94:   long i, N = lgef(nf[1])-3;
                     95:
                     96:   m = cgetg(N+1,t_MAT); el = (GEN)vp[2];
                     97:   for (i=1; i<=N; i++) m[i] = (long) element_mulid(nf,el,i);
                     98:   return hnfmodid(m,(GEN)vp[1]);
                     99: }
                    100:
                    101: GEN
                    102: prime_to_ideal(GEN nf, GEN vp)
                    103: {
                    104:   long av=avma;
                    105:   if (typ(vp) == t_INT) return gscalmat(vp, lgef(nf[1])-3);
                    106:   return gerepileupto(av, prime_to_ideal_aux(nf,vp));
                    107: }
                    108:
                    109: /* x = ideal in matrix form. Put it in hnf. */
                    110: static GEN
                    111: idealmat_to_hnf(GEN nf, GEN x)
                    112: {
                    113:   long rx,i,j,N;
                    114:   GEN m,dx;
                    115:
                    116:   N=lgef(nf[1])-3; rx=lg(x)-1;
                    117:   if (!rx) return gscalmat(gzero,N);
                    118:
                    119:   dx=denom(x); if (gcmp1(dx)) dx = NULL; else x=gmul(dx,x);
                    120:   if (rx >= N) m = x;
                    121:   else
                    122:   {
                    123:     m=cgetg(rx*N + 1,t_MAT);
                    124:     for (i=1; i<=rx; i++)
                    125:       for (j=1; j<=N; j++)
                    126:         m[(i-1)*N + j] = (long) element_mulid(nf,(GEN)x[i],j);
                    127:   }
                    128:   x = hnfmod(m,detint(m));
                    129:   return dx? gdiv(x,dx): x;
                    130: }
                    131:
                    132: int
                    133: ishnfall(GEN x)
                    134: {
                    135:   long i,j, lx = lg(x);
                    136:   for (i=2; i<lx; i++)
                    137:   {
                    138:     if (gsigne(gcoeff(x,i,i)) <= 0) return 0;
                    139:     for (j=1; j<i; j++)
                    140:       if (!gcmp0(gcoeff(x,i,j))) return 0;
                    141:   }
                    142:   return (gsigne(gcoeff(x,1,1)) > 0);
                    143: }
                    144:
                    145: GEN
                    146: idealhermite_aux(GEN nf, GEN x)
                    147: {
                    148:   long N,tx,lx;
                    149:   GEN z;
                    150:
                    151:   tx = idealtyp(&x,&z);
                    152:   if (tx == id_PRIME) return prime_to_ideal(nf,x);
                    153:   if (tx == id_PRINCIPAL)
                    154:   {
                    155:     x = principalideal(nf,x);
                    156:     return idealmat_to_hnf(nf,x);
                    157:   }
                    158:   N=lgef(nf[1])-3; lx = lg(x);
                    159:   if (lg(x[1]) != N+1) err(idealer2);
                    160:
                    161:   if (lx == N+1 && ishnfall(x)) return x;
                    162:   if (lx <= N) return idealmat_to_hnf(nf,x);
                    163:   z=denom(x); if (gcmp1(z)) z=NULL; else x = gmul(z,x);
                    164:   x = hnfmod(x,detint(x));
                    165:   return z? gdiv(x,z): x;
                    166: }
                    167:
                    168: GEN
                    169: idealhermite(GEN nf, GEN x)
                    170: {
                    171:   long av=avma;
                    172:   GEN p1;
                    173:   nf = checknf(nf); p1 = idealhermite_aux(nf,x);
                    174:   if (p1==x || p1==(GEN)x[1]) return gcopy(p1);
                    175:   return gerepileupto(av,p1);
                    176: }
                    177:
                    178: static GEN
                    179: principalideal0(GEN nf, GEN x, long copy)
                    180: {
                    181:   GEN z = cgetg(2,t_MAT);
                    182:   switch(typ(x))
                    183:   {
                    184:     case t_INT: case t_FRAC: case t_FRACN:
                    185:       if (copy) x = gcopy(x);
                    186:       x = gscalcol_i(x, lgef(nf[1])-3); break;
                    187:
                    188:     case t_POLMOD:
                    189:       if (!gegal((GEN)nf[1],(GEN)x[1]))
                    190:        err(talker,"incompatible number fields in principalideal");
                    191:       x=(GEN)x[2]; /* fall through */
                    192:     case t_POL:
                    193:       x = copy? algtobasis(nf,x): algtobasis_intern(nf,x);
                    194:       break;
                    195:
                    196:     case t_MAT:
                    197:       if (lg(x)!=2) err(typeer,"principalideal");
                    198:       x = (GEN)x[1];
                    199:     case t_COL:
                    200:       if (lg(x)==lgef(nf[1])-2)
                    201:       {
                    202:         if (copy) x = gcopy(x);
                    203:         break;
                    204:       }
                    205:     default: err(typeer,"principalideal");
                    206:   }
                    207:   z[1]=(long)x; return z;
                    208: }
                    209:
                    210: GEN
                    211: principalideal(GEN nf, GEN x)
                    212: {
                    213:   nf = checknf(nf); return principalideal0(nf,x,1);
                    214: }
                    215:
                    216: /* for internal use */
                    217: GEN
                    218: get_arch(GEN nf,GEN x,long prec)
                    219: {
                    220:   long i,R1,RU;
                    221:   GEN v,p1,p2;
                    222:
                    223:   R1=itos(gmael(nf,2,1)); RU = R1+itos(gmael(nf,2,2));
                    224:   if (typ(x)!=t_COL) x = algtobasis_intern(nf,x);
                    225:   if (isnfscalar(x)) /* rational number */
                    226:   {
                    227:     v = cgetg(RU+1,t_VEC);
                    228:     p1=glog((GEN)x[1],prec); if (RU!=R1) p2=gmul2n(p1,1);
                    229:     for (i=1; i<=R1; i++) v[i]=(long)p1;
                    230:     for (   ; i<=RU; i++) v[i]=(long)p2;
                    231:   }
                    232:   else
                    233:   {
                    234:     x = gmul(gmael(nf,5,1),x); v = cgetg(RU+1,t_VEC);
                    235:     for (i=1; i<=R1; i++) v[i] = llog((GEN)x[i],prec);
                    236:     for (   ; i<=RU; i++) v[i] = lmul2n(glog((GEN)x[i],prec),1);
                    237:   }
                    238:   return v;
                    239: }
                    240:
                    241: GEN
                    242: get_arch_real(GEN nf,GEN x,GEN *emb,long prec)
                    243: {
                    244:   long i,R1,RU;
                    245:   GEN v,p1,p2;
                    246:
                    247:   R1=itos(gmael(nf,2,1)); RU = R1+itos(gmael(nf,2,2));
                    248:   if (typ(x)!=t_COL) x = algtobasis_intern(nf,x);
                    249:   if (isnfscalar(x)) /* rational number */
                    250:   {
                    251:     GEN u = (GEN)x[1];
                    252:     v = cgetg(RU+1,t_COL);
                    253:     i = signe(u);
                    254:     if (!i) err(talker,"0 in get_arch_real");
                    255:     p1= (i > 0)? glog(u,prec): gzero;
                    256:     if (RU != R1) p2 = gmul2n(p1,1);
                    257:     for (i=1; i<=R1; i++) v[i]=(long)p1;
                    258:     for (   ; i<=RU; i++) v[i]=(long)p2;
                    259:   }
                    260:   else
                    261:   {
                    262:     x = gmul(gmael(nf,5,1),x); v = cgetg(RU+1,t_COL);
                    263:     for (i=1; i<=R1; i++) v[i] = llog(gabs((GEN)x[i],prec),prec);
                    264:     for (   ; i<=RU; i++) v[i] = llog(gnorm((GEN)x[i]),prec);
                    265:   }
                    266:   *emb = x; return v;
                    267: }
                    268:
                    269: GEN
                    270: principalidele(GEN nf, GEN x, long prec)
                    271: {
                    272:   GEN p1,y = cgetg(3,t_VEC);
                    273:   long av;
                    274:
                    275:   nf = checknf(nf);
                    276:   p1 = principalideal0(nf,x,1);
                    277:   y[1] = (long)p1;
                    278:   av =avma; p1 = get_arch(nf,(GEN)p1[1],prec);
                    279:   y[2] = lpileupto(av,p1); return y;
                    280: }
                    281:
                    282: /* GP functions */
                    283:
                    284: GEN
                    285: ideal_two_elt0(GEN nf, GEN x, GEN a)
                    286: {
                    287:   if (!a) return ideal_two_elt(nf,x);
                    288:   return ideal_two_elt2(nf,x,a);
                    289: }
                    290:
                    291: GEN
                    292: idealpow0(GEN nf, GEN x, GEN n, long flag, long prec)
                    293: {
                    294:   if (flag) return idealpowred(nf,x,n,prec);
                    295:   return idealpow(nf,x,n);
                    296: }
                    297:
                    298: GEN
                    299: idealmul0(GEN nf, GEN x, GEN y, long flag, long prec)
                    300: {
                    301:   if (flag) return idealmulred(nf,x,y,prec);
                    302:   return idealmul(nf,x,y);
                    303: }
                    304:
                    305: GEN
                    306: idealpowred(GEN nf, GEN x, GEN n, long prec)
                    307: {
                    308:   long av=avma, tetpil;
                    309:   x = idealpow(nf,x,n); tetpil=avma;
                    310:   return gerepile(av,tetpil, ideallllred(nf,x,NULL,prec));
                    311: }
                    312:
                    313: GEN
                    314: idealmulred(GEN nf, GEN x, GEN y, long prec)
                    315: {
                    316:   long av=avma,tetpil;
                    317:   x = idealmul(nf,x,y); tetpil=avma;
                    318:   return gerepile(av,tetpil,ideallllred(nf,x,NULL,prec));
                    319: }
                    320:
                    321: GEN
                    322: idealinv0(GEN nf, GEN ix, long flag)
                    323: {
                    324:   switch(flag)
                    325:   {
                    326:     case 0: return idealinv(nf,ix);
                    327:     case 1: return oldidealinv(nf,ix);
                    328:     default: err(flagerr,"idealinv");
                    329:   }
                    330:   return NULL; /* not reached */
                    331: }
                    332:
                    333: GEN
                    334: idealdiv0(GEN nf, GEN x, GEN y, long flag)
                    335: {
                    336:   switch(flag)
                    337:   {
                    338:     case 0: return idealdiv(nf,x,y);
                    339:     case 1: return idealdivexact(nf,x,y);
                    340:     default: err(flagerr,"idealdiv");
                    341:   }
                    342:   return NULL; /* not reached */
                    343: }
                    344:
                    345: GEN
                    346: idealaddtoone0(GEN nf, GEN arg1, GEN arg2)
                    347: {
                    348:   if (!arg2) return idealaddmultoone(nf,arg1);
                    349:   return idealaddtoone(nf,arg1,arg2);
                    350: }
                    351:
                    352: static GEN
                    353: two_to_hnf(GEN nf, GEN a, GEN b)
                    354: {
                    355:   a = principalideal_aux(nf,a);
                    356:   b = principalideal_aux(nf,b);
                    357:   a = concatsp(a,b);
                    358:   if (lgef(nf[1])==5) /* quadratic field: a has to be turned into idealmat */
                    359:     a = idealmul(nf,idmat(2),a);
                    360:   return idealmat_to_hnf(nf, a);
                    361: }
                    362:
                    363: GEN
                    364: idealhnf0(GEN nf, GEN a, GEN b)
                    365: {
                    366:   long av;
                    367:   if (!b) return idealhermite(nf,a);
                    368:
                    369:   /* HNF of aZ_K+bZ_K */
                    370:   av = avma; nf=checknf(nf);
                    371:   return gerepileupto(av, two_to_hnf(nf,a,b));
                    372: }
                    373:
                    374: GEN
                    375: idealhermite2(GEN nf, GEN a, GEN b)
                    376: {
                    377:   return idealhnf0(nf,a,b);
                    378: }
                    379:
                    380: static GEN
                    381: check_elt(GEN a, GEN pol, GEN pnorm, GEN idz)
                    382: {
                    383:   GEN x,norme, p2,p1;
                    384:
                    385:   if (!signe(a)) return NULL;
                    386:   p1 = content(a);
                    387:   if (gcmp1(p1)) { x=a; p1=NULL; }
                    388:   else { x=gdiv(a,p1); p2=gpowgs(p1, lgef(pol)-3); }
                    389:
                    390:   norme = resultantducos(pol,x); if (p1) norme = gmul(norme,p2);
                    391:   if (gcmp1(mppgcd(divii(norme,pnorm),pnorm))) return a;
                    392:
                    393:   if (p1)
                    394:   {
                    395:     idz=gdiv(idz,p1);
                    396:     if (typ(idz) == t_FRAC) /* should be exceedingly rare */
                    397:     {
                    398:       x = gmul(x,(GEN)idz[2]);
                    399:       p2 = gdiv(p2, gpowgs((GEN)idz[2], lgef(pol)-3));
                    400:       idz = (GEN)idz[1];
                    401:     }
                    402:   }
                    403:   x = gadd(x,idz);
                    404:
                    405:   norme = resultantducos(pol,x); if (p1) norme = gmul(norme,p2);
                    406:   if (gcmp1(mppgcd(divii(norme,pnorm),pnorm))) return a;
                    407:   return NULL;
                    408: }
                    409:
                    410: static void
                    411: setprec(GEN x, long prec)
                    412: {
                    413:   long i,j, n=lg(x);
                    414:   for (i=1;i<n;i++)
                    415:   {
                    416:     GEN p2,p1 = (GEN)x[i];
                    417:     for (j=1;j<n;j++)
                    418:     {
                    419:       p2 = (GEN)p1[j];
                    420:       if (typ(p2) == t_REAL) setlg(p2, prec);
                    421:     }
                    422:   }
                    423: }
                    424:
                    425: /* find a basis of x whose elements have small norm
                    426:  * M a bound for the size of coeffs of x */
                    427: GEN
                    428: ideal_better_basis(GEN nf, GEN x, GEN M)
                    429: {
                    430:   GEN a,b;
                    431:   long nfprec = (long)nfnewprec(nf,0);
                    432:   long prec = DEFAULTPREC + (expi(M) >> TWOPOTBITS_IN_LONG);
                    433:
                    434:   if (typ(nf[5]) != t_VEC) return x;
                    435:   if ((prec<<1) < nfprec) prec = (prec+nfprec) >> 1;
                    436:   a = qf_base_change(gmael(nf,5,3),x,1);
                    437:   setprec(a,prec);
                    438:   b = lllgramintern(a,4,1,prec);
                    439:   if (!b)
                    440:   {
                    441:     if (DEBUGLEVEL)
                    442:       err(warner, "precision too low in ideal_better_basis (1)");
                    443:     if (nfprec > prec)
                    444:     {
                    445:       setprec(a,nfprec);
                    446:       b = lllgramintern(a,4,1,nfprec);
                    447:     }
                    448:   }
                    449:   if (!b)
                    450:   {
                    451:     if (DEBUGLEVEL)
                    452:       err(warner, "precision too low in ideal_better_basis (2)");
                    453:     b = lllint(x); /* better than nothing */
                    454:   }
                    455:   return gmul(x, b);
                    456: }
                    457:
                    458: static GEN
                    459: mat_ideal_two_elt(GEN nf, GEN x)
                    460: {
                    461:   GEN y,a,beta,pnorm,con,idz, pol = (GEN)nf[1];
                    462:   long av,tetpil,i,z, N = lgef(pol)-3;
                    463:
                    464:   y=cgetg(3,t_VEC); av=avma;
                    465:   if (lg(x[1])!=N+1) err(typeer,"ideal_two_elt");
                    466:   if (N == 2)
                    467:   {
                    468:     y[1] = lcopy(gcoeff(x,1,1));
                    469:     y[2] = lcopy((GEN)x[2]); return y;
                    470:   }
                    471:
                    472:   con=content(x); if (!gcmp1(con)) x = gdiv(x,con);
                    473:   if (lg(x) != N+1) x = idealhermite_aux(nf,x);
                    474:   idz=gcoeff(x,1,1);
                    475:   if (gcmp1(idz))
                    476:   {
                    477:     y[1]=lpileupto(av,gcopy(con));
                    478:     y[2]=(long)gscalcol(con,N); return y;
                    479:   }
                    480:   pnorm = dethnf(x);
                    481:   beta = gmul((GEN)nf[7], x);
                    482:   for (i=2; i<=N; i++)
                    483:   {
                    484:     a = check_elt((GEN)beta[i], pol, pnorm, idz);
                    485:     if (a) break;
                    486:   }
                    487:   if (i>N)
                    488:   {
                    489:     x = ideal_better_basis(nf,x,pnorm);
                    490:     beta = gmul((GEN)nf[7], x);
                    491:     for (i=1; i<=N; i++)
                    492:     {
                    493:       a = check_elt((GEN)beta[i], pol, pnorm, idz);
                    494:       if (a) break;
                    495:     }
                    496:   }
                    497:   if (i>N)
                    498:   {
                    499:     long c=0, av1=avma;
                    500:
                    501:     if (DEBUGLEVEL>3) fprintferr("ideal_two_elt, hard case: ");
                    502:     for(;;)
                    503:     {
                    504:       if (DEBUGLEVEL>3) fprintferr("%d ", ++c);
                    505:       a = gzero;
                    506:       for (i=1; i<=N; i++)
                    507:       {
                    508:         z = mymyrand() >> (BITS_IN_RANDOM-5); /* in [0,15] */
                    509:         if (z >= 9) z -= 7;
                    510:         a = gadd(a,gmulsg(z,(GEN)beta[i]));
                    511:       }
                    512:       a = check_elt(a, pol, pnorm, idz);
                    513:       if (a) break;
                    514:       avma=av1;
                    515:     }
                    516:     if (DEBUGLEVEL>3) fprintferr("\n");
                    517:   }
                    518:   a = centermod(algtobasis_intern(nf,a), idz);
                    519:   tetpil=avma; y[1]=lmul(idz,con); y[2]=lmul(a,con);
                    520:   gerepilemanyvec(av,tetpil,y+1,2); return y;
                    521: }
                    522:
                    523: /* Etant donne un ideal ix, ressort un vecteur [a,alpha] a deux composantes
                    524:  * tel que a soit rationnel et ix=aZ_K+alpha Z_K, alpha etant un vecteur
                    525:  * colonne sur la base d'entiers. On peut avoir a=0 ou alpha=0, mais on ne
                    526:  * cherche pas a determiner si ix est principal.
                    527:  */
                    528: GEN
                    529: ideal_two_elt(GEN nf, GEN x)
                    530: {
                    531:   GEN z;
                    532:   long N, tx = idealtyp(&x,&z);
                    533:
                    534:   nf=checknf(nf);
                    535:   if (tx==id_MAT) return mat_ideal_two_elt(nf,x);
                    536:
                    537:   N=lgef(nf[1])-3; z=cgetg(3,t_VEC);
                    538:   if (tx == id_PRINCIPAL)
                    539:   {
                    540:     switch(typ(x))
                    541:     {
                    542:       case t_INT: case t_FRAC: case t_FRACN:
                    543:         z[1]=lcopy(x);
                    544:        z[2]=(long)zerocol(N); return z;
                    545:
                    546:       case t_POLMOD:
                    547:         if (!gegal((GEN)nf[1],(GEN)x[1]))
                    548:          err(talker,"incompatible number fields in ideal_two_elt");
                    549:        x=(GEN)x[2]; /* fall through */
                    550:       case t_POL:
                    551:         z[1]=zero; z[2]=(long)algtobasis(nf,x); return z;
                    552:       case t_COL:
                    553:         if (lg(x)==N+1) { z[1]=zero; z[2]=lcopy(x); return z; }
                    554:     }
                    555:   }
                    556:   else if (tx == id_PRIME)
                    557:   {
                    558:     z[1]=lcopy((GEN)x[1]);
                    559:     z[2]=lcopy((GEN)x[2]); return z;
                    560:   }
                    561:   err(typeer,"ideal_two_elt");
                    562:   return NULL; /* not reached */
                    563: }
                    564:
                    565: /* factorization */
                    566:
                    567: GEN
                    568: idealfactor(GEN nf, GEN x)
                    569: {
                    570:   long av,tx, tetpil,i,j,k,lf,lff,N,ls,v,vd;
                    571:   GEN d,f,f1,f2,ff,ff1,ff2,y1,y2,y,p1,p2,denx;
                    572:
                    573:   tx = idealtyp(&x,&y);
                    574:   if (tx == id_PRIME)
                    575:   {
                    576:     y=cgetg(3,t_MAT);
                    577:     y[1]=lgetg(2,t_COL); mael(y,1,1)=lcopy(x);
                    578:     y[2]=lgetg(2,t_COL); mael(y,2,1)=un; return y;
                    579:   }
                    580:   nf=checknf(nf); av=avma;
                    581:   if (tx == id_PRINCIPAL) x = principalideal_aux(nf,x);
                    582:
                    583:   N=lgef(nf[1])-3; if (lg(x) != N+1) x = idealmat_to_hnf(nf,x);
                    584:   if (lg(x)==1) err(talker,"zero ideal in idealfactor");
                    585:   denx=denom(x);
                    586:   if (gcmp1(denx)) lff=1;
                    587:   else
                    588:   {
                    589:     ff=factor(denx); ff1=(GEN)ff[1]; ff2=(GEN)ff[2];
                    590:     lff=lg(ff1); x=gmul(denx,x);
                    591:   }
                    592:   for (d=gun,i=1; i<=N; i++) d=mulii(d,gcoeff(x,i,i));
                    593:   f=factor(absi(d)); f1=(GEN)f[1]; f2=(GEN)f[2]; lf=lg(f1);
                    594:   y1=cgetg((lf+lff-2)*N+1,t_COL); y2=new_chunk((lf+lff-2)*N+1);
                    595:   k=0;
                    596:   for (i=1; i<lf; i++)
                    597:   {
                    598:     p1=primedec(nf,(GEN)f1[i]); ls=itos((GEN)f2[i]);
                    599:     vd=ggval(denx,(GEN)f1[i]);
                    600:     for (j=1; j<lg(p1); j++)
                    601:     {
                    602:       p2=(GEN)p1[j];
                    603:       if (ls)
                    604:       {
                    605:        v = idealval(nf,x,p2);
                    606:        ls -= v*itos((GEN)p2[4]);
                    607:         v -= vd*itos((GEN)p2[3]);
                    608:       }
                    609:       else v = - vd*itos((GEN)p2[3]);
                    610:       if (v) { y1[++k]=(long)p2; y2[k]=v; }
                    611:     }
                    612:   }
                    613:   for (i=1; i<lff; i++)
                    614:     if (!divise(d,(GEN)ff1[i]))
                    615:     {
                    616:       p1=primedec(nf,(GEN)ff1[i]);
                    617:       for (j=1; j<lg(p1); j++)
                    618:       {
                    619:        p2=(GEN)p1[j]; y1[++k]=(long)p2;
                    620:        y2[k] = -itos((GEN)ff2[i])*itos((GEN)p2[3]);
                    621:       }
                    622:     }
                    623:   tetpil=avma; y=cgetg(3,t_MAT);
                    624:   p1=cgetg(k+1,t_COL); y[1]=(long)p1;
                    625:   p2=cgetg(k+1,t_COL); y[2]=(long)p2;
                    626:   for (i=1; i<=k; i++) { p1[i]=lcopy((GEN)y1[i]); p2[i]=lstoi(y2[i]); }
                    627:   return gerepile(av,tetpil,y);
                    628: }
                    629:
                    630: /* vp prime ideal in primedec format. Return valuation(ix) at vp */
                    631: long
                    632: idealval(GEN nf, GEN ix, GEN vp)
                    633: {
                    634:   long N,v,vd,w,av=avma,av1,lim,i,j,k, tx = typ(ix);
                    635:   GEN mul,mat,a,x,y,r,bp,p,denx;
                    636:
                    637:   nf=checknf(nf); checkprimeid(vp);
                    638:   if (is_extscalar_t(tx) || tx==t_COL) return element_val(nf,ix,vp);
                    639:   p=(GEN)vp[1]; N=lgef(nf[1])-3;
                    640:   tx = idealtyp(&ix,&a);
                    641:   denx=denom(ix); if (!gcmp1(denx)) ix=gmul(denx,ix);
                    642:   if (tx != id_MAT)
                    643:     ix = idealhermite_aux(nf,ix);
                    644:   else
                    645:   {
                    646:     checkid(ix,N);
                    647:     if (lg(ix) != N+1) ix=idealmat_to_hnf(nf,ix);
                    648:   }
                    649:   v = ggval(dethnf_i(ix), p);
                    650:   vd = ggval(denx,p) * itos((GEN)vp[3]); /* v_p * e */
                    651:   if (!v) return -vd;
                    652:
                    653:   mul = cgetg(N+1,t_MAT); bp=(GEN)vp[5];
                    654:   mat = cgetg(N+1,t_MAT);
                    655:   for (j=1; j<=N; j++)
                    656:   {
                    657:     mul[j] = (long)element_mulid(nf,bp,j);
                    658:     x = (GEN)ix[j];
                    659:     y = cgetg(N+1, t_COL); mat[j] = (long)y;
                    660:     for (i=1; i<=N; i++)
                    661:     { /* compute (x.b)_i, ix in HNF ==> x[j+1..N] = 0 */
                    662:       a = mulii((GEN)x[1], gcoeff(mul,i,1));
                    663:       for (k=2; k<=j; k++) a = addii(a, mulii((GEN)x[k], gcoeff(mul,i,k)));
                    664:       /* is it divisible by p ? */
                    665:       y[i] = ldvmdii(a,p,&r);
                    666:       if (signe(r)) { avma=av; return -vd; }
                    667:     }
                    668:   }
                    669:   av1 = avma; lim=stack_lim(av1,3);
                    670:   y = cgetg(N+1,t_COL);
                    671:   for (w=1; w<v; w++)
                    672:     for (j=1; j<=N; j++)
                    673:     {
                    674:       x = (GEN)mat[j];
                    675:       for (i=1; i<=N; i++)
                    676:       { /* compute (x.b)_i */
                    677:         a = mulii((GEN)x[1], gcoeff(mul,i,1));
                    678:         for (k=2; k<=N; k++) a = addii(a, mulii((GEN)x[k], gcoeff(mul,i,k)));
                    679:         /* is it divisible by p ? */
                    680:         y[i] = ldvmdii(a,p,&r);
                    681:         if (signe(r)) { avma=av; return w - vd; }
                    682:       }
                    683:       r=x; mat[j]=(long)y; y=r;
                    684:       if (low_stack(lim,stack_lim(av1,3)))
                    685:       {
                    686:         GEN *gptr[2]; gptr[0]=&y; gptr[1]=&mat;
                    687:        if(DEBUGMEM>1) err(warnmem,"idealval");
                    688:         gerepilemany(av1,gptr,2);
                    689:       }
                    690:     }
                    691:   avma=av; return w - vd;
                    692: }
                    693:
                    694: /* gcd and generalized Bezout */
                    695:
                    696: GEN
                    697: idealadd(GEN nf, GEN x, GEN y)
                    698: {
                    699:   long av=avma,N,tx,ty;
                    700:   GEN z,p1,dx,dy,dz;
                    701:
                    702:   tx = idealtyp(&x,&z);
                    703:   ty = idealtyp(&y,&z);
                    704:   nf=checknf(nf); N=lgef(nf[1])-3;
                    705:   z = cgetg(N+1, t_MAT);
                    706:   if (tx != id_MAT || lg(x)!=N+1) x = idealhermite_aux(nf,x);
                    707:   if (ty != id_MAT || lg(y)!=N+1) y = idealhermite_aux(nf,y);
                    708:   if (lg(x) == 1) return gerepileupto(av,y);
                    709:   if (lg(y) == 1) return gerepileupto(av,x); /* check for 0 ideal */
                    710:   dx=denom(x);
                    711:   dy=denom(y); dz=mulii(dx,dy);
                    712:   if (gcmp1(dz)) dz = NULL; else { x=gmul(x,dz); y=gmul(y,dz); }
                    713:   p1=mppgcd(detint(x),detint(y));
                    714:   if (gcmp1(p1))
                    715:   {
                    716:     long i,j;
                    717:     if (!dz) { avma=av; return idmat(N); }
                    718:     avma = (long)dz; dz = gerepileupto((long)z, ginv(dz));
                    719:     for (i=1; i<=N; i++)
                    720:     {
                    721:       z[i]=lgetg(N+1,t_COL);
                    722:       for (j=1; j<=N; j++)
                    723:         coeff(z,j,i) = (i==j)? (long)dz: zero;
                    724:     }
                    725:     return z;
                    726:   }
                    727:   z=hnfmod(concatsp(x,y),p1); if (dz) z=gdiv(z,dz);
                    728:   return gerepileupto(av,z);
                    729: }
                    730:
                    731: static GEN
                    732: get_p1(GEN nf, GEN x, GEN y,long fl)
                    733: {
                    734:   GEN u,v,v1,v2,v3,v4;
                    735:   long i,j,N;
                    736:
                    737:   switch(fl)
                    738:   {
                    739:     case 1:
                    740:       v1 = gcoeff(x,1,1);
                    741:       v2 = gcoeff(y,1,1);
                    742:       if (typ(v1)!=t_INT || typ(v2)!=t_INT)
                    743:         err(talker,"ideals don't sum to Z_K in idealaddtoone");
                    744:       if (gcmp1(bezout(v1,v2,&u,&v)))
                    745:         return gmul(u,(GEN)x[1]);
                    746:     default:
                    747:       v=hnfperm(concatsp(x,y));
                    748:       v1=(GEN)v[1]; v2=(GEN)v[2]; v3=(GEN)v[3];
                    749:       j=0; N = lgef(nf[1])-3;
                    750:       for (i=1; i<=N; i++)
                    751:       {
                    752:         if (!gcmp1(gcoeff(v1,i,i)))
                    753:           err(talker,"ideals don't sum to Z_K in idealaddtoone");
                    754:         if (gcmp1((GEN)v3[i])) j=i;
                    755:       }
                    756:       v4=(GEN)v2[N+j]; setlg(v4,N+1);
                    757:       return gmul(x,v4);
                    758:   }
                    759: }
                    760:
                    761: GEN
                    762: idealaddtoone_i(GEN nf, GEN x, GEN y)
                    763: {
                    764:   long t, fl = 1;
                    765:   GEN p1,xh,yh;
                    766:
                    767:   if (DEBUGLEVEL>4)
                    768:   {
                    769:     fprintferr(" entering idealaddtoone:\n");
                    770:     fprintferr(" x = %Z\n",x);
                    771:     fprintferr(" y = %Z\n",y);
                    772:   }
                    773:   t = idealtyp(&x,&p1);
                    774:   if (t != id_MAT || lg(x) != lg(x[1])) xh = idealhermite_aux(nf,x);
                    775:   else
                    776:     { xh=x; fl = isnfscalar((GEN)x[1]); }
                    777:   t = idealtyp(&y,&p1);
                    778:   if (t != id_MAT || lg(y) != lg(y[1])) yh = idealhermite_aux(nf,y);
                    779:   else
                    780:     { yh=y; if (fl) fl = isnfscalar((GEN)y[1]); }
                    781:
                    782:   p1 = get_p1(nf,xh,yh,fl);
                    783:   p1 = element_reduce(nf,p1, idealmullll(nf,x,y));
                    784:   if (DEBUGLEVEL>4 && !gcmp0(p1))
                    785:     fprintferr(" leaving idealaddtoone: %Z\n",p1);
                    786:   return p1;
                    787: }
                    788:
                    789: /* ideal should be an idele (not mandatory). For internal use. */
                    790: GEN
                    791: ideleaddone_aux(GEN nf,GEN x,GEN ideal)
                    792: {
                    793:   long i,nba,R1;
                    794:   GEN p1,p2,p3,arch;
                    795:
                    796:   idealtyp(&ideal,&arch);
                    797:   if (!arch) return idealaddtoone_i(nf,x,ideal);
                    798:
                    799:   R1=itos(gmael(nf,2,1));
                    800:   if (typ(arch)!=t_VEC && lg(arch)!=R1+1)
                    801:     err(talker,"incorrect idele in idealaddtoone");
                    802:   for (nba=0,i=1; i<lg(arch); i++)
                    803:     if (signe(arch[i])) nba++;
                    804:   if (!nba) return idealaddtoone_i(nf,x,ideal);
                    805:
                    806:   p3 = idealaddtoone_i(nf,x,ideal);
                    807:   if (gcmp0(p3)) p3=(GEN)idealhermite_aux(nf,x)[1];
                    808:   p1=idealmullll(nf,x,ideal);
                    809:
                    810:   p2=zarchstar(nf,p1,arch,nba);
                    811:   p1=lift_intern(gmul((GEN)p2[3],zsigne(nf,p3,arch)));
                    812:   p2=(GEN)p2[2]; nba=0;
                    813:   for (i=1; i<lg(p1); i++)
                    814:     if (signe(p1[i])) { nba=1; p3=element_mul(nf,p3,(GEN)p2[i]); }
                    815:   if (gcmp0(p3)) return gcopy((GEN)x[1]); /* can happen if ideal = Z_K */
                    816:   return nba? p3: gcopy(p3);
                    817: }
                    818:
                    819: static GEN
                    820: unnf_minus_x(GEN x)
                    821: {
                    822:   long i, N = lg(x);
                    823:   GEN y = cgetg(N,t_COL);
                    824:
                    825:   y[1] = lsub(gun,(GEN)x[1]);
                    826:   for (i=2;i<N; i++) y[i] = lneg((GEN)x[i]);
                    827:   return y;
                    828: }
                    829:
                    830: static GEN
                    831: addone(GEN f(GEN,GEN,GEN), GEN nf, GEN x, GEN y)
                    832: {
                    833:   GEN z = cgetg(3,t_VEC);
                    834:   long av=avma;
                    835:
                    836:   nf=checknf(nf); x = gerepileupto(av, f(nf,x,y));
                    837:   z[1]=(long)x; z[2]=(long)unnf_minus_x(x); return z;
                    838: }
                    839:
                    840: GEN
                    841: idealaddtoone(GEN nf, GEN x, GEN y)
                    842: {
                    843:   return addone(idealaddtoone_i,nf,x,y);
                    844: }
                    845:
                    846: GEN
                    847: ideleaddone(GEN nf,GEN x,GEN idele)
                    848: {
                    849:   return addone(ideleaddone_aux,nf,x,idele);
                    850: }
                    851:
                    852: GEN
                    853: nfmodprinit(GEN nf, GEN pr)
                    854: {
                    855:   long av;
                    856:   GEN p,e,p1,prhall;
                    857:
                    858:   nf = checknf(nf); checkprimeid(pr);
                    859:   prhall = cgetg(3,t_VEC);
                    860:   prhall[1] = (long) prime_to_ideal(nf,pr);
                    861:
                    862:   av = avma; p = (GEN)pr[1]; e = (GEN)pr[3];
                    863:   p1 = cgetg(2,t_MAT);
                    864:   p1[1] = ldiv(element_pow(nf,(GEN)pr[5],e), gpuigs(p,itos(e)-1));
                    865:   p1 = hnfmodid(idealhermite_aux(nf,p1), p);
                    866:   p1 = idealaddtoone_i(nf,pr,p1);
                    867:
                    868:   /* p1 = 1 mod pr, p1 = 0 mod q^{e_q} for all other primes q | p */
                    869:   prhall[2] = lpileupto(av, unnf_minus_x(p1)); return prhall;
                    870: }
                    871:
                    872: /* given an element x in Z_K and an integral ideal y with x, y coprime,
                    873:    outputs an element inverse of x modulo y */
                    874: GEN
                    875: element_invmodideal(GEN nf, GEN x, GEN y)
                    876: {
                    877:   long av=avma,N,i, fl = 1;
                    878:   GEN v,p1,xh,yh;
                    879:
                    880:   nf=checknf(nf); N=lgef(nf[1])-3;
                    881:   if (ideal_is_zk(y,N)) return zerocol(N);
                    882:   if (DEBUGLEVEL>4)
                    883:   {
                    884:     fprintferr(" entree dans element_invmodideal() :\n");
                    885:     fprintferr(" x = "); outerr(x);
                    886:     fprintferr(" y = "); outerr(y);
                    887:   }
                    888:   i = lg(y);
                    889:   if (typ(y)!=t_MAT || i==1 || i != lg(y[1])) yh=idealhermite_aux(nf,y);
                    890:   else
                    891:     { yh=y; fl = isnfscalar((GEN)y[1]); }
                    892:   switch (typ(x))
                    893:   {
                    894:     case t_POL: case t_POLMOD: case t_COL:
                    895:       xh = idealhermite_aux(nf,x); break;
                    896:     default: err(typeer,"element_invmodideal");
                    897:   }
                    898:   p1 = get_p1(nf,xh,yh,fl);
                    899:   p1 = element_div(nf,p1,x);
                    900:   v = gerepileupto(av, nfreducemodideal(nf,p1,y));
                    901:   if (DEBUGLEVEL>2)
                    902:     { fprintferr(" sortie de element_invmodideal : v = "); outerr(v); }
                    903:   return v;
                    904: }
                    905:
                    906: GEN
                    907: idealaddmultoone(GEN nf, GEN list)
                    908: {
                    909:   long av=avma,tetpil,N,i,i1,j,k;
                    910:   GEN z,v,v1,v2,v3,p1;
                    911:
                    912:   nf=checknf(nf); N=lgef(nf[1])-3;
                    913:   if (DEBUGLEVEL>4)
                    914:   {
                    915:     fprintferr(" entree dans idealaddmultoone() :\n");
                    916:     fprintferr(" list = "); outerr(list);
                    917:   }
                    918:   if (typ(list)!=t_VEC && typ(list)!=t_COL)
                    919:     err(talker,"not a list in idealaddmultoone");
                    920:   k=lg(list); z=cgetg(1,t_MAT); list = dummycopy(list);
                    921:   if (k==1) err(talker,"ideals don't sum to Z_K in idealaddmultoone");
                    922:   for (i=1; i<k; i++)
                    923:   {
                    924:     p1=(GEN)list[i];
                    925:     if (typ(p1)!=t_MAT || lg(p1)!=lg(p1[1]))
                    926:       list[i] = (long)idealhermite_aux(nf,p1);
                    927:     z = concatsp(z,(GEN)list[i]);
                    928:   }
                    929:   v=hnfperm(z); v1=(GEN)v[1]; v2=(GEN)v[2]; v3=(GEN)v[3]; j=0;
                    930:   for (i=1; i<=N; i++)
                    931:   {
                    932:     if (!gcmp1(gcoeff(v1,i,i)))
                    933:       err(talker,"ideals don't sum to Z_K in idealaddmultoone");
                    934:     if (gcmp1((GEN)v3[i])) j=i;
                    935:   }
                    936:
                    937:   v=(GEN)v2[(k-2)*N+j]; z=cgetg(k,t_VEC);
                    938:   for (i=1; i<k; i++)
                    939:   {
                    940:     p1=cgetg(N+1,t_COL); z[i]=(long)p1;
                    941:     for (i1=1; i1<=N; i1++) p1[i1]=v[(i-1)*N+i1];
                    942:   }
                    943:   tetpil=avma; v=cgetg(k,typ(list));
                    944:   for (i=1; i<k; i++) v[i]=lmul((GEN)list[i],(GEN)z[i]);
                    945:   if (DEBUGLEVEL>2)
                    946:     { fprintferr(" sortie de idealaddmultoone v = "); outerr(v); }
                    947:   return gerepile(av,tetpil,v);
                    948: }
                    949:
                    950: /* multiplication */
                    951:
                    952: /* x integral ideal (without archimedean component) in HNF form
                    953:  * [a,alpha,n] corresponds to the ideal aZ_K+alpha Z_K of norm n (a is a
                    954:  * rational integer). Multiply them
                    955:  */
                    956: static GEN
                    957: idealmulspec(GEN nf, GEN x, GEN a, GEN alpha, GEN n)
                    958: {
                    959:   long i, N=lg(x)-1;
                    960:   GEN m;
                    961:
                    962:   if (isnfscalar(alpha))
                    963:     return gmul(mppgcd(a,(GEN)alpha[1]),x);
                    964:   m = cgetg((N<<1)+1,t_MAT);
                    965:   for (i=1; i<=N; i++) n = mulii(n,gcoeff(x,i,i));
                    966:   for (i=1; i<=N; i++) m[i]=(long)element_muli(nf,alpha,(GEN)x[i]);
                    967:   for (i=1; i<=N; i++) m[i+N]=lmul(a,(GEN)x[i]);
                    968:   return hnfmod(m,n);
                    969: }
                    970:
                    971: /* x ideal (matrix form,maximal rank), vp prime ideal (primedec). Output the
                    972:  * product. Can be used for arbitrary vp of the form [p,a,e,f,b], IF vp
                    973:  * =pZ_K+aZ_K, p is an integer, and norm(vp) = p^f; e and b are not used. For
                    974:  * internal use.
                    975:  */
                    976: GEN
                    977: idealmulprime(GEN nf, GEN x, GEN vp)
                    978: {
                    979:   GEN dx, denx = denom(x);
                    980:
                    981:   if (gcmp1(denx)) denx = NULL; else x=gmul(denx,x);
                    982:   dx = powgi((GEN)vp[1], (GEN)vp[4]);
                    983:   x = idealmulspec(nf,x, (GEN)vp[1], (GEN)vp[2], dx);
                    984:   return denx? gdiv(x,denx): x;
                    985: }
                    986:
                    987: /* Assume ix and iy are integral in HNF form (or ideles of the same form).
                    988:  * Ideal in iy can be of the form [a,b,N], with iy = (a,b) and N = norm y
                    989:  * For internal use. */
                    990: GEN
                    991: idealmulh(GEN nf, GEN ix, GEN iy)
                    992: {
                    993:   long N,i, f = 0;
                    994:   GEN res,x,y,dy;
                    995:
                    996:   if (typ(ix)==t_VEC) {f=1;  x=(GEN)ix[1];} else x=ix;
                    997:   if (typ(iy)==t_VEC && lg(iy)==3) {f+=2; y=(GEN)iy[1];} else y=iy;
                    998:   if (f) res = cgetg(3,t_VEC);
                    999:
                   1000:   if (typ(y)==t_VEC)
                   1001:     y = idealmulspec(nf,x,(GEN)y[1],(GEN)y[2],(GEN)y[3]);
                   1002:   else
                   1003:   {
                   1004:
                   1005:     N=lg(x)-1; dy=gcoeff(y,1,1);
                   1006:     for (i=2; i<=N; i++) dy=mulii(dy,gcoeff(y,i,i));
                   1007:     y = ideal_two_elt(nf,y);
                   1008:     y = idealmulspec(nf,x,(GEN)y[1],(GEN)y[2],dy);
                   1009:   }
                   1010:
                   1011:   if (!f) return y;
                   1012:   res[1]=(long)y;
                   1013:   if (f==3) y = gadd((GEN)ix[2],(GEN)iy[2]);
                   1014:   else
                   1015:   {
                   1016:     y = (f==2)? (GEN)iy[2]: (GEN)ix[2];
                   1017:     y = gcopy(y);
                   1018:   }
                   1019:   res[2]=(long)y; return res;
                   1020: }
                   1021:
                   1022: /* x and y are ideals in matrix form */
                   1023: static GEN
                   1024: idealmat_mul(GEN nf, GEN x, GEN y)
                   1025: {
                   1026:   long i,j, rx=lg(x)-1, ry=lg(y)-1;
                   1027:   GEN dx,dy,m;
                   1028:
                   1029:   dx=denom(x); if (!gcmp1(dx)) x=gmul(dx,x);
                   1030:   dy=denom(y); if (!gcmp1(dy)) y=gmul(dy,y);
                   1031:   dx = mulii(dx,dy);
                   1032:   if (rx<=2 || ry<=2)
                   1033:   {
                   1034:     m=cgetg(rx*ry+1,t_MAT);
                   1035:     for (i=1; i<=rx; i++)
                   1036:       for (j=1; j<=ry; j++)
                   1037:         m[(i-1)*ry+j]=(long)element_muli(nf,(GEN)x[i],(GEN)y[j]);
                   1038:     y=hnfmod(m, detint(m));
                   1039:   }
                   1040:   else
                   1041:   {
                   1042:     x=idealmat_to_hnf(nf,x);
                   1043:     y=idealmat_to_hnf(nf,y); y=idealmulh(nf,x,y);
                   1044:   }
                   1045:   return gcmp1(dx)? y: gdiv(y,dx);
                   1046: }
                   1047:
                   1048: /* y is principal */
                   1049: static GEN
                   1050: add_arch(GEN nf, GEN ax, GEN y)
                   1051: {
                   1052:   long tetpil, av=avma, prec=precision(ax);
                   1053:
                   1054:   y = get_arch(nf,y,prec); tetpil=avma;
                   1055:   return gerepile(av,tetpil,gadd(ax,y));
                   1056: }
                   1057:
                   1058: /* output the ideal product ix.iy (don't reduce) */
                   1059: GEN
                   1060: idealmul(GEN nf, GEN x, GEN y)
                   1061: {
                   1062:   long tx,ty,av,f;
                   1063:   GEN res,ax,ay,p1;
                   1064:
                   1065:   tx = idealtyp(&x,&ax);
                   1066:   ty = idealtyp(&y,&ay);
                   1067:   if (tx>ty) {
                   1068:     res=ax; ax=ay; ay=res;
                   1069:     res=x; x=y; y=res;
                   1070:     f=tx; tx=ty; ty=f;
                   1071:   }
                   1072:   f = (ax||ay); if (f) res = cgetg(3,t_VEC); /* product is an idele */
                   1073:   nf=checknf(nf); av=avma;
                   1074:   switch(tx)
                   1075:   {
                   1076:     case id_PRINCIPAL:
                   1077:       switch(ty)
                   1078:       {
                   1079:         case id_PRINCIPAL:
                   1080:           p1 = idealhermite_aux(nf, element_mul(nf,x,y));
                   1081:           break;
                   1082:         case id_PRIME:
                   1083:           p1 = gmul((GEN)y[1],x);
                   1084:           p1 = two_to_hnf(nf,p1, element_mul(nf,(GEN)y[2],x));
                   1085:           break;
                   1086:         default: /* id_MAT */
                   1087:           p1 = idealmat_mul(nf,y, principalideal_aux(nf,x));
                   1088:       }break;
                   1089:
                   1090:     case id_PRIME:
                   1091:       p1 = (ty==id_PRIME)? prime_to_ideal_aux(nf,y)
                   1092:                          : idealmat_to_hnf(nf,y);
                   1093:       p1 = idealmulprime(nf,p1,x); break;
                   1094:
                   1095:     default: /* id_MAT */
                   1096:       p1 = idealmat_mul(nf,x,y);
                   1097:   }
                   1098:   p1 = gerepileupto(av,p1);
                   1099:   if (!f) return p1;
                   1100:
                   1101:   if (ax && ay) ax = gadd(ax,ay);
                   1102:   else
                   1103:   {
                   1104:     if (ax)
                   1105:       ax = (ty==id_PRINCIPAL)? add_arch(nf,ax,y): gcopy(ax);
                   1106:     else
                   1107:       ax = (tx==id_PRINCIPAL)? add_arch(nf,ay,x): gcopy(ay);
                   1108:   }
                   1109:   res[1]=(long)p1; res[2]=(long)ax; return res;
                   1110: }
                   1111:
                   1112: /* different of nf */
                   1113: GEN
                   1114: differente(GEN nf, GEN premiers)
                   1115: {
                   1116:   long av=avma,i,j,vi,ei,v,nb_p,vpc;
                   1117:   GEN ideal,diff,liste_id,p1,pcon,pr,pol,a,alpha;
                   1118:
                   1119:   pol=(GEN)nf[1];
                   1120:   if (DEBUGLEVEL>1) fprintferr("Computing different\n");
                   1121:   if (gcmp1((GEN)nf[4]))
                   1122:   {
                   1123:     p1 = derivpol(pol);
                   1124:     return gerepileupto(av,idealhermite_aux(nf,p1));
                   1125:   }
                   1126:
                   1127:   ideal = gmul((GEN)nf[3],ginv(gmael(nf,5,4)));
                   1128:   pcon = content(ideal);
                   1129:   if (!gcmp1(pcon)) ideal=gdiv(ideal,pcon);
                   1130:
                   1131:   ideal=hnfmodid(ideal,divii((GEN)nf[3],pcon));
                   1132:   if (DEBUGLEVEL>1) msgtimer("hnf(D*delta^-1)");
                   1133:
                   1134:   if (!premiers)
                   1135:   {
                   1136:     premiers=factor(absi((GEN)nf[3]));
                   1137:     if (DEBUGLEVEL>1) msgtimer("factor(D)");
                   1138:   }
                   1139:   diff=idmat(lgef(nf[1])-3); nb_p=lg(premiers[1]);
                   1140:
                   1141:   for (i=1; i<nb_p; i++)
                   1142:   {
                   1143:     pr=gcoeff(premiers,i,1); liste_id = primedec(nf,pr);
                   1144:     vi=itos(gcoeff(premiers,i,2)); vpc=ggval(pcon,pr);
                   1145:     for (j=1; j<lg(liste_id); j++)
                   1146:     {
                   1147:       p1=(GEN)liste_id[j]; ei=itos((GEN)p1[3]);
                   1148:       if (ei>1)
                   1149:       {
                   1150:        if (DEBUGLEVEL>1) fprintferr("treating %Z\n",p1);
                   1151:        if (signe(ressi(ei,pr)))
                   1152:           v = ei-1;
                   1153:        else
                   1154:          v = ei*(vi-vpc)-idealval(nf,ideal,p1);
                   1155:         a = gpuigs(pr, 1+(v-1)/ei);
                   1156:         alpha = element_pow(nf,(GEN)p1[2],stoi(v));
                   1157:         v *= itos((GEN)p1[4]);
                   1158:        diff = idealmulspec(nf,diff,a,alpha,gpuigs(pr,v));
                   1159:       }
                   1160:     }
                   1161:   }
                   1162:   return gerepileupto(av,diff);
                   1163: }
                   1164:
                   1165: /* norm of an ideal */
                   1166: GEN
                   1167: idealnorm(GEN nf, GEN x)
                   1168: {
                   1169:   long av = avma,tetpil;
                   1170:   GEN y;
                   1171:
                   1172:   nf = checknf(nf);
                   1173:   switch(idealtyp(&x,&y))
                   1174:   {
                   1175:     case id_PRIME:
                   1176:       return powgi((GEN)x[1],(GEN)x[4]);
                   1177:     case id_PRINCIPAL:
                   1178:       x = gnorm(basistoalg(nf,x)); break;
                   1179:     default:
                   1180:       if (lg(x) != lgef(nf[1])-2) x = idealhermite_aux(nf,x);
                   1181:       x = det(x);
                   1182:   }
                   1183:   tetpil=avma; return gerepile(av,tetpil,gabs(x,0));
                   1184: }
                   1185:
                   1186: /* inverse */
                   1187:
                   1188: /* P.M & M.H. */
                   1189: static GEN
                   1190: hnfideal_inv(GEN nf, GEN x)
                   1191: {
                   1192:   long N = lgef(nf[1])-3;
                   1193:   GEN denx = denom(x), detx,dual,p1;
                   1194:
                   1195:   if (gcmp1(denx)) denx = NULL; else x = gmul(x,denx);
                   1196:   detx = dethnf(x);
                   1197:   if (gcmp0(detx)) err(talker, "cannot invert zero ideal");
                   1198:   x = idealmulh(nf,x, gmael(nf,5,7));
                   1199:   dual = gauss(x, gmul(detx, gmael(nf,5,6)));
                   1200:   dual = gdiv(gtrans(dual), detx);
                   1201:
                   1202:  /* nf[5][4] is a dense symmetric matrix.  We computed
                   1203:   * nf[5][6] = fieldd * ginv(nf[5][4]) in initalg.
                   1204:   * x is upper triangular (HNF), and easily inverted.
                   1205:   * The factor fieldd cancels while solving the linear equations.
                   1206:   */
                   1207:   p1 = denom(dual); dual = gmul(dual, p1);
                   1208:   dual = hnfmod(dual, gdiv(gpowgs(p1,N),detx));
                   1209:   if (denx) p1 = gdiv(p1,denx);
                   1210:   return gdiv(dual,p1);
                   1211: }
                   1212:
                   1213: /* Calcule le dual de mat_id pour la forme trace */
                   1214: GEN
                   1215: oldidealinv(GEN nf, GEN x)
                   1216: {
                   1217:   GEN res,dual,di,ax;
                   1218:   long av,tetpil, tx = idealtyp(&x,&ax);
                   1219:
                   1220:   if (tx!=id_MAT) return idealinv(nf,x);
                   1221:   if (ax) res = cgetg(3,t_VEC);
                   1222:   nf=checknf(nf); av=avma;
                   1223:   if (lg(x)!=lgef(nf[1])) x = idealmat_to_hnf(nf,x);
                   1224:
                   1225:   dual = ginv(gmul(gtrans(x), gmael(nf,5,4)));
                   1226:   di=denom(dual); dual=gmul(di,dual);
                   1227:   dual = idealmat_mul(nf,gmael(nf,5,5), dual);
                   1228:   tetpil=avma; dual = gerepile(av,tetpil,gdiv(dual,di));
                   1229:   if (!ax) return dual;
                   1230:   res[1]=(long)dual; res[2]=lneg(ax); return res;
                   1231: }
                   1232:
                   1233: /* Calcule le dual de mat_id pour la forme trace */
                   1234: GEN
                   1235: idealinv(GEN nf, GEN x)
                   1236: {
                   1237:   GEN res,ax,p1;
                   1238:   long av=avma, tx = idealtyp(&x,&ax);
                   1239:
                   1240:   if (ax) res = cgetg(3,t_VEC);
                   1241:   nf=checknf(nf); av=avma;
                   1242:   switch (tx)
                   1243:   {
                   1244:     case id_MAT:
                   1245:       if (lg(x) != lg(x[1])) x = idealmat_to_hnf(nf,x);
                   1246:       x = hnfideal_inv(nf,x); break;
                   1247:     case id_PRINCIPAL: tx = typ(x);
                   1248:       if (is_const_t(tx)) x = ginv(x);
                   1249:       else
                   1250:       {
                   1251:         switch(tx)
                   1252:         {
                   1253:           case t_COL: x = gmul((GEN)nf[7],x); break;
                   1254:           case t_POLMOD: x = (GEN)x[2]; break;
                   1255:         }
                   1256:         x = ginvmod(x,(GEN)nf[1]);
                   1257:       }
                   1258:       x = idealhermite_aux(nf,x); break;
                   1259:     case id_PRIME:
                   1260:       p1=cgetg(6,t_VEC); p1[1]=x[1]; p1[2]=x[5];
                   1261:       p1[3]=p1[5]=zero; p1[4]=lsubsi(lgef(nf[1])-3, (GEN)x[4]);
                   1262:       x = gdiv(prime_to_ideal_aux(nf,p1), (GEN)x[1]);
                   1263:   }
                   1264:   x = gerepileupto(av,x); if (!ax) return x;
                   1265:   res[1]=(long)x; res[2]=lneg(ax); return res;
                   1266: }
                   1267:
                   1268: static GEN
                   1269: idealpowprime(GEN nf, GEN vp, GEN n)
                   1270: {
                   1271:   GEN n1, x = dummycopy(vp);
                   1272:   long s = signe(n);
                   1273:
                   1274:   if (s < 0) n=negi(n);
                   1275:   n1 = gceil(gdiv(n,(GEN)x[3]));
                   1276:   x[1]=(long)powgi((GEN)x[1],n1);
                   1277:   if (s < 0)
                   1278:     x[2]=ldiv(element_pow(nf,(GEN)x[5],n), powgi((GEN)vp[1],subii(n,n1)));
                   1279:   else
                   1280:     x[2]=(long)element_pow(nf,(GEN)x[2],n);
                   1281:   x = prime_to_ideal_aux(nf,x);
                   1282:   if (s<0) x = gdiv(x, powgi((GEN)vp[1],n1));
                   1283:   return x;
                   1284: }
                   1285:
                   1286: /* raise the ideal x to the power n (in Z) */
                   1287: GEN
                   1288: idealpow(GEN nf, GEN x, GEN n)
                   1289: {
                   1290:   long tx,N,av,s,i;
                   1291:   GEN res,ax,m,denx,denz,dx,n1,a,alpha;
                   1292:
                   1293:   if (typ(n) != t_INT) err(talker,"non-integral exponent in idealpow");
                   1294:   tx = idealtyp(&x,&ax);
                   1295:   if (ax) res = cgetg(3,t_VEC);
                   1296:   nf = checknf(nf);
                   1297:   av=avma; N=lgef(nf[1])-3; s=signe(n);
                   1298:   if (!s) x = idmat(N);
                   1299:   else
                   1300:     switch(tx)
                   1301:     {
                   1302:       case id_PRINCIPAL: tx = typ(x);
                   1303:         if (!is_const_t(tx))
                   1304:           switch(tx)
                   1305:           {
                   1306:             case t_COL: x = gmul((GEN)nf[7],x);
                   1307:             case t_POL: x = gmodulcp(x,(GEN)nf[1]);
                   1308:           }
                   1309:         x = gpui(x,n,0);
                   1310:         x = idealhermite_aux(nf,x); break;
                   1311:       case id_PRIME:
                   1312:         x = idealpowprime(nf,x,n); break;
                   1313:       default:
                   1314:         n1 = (s<0)? negi(n): n;
                   1315:
                   1316:         denx=denom(x); if (gcmp1(denx)) denx=NULL; else x = gmul(x,denx);
                   1317:         a=ideal_two_elt(nf,x); alpha=(GEN)a[2]; a=(GEN)a[1];
                   1318:         dx=gcoeff(x,1,1); for (i=2; i<=N; i++) dx=mulii(dx,gcoeff(x,i,i));
                   1319:
                   1320:         m = cgetg(N+1,t_MAT); a = gpui(a,n1,0);
                   1321:         alpha = element_pow(nf,alpha,n1);
                   1322:         for (i=1; i<=N; i++) m[i]=(long)element_mulid(nf,alpha,i);
                   1323:         m = concatsp(m, gscalmat(a,N));
                   1324:         x = hnfmod(m, gpui(dx,n1,0));
                   1325:         if (s<0) x = hnfideal_inv(nf,x);
                   1326:         if (denx) { denz=gpui(denx,negi(n),0); x=gmul(denz,x); }
                   1327:     }
                   1328:   x = gerepileupto(av, x);
                   1329:   if (!ax) return x;
                   1330:   res[1]=(long)x; res[2]=lmul(n,ax); return res;
                   1331: }
                   1332:
                   1333: /* Return ideal^e in number field nf. e is a C integer. */
                   1334: GEN
                   1335: idealpows(GEN nf, GEN ideal, long e)
                   1336: {
                   1337:   long court[] = {evaltyp(t_INT) | m_evallg(3),0,0};
                   1338:   affsi(e,court); return idealpow(nf,ideal,court);
                   1339: }
                   1340:
                   1341: /* compute vp^n (vp prime, n integer), reducing along the way if n is big */
                   1342: GEN
                   1343: idealpowred_prime(GEN nf, GEN vp, GEN n, long prec)
                   1344: {
                   1345:   long av=avma,tetpil,i,m,RU, s = signe(n);
                   1346:   GEN x = cgetg(3,t_VEC);
                   1347:   ulong j;
                   1348:
                   1349:   RU = itos(gmael(nf,2,1)) + itos(gmael(nf,2,2));
                   1350:   x[2] =(long)zerocol(RU); settyp(x[2],t_VEC);
                   1351:   if (absi_cmp(n,stoi(16)) < 0)
                   1352:   {
                   1353:     x[1] = s? (long)idealpowprime(nf,vp,n):
                   1354:               (long)idmat(lgef(nf[1])-3);
                   1355:     tetpil=avma;
                   1356:     return gerepile(av,tetpil,ideallllred(nf,x,NULL,prec));
                   1357:   }
                   1358:
                   1359:   i = lgefint(n)-1; m=n[i]; j=HIGHBIT;
                   1360:   while ((m&j)==0) j>>=1;
                   1361:   x[1] = (long)prime_to_ideal_aux(nf,vp);
                   1362:   for (j>>=1; j; j>>=1)
                   1363:   {
                   1364:     x = idealmul(nf,x,x);
                   1365:     if (m&j) x[1] = (long)idealmulprime(nf,(GEN)x[1],vp);
                   1366:     x = ideallllred(nf,x,NULL,prec);
                   1367:   }
                   1368:   for (i--; i>=2; i--)
                   1369:     for (m=n[i],j=HIGHBIT; j; j>>=1)
                   1370:     {
                   1371:       x = idealmul(nf,x,x);
                   1372:       if (m&j) x[1] = (long)idealmulprime(nf,(GEN)x[1],vp);
                   1373:       x = ideallllred(nf,x,NULL,prec);
                   1374:     }
                   1375:   if (s < 0) x = idealinv(nf,x);
                   1376:   return gerepileupto(av,x);
                   1377: }
                   1378:
                   1379: long
                   1380: isideal(GEN nf,GEN x)
                   1381: {
                   1382:   long N,av,i,j,k,tx=typ(x),lx;
                   1383:   GEN p1,minv;
                   1384:
                   1385:   nf=checknf(nf); lx=lg(x);
                   1386:   if (tx==t_VEC && lx==3) { x=(GEN)x[1]; tx=typ(x); lx=lg(x); }
                   1387:   if (is_scalar_t(tx))
                   1388:     return (tx==t_INT || tx==t_FRAC || tx==t_FRACN || tx==t_POL ||
                   1389:                      (tx==t_POLMOD && gegal((GEN)nf[1],(GEN)x[1])));
                   1390:   if (typ(x)==t_VEC) return (lx==6);
                   1391:   if (typ(x)!=t_MAT) return 0;
                   1392:   if (lx == 1) return 1;
                   1393:   N=lgef(nf[1])-2; if (lg(x[1]) != N) return 0;
                   1394:
                   1395:   av=avma;
                   1396:   if (lx != N) x = idealmat_to_hnf(nf,x);
                   1397:   x = gdiv(x,content(x)); minv=ginv(x);
                   1398:
                   1399:   for (i=1; i<N; i++)
                   1400:     for (j=1; j<N; j++)
                   1401:     {
                   1402:       p1=gmul(minv, element_mulid(nf,(GEN)x[i],j));
                   1403:       for (k=1; k<N; k++)
                   1404:        if (typ(p1[k])!=t_INT) { avma=av; return 0; }
                   1405:     }
                   1406:   avma=av; return 1;
                   1407: }
                   1408:
                   1409: GEN
                   1410: idealdiv(GEN nf, GEN x, GEN y)
                   1411: {
                   1412:   long av=avma,tetpil;
                   1413:   GEN z=idealinv(nf,y);
                   1414:
                   1415:   tetpil=avma; return gerepile(av,tetpil,idealmul(nf,x,z));
                   1416: }
                   1417:
                   1418: GEN
                   1419: idealdivexact(GEN nf, GEN x, GEN y)
                   1420: /*  This routine computes the quotient x/y of two ideals in the number field
                   1421:  *  nf. It assumes that the quotient is an integral ideal.
                   1422:  *
                   1423:  *  The idea is to find an ideal z dividing y
                   1424:  *  such that gcd(N(x)/N(z), N(z)) = 1. Then
                   1425:  *
                   1426:  *    x + (N(x)/N(z))    x
                   1427:  *    --------------- = -----
                   1428:  *    y + (N(y)/N(z))    y
                   1429:  *
                   1430:  *  When x and y are integral ideals, this identity can be checked by looking
                   1431:  *  at the exponent of a prime ideal p on both sides of the equation.
                   1432:  *
                   1433:  *  Specifically, if a prime ideal p divides N(z), then it divides neither
                   1434:  *  N(x)/N(z) nor N(y)/N(z) (since N(x)/N(z) is the product of the integers
                   1435:  *  N(x/y) and N(y/z)).  Both the numerator and the denominator on the left
                   1436:  *  will be coprime to p.  So will x/y, since x/y is assumed integral and its
                   1437:  *  norm N(x/y) is coprime to p
                   1438:  *
                   1439:  *  If instead p does not divide N(z), then the power of p dividing N(x)/N(z)
                   1440:  *  is the same as the power of p dividing N(x), which is at least as large
                   1441:  *  as the power of p dividing x.  Likewise for N(y)/N(z).  So the power of p
                   1442:  *  dividing the left side equals the power of dividing the right side.
                   1443:  *
                   1444:  *             Peter Montgomery
                   1445:  *             July, 1994.
                   1446:  */
                   1447: {
                   1448:   long av = avma, tetpil,N;
                   1449:   GEN x1,y1,detx1,dety1,detq,gcancel,gtemp, cy = content(y);
                   1450:
                   1451:   nf=checknf(nf); N=lgef(nf[1])-3;
                   1452:   if (gcmp0(cy)) err(talker, "cannot invert zero ideal");
                   1453:
                   1454:   x1 = gdiv(x,cy); detx1 = idealnorm(nf,x1);
                   1455:   if (gcmp0(detx1)) { avma = av; return gcopy(x); } /* numerator is zero */
                   1456:
                   1457:   y1 = gdiv(y,cy); dety1 = idealnorm(nf,y1);
                   1458:   detq = gdiv(detx1,dety1);
                   1459:   if (!gcmp1(denom(x1)) || typ(detq) != t_INT)
                   1460:     err(talker, "quotient not integral in idealdivexact");
                   1461:   gcancel = dety1;
                   1462:  /* Find a norm gcancel such that
                   1463:   * (1) gcancel divides dety1;
                   1464:   * (2) gcd(detx1/gcancel, gcancel) = 1.
                   1465:   */
                   1466:   do
                   1467:   {
                   1468:     gtemp = ggcd(gcancel, gdiv(detx1,gcancel));
                   1469:     gcancel = gdiv(gcancel,gtemp);
                   1470:   }
                   1471:   while (!gcmp1(gtemp));
                   1472:  /*                    x1 + (detx1/gcancel)
                   1473:   * Replace x1/y1 by:  --------------------
                   1474:   *                    y1 + (dety1/gcancel)
                   1475:   */
                   1476:
                   1477:   x1 = idealadd(nf, x1, gscalmat(gdiv(detx1, gcancel), N));
                   1478:   /* y1 reduced to unit ideal ? */
                   1479:   if (gegal(gcancel,dety1)) return gerepileupto(av, x1);
                   1480:
                   1481:   y1 = idealadd(nf,y1, gscalmat(gdiv(dety1,gcancel), N));
                   1482:   y1 = hnfideal_inv(nf,y1); tetpil = avma;
                   1483:   return gerepile(av, tetpil, idealmat_mul(nf,x1,y1));
                   1484: }
                   1485:
                   1486: GEN
                   1487: idealintersect(GEN nf, GEN x, GEN y)
                   1488: {
                   1489:   long av=avma,lz,i,N;
                   1490:   GEN z,dx,dy;
                   1491:
                   1492:   nf=checknf(nf); N=lgef(nf[1])-3;
                   1493:   if (idealtyp(&x,&z)!=t_MAT || lg(x)!=N+1) x=idealhermite_aux(nf,x);
                   1494:   if (idealtyp(&y,&z)!=t_MAT || lg(y)!=N+1) y=idealhermite_aux(nf,y);
                   1495:   dx=denom(x); if (!gcmp1(dx)) y=gmul(y,dx);
                   1496:   dy=denom(y); if (!gcmp1(dy)) x=gmul(x,dy);
                   1497:   dx = mulii(dx,dy);
                   1498:   z=kerint(concatsp(x,y)); lz=lg(z);
                   1499:   for (i=1; i<lz; i++) setlg(z[i], N+1);
                   1500:   z=gmul(x,z); z = hnfmod(z,detint(z));
                   1501:   if (!gcmp1(dx)) z = gdiv(z,dx);
                   1502:   return gerepileupto(av,z);
                   1503: }
                   1504:
                   1505: static GEN
                   1506: computet2twist(GEN nf, GEN vdir)
                   1507: {
                   1508:   long j, ru = lg(nf[6]);
                   1509:   GEN p1,MC, mat = (GEN)nf[5];
                   1510:
                   1511:   if (!vdir) return (GEN)mat[3];
                   1512:   MC=(GEN)mat[2]; p1=cgetg(ru,t_MAT);
                   1513:   for (j=1; j<ru; j++)
                   1514:   {
                   1515:     GEN v = (GEN)vdir[j];
                   1516:     if (gcmp0(v))
                   1517:       p1[j]=MC[j];
                   1518:     else if (typ(v) == t_INT)
                   1519:       p1[j]=lmul2n((GEN)MC[j],itos(v)<<1);
                   1520:     else
                   1521:       p1[j]=lmul((GEN)MC[j],gpui(stoi(4),v,0));
                   1522:   }
                   1523:   return mulmat_real(p1,(GEN)mat[1]);
                   1524: }
                   1525:
                   1526: GEN
                   1527: ideallllredall(GEN nf, GEN x, GEN vdir, long prec, long precint)
                   1528: {
                   1529:   long tx,N,av,tetpil,i,j;
                   1530:   GEN iax,ix,res,ax,p1,p2,y,alpha,beta,pol;
                   1531:
                   1532:   nf=checknf(nf);
                   1533:   if (vdir)
                   1534:   {
                   1535:     if (gcmp0(vdir)) vdir = NULL;
                   1536:     else if (typ(vdir)!=t_VEC || lg(vdir) != lg(nf[6])) err(idealer5);
                   1537:   }
                   1538:   pol = (GEN)nf[1]; N=lgef(pol)-3;
                   1539:   tx = idealtyp(&x,&ax); ix=x; iax=ax;
                   1540:   if (ax) res = cgetg(3,t_VEC);
                   1541:   av = avma;
                   1542:   if (tx == id_PRINCIPAL)
                   1543:   {
                   1544:     if (ax)
                   1545:     {
                   1546:       res = cgetg(3,t_VEC);
                   1547:       ax = get_arch(nf,x,prec); av=avma;
                   1548:     }
                   1549:     x = idealhermite_aux(nf,x);
                   1550:   }
                   1551:   else if (tx == id_PRIME)
                   1552:     x = prime_to_ideal_aux(nf,x);
                   1553:   else if (lg(x) != N+1) /* id_MAT */
                   1554:     x = idealhermite_aux(nf,x);
                   1555:
                   1556:   if (DEBUGLEVEL>=6) msgtimer("entering idealllred");
                   1557:   p1=content(x); if (!gcmp1(p1)) x=gdiv(x,p1);
                   1558:
                   1559:   for (i=1; ; i++)
                   1560:   {
                   1561:     p1=computet2twist(nf,vdir);
                   1562:     if (DEBUGLEVEL>=6) msgtimer("twisted T2");
                   1563:     y = qf_base_change(p1,x,1);
                   1564:     j = 1 + (gexpo(y)>>TWOPOTBITS_IN_LONG);
                   1565:     if (j<0) j=0;
                   1566:     p1 = lllgramintern(y,100,1,j+precint);
                   1567:     if (p1) break;
                   1568:
                   1569:     if (i == MAXITERPOL) err(accurer,"ideallllredall");
                   1570:     precint=(precint<<1)-2; prec=max(prec,precint);
                   1571:     if (DEBUGLEVEL) err(warnprec,"ideallllredall",precint);
                   1572:     nf=nfnewprec(nf,(j>>1)+precint);
                   1573:   }
                   1574:   y = gmul(x,(GEN)p1[1]);
                   1575:   if (DEBUGLEVEL>=6) msgtimer("lllgram");
                   1576:
                   1577:   i=2; while (i<=N && gcmp0((GEN)y[i])) i++;
                   1578:   if (i>N)
                   1579:   {
                   1580:     if (x!=ix) x = gerepileupto(av,x); else { avma=av; x = gcopy(x); }
                   1581:     if (!ax) return x;
                   1582:     if (ax==iax) ax = gcopy(ax);
                   1583:     res[1]=(long)x; res[2]=(long)ax; return res;
                   1584:   }
                   1585:   alpha = gmul((GEN)nf[7], y);
                   1586:   /* beta = norm(alpha) / alpha */
                   1587:   beta = gmul(subres(pol,alpha), ginvmod(alpha,pol));
                   1588:   beta = algtobasis_intern(nf,beta);
                   1589:   if (DEBUGLEVEL>=6) msgtimer("alpha/beta");
                   1590:
                   1591:   p2 = cgetg(N+1,t_MAT);
                   1592:   for (i=1; i<=N; i++)
                   1593:     p2[i] = (long)element_muli(nf,beta,(GEN)x[i]);
                   1594:   p1=content(p2); if (!gcmp1(p1)) p2=gdiv(p2,p1);
                   1595:   if (DEBUGLEVEL>=6) msgtimer("new ideal");
                   1596:   if (ax) y = gclone(gneg_i(get_arch(nf,y,prec)));
                   1597:
                   1598:   p1 = detint(p2); tetpil = avma;
                   1599:   p2 = gerepile(av,tetpil,hnfmod(p2,p1));
                   1600:   if (DEBUGLEVEL>=6) msgtimer("final hnf");
                   1601:   if (!ax) return p2;
                   1602:   res[1]=(long)p2; res[2]=ladd(ax,y);
                   1603:   gunclone(y); return res;
                   1604: }
                   1605:
                   1606: GEN
                   1607: ideallllred(GEN nf, GEN ix, GEN vdir, long prec)
                   1608: {
                   1609:   return ideallllredall(nf,ix,vdir,prec,prec);
                   1610: }
                   1611:
                   1612: GEN
                   1613: minideal(GEN nf, GEN x, GEN vdir, long prec)
                   1614: {
                   1615:   long N,av=avma,tetpil,j,RU,tx;
                   1616:   GEN p1,p2,p3,y;
                   1617:
                   1618:   if (!gcmp0(vdir) && typ(vdir)!=t_VEC) err(idealer5);
                   1619:   nf=checknf(nf); N=lgef(nf[1])-3;
                   1620:   tx = idealtyp(&x,&y); if (tx!=id_MAT) x = idealhermite_aux(nf,x);
                   1621:   RU = N - itos(gmael(nf,2,2)); p1=(GEN)nf[5];
                   1622:   if (gcmp0(vdir)) p1=(GEN)p1[3];
                   1623:   else
                   1624:   {
                   1625:     p3=(GEN)p1[2]; p2=cgetg(RU+1,t_MAT);
                   1626:     for (j=1; j<=RU; j++)
                   1627:       p2[j] = lmul2n((GEN)p3[j], itos((GEN)vdir[j])<<1);
                   1628:     p1=greal(gmul(p2,(GEN)p1[1]));
                   1629:   }
                   1630:   y = gmul(x,(GEN)lllgram(qf_base_change(p1,x,0),prec)[1]);
                   1631:   tetpil = avma; return gerepile(av,tetpil,principalidele(nf,y,prec));
                   1632: }
                   1633: static GEN
                   1634: appr_reduce(GEN s, GEN y, long N)
                   1635: {
                   1636:   GEN p1,u,z = cgetg(N+2,t_MAT);
                   1637:   long i;
                   1638:
                   1639:   s=gmod(s,gcoeff(y,1,1)); y=gmul(y,lllint(y));
                   1640:   for (i=1; i<=N; i++) z[i]=y[i]; z[N+1]=(long)s;
                   1641:   u=(GEN)ker(z)[1]; p1 = denom(u);
                   1642:   if (!gcmp1(p1)) u=gmul(u,p1);
                   1643:   p1=(GEN)u[N+1]; setlg(u,N+1);
                   1644:   for (i=1; i<=N; i++) u[i]=lround(gdiv((GEN)u[i],p1));
                   1645:   return gadd(s, gmul(y,u));
                   1646: }
                   1647:
                   1648: /* Given a fractional ideal x (if fl=0) or a prime ideal factorization
                   1649:  * with possibly zero or negative exponents (if fl=1), gives a b such that
                   1650:  * v_p(b)=v_p(x) for all prime ideals p dividing x (or in the factorization)
                   1651:  * and v_p(b)>=0 for all other p, using the (standard) proof given in GTM 138.
                   1652:  * Certainly not the most efficient, but sure.
                   1653:  */
                   1654: GEN
                   1655: idealappr0(GEN nf, GEN x, long fl)
                   1656: {
                   1657:   long av=avma,tetpil,i,j,k,l,N,r,r2;
                   1658:   GEN fact,fact2,list,ep,ep1,ep2,y,z,v,p1,p2,p3,p4,s,pr,alpha,beta,den;
                   1659:
                   1660:   if (DEBUGLEVEL>4)
                   1661:   {
                   1662:     fprintferr(" entree dans idealappr0() :\n");
                   1663:     fprintferr(" x = "); outerr(x);
                   1664:   }
                   1665:   if (fl)
                   1666:   {
                   1667:     nf=checknf(nf); N=lgef(nf[1])-3;
                   1668:     if (typ(x)!=t_MAT || lg(x)!=3)
                   1669:       err(talker,"not a prime ideal factorization in idealappr0");
                   1670:     fact=x; list=(GEN)fact[1]; ep=(GEN)fact[2]; r=lg(list);
                   1671:     if (r==1) return gscalcol_i(gun,N);
                   1672:     for (i=1; i<r; i++)
                   1673:       if (signe(ep[i])<0)
                   1674:       {
                   1675:        ep1=cgetg(r,t_COL);
                   1676:        for (i=1; i<r; i++)
                   1677:           ep1[i] = (signe(ep[i])>=0)? zero: lnegi((GEN)ep[i]);
                   1678:        fact[2]=(long)ep1; beta=idealappr0(nf,fact,1);
                   1679:        fact2=idealfactor(nf,beta);
                   1680:        p1=(GEN)fact2[1]; r2=lg(p1);
                   1681:         ep2=(GEN)fact2[2]; l=r+r2-1;
                   1682:         z=cgetg(l,t_VEC); for (i=1; i<r; i++) z[i]=list[i];
                   1683:        ep1=cgetg(l,t_VEC);
                   1684:        for (i=1; i<r; i++)
                   1685:           ep1[i] = (signe(ep[i])<=0)? zero: licopy((GEN)ep[i]);
                   1686:        j=r-1;
                   1687:        for (i=1; i<r2; i++)
                   1688:        {
                   1689:          p3=(GEN)p1[i]; k=1;
                   1690:          while (k<r &&
                   1691:             (    !gegal((GEN)p3[1],gmael(list,k,1))
                   1692:              || !element_val(nf,(GEN)p3[2],(GEN)list[k]) )) k++;
                   1693:          if (k==r) { j++; z[j]=(long)p3; ep1[j]=ep2[i]; }
                   1694:        }
                   1695:         fact=cgetg(3,t_MAT);
                   1696:         fact[1]=(long)z; setlg(z,j+1);
                   1697:         fact[2]=(long)ep1; setlg(ep1,j+1);
                   1698:        alpha=idealappr0(nf,fact,1); tetpil=avma;
                   1699:        if (DEBUGLEVEL>2)
                   1700:        {
                   1701:          fprintferr(" alpha = "); outerr(alpha);
                   1702:          fprintferr(" beta = "); outerr(beta);
                   1703:        }
                   1704:        return gerepile(av,tetpil,element_div(nf,alpha,beta));
                   1705:       }
                   1706:     y=idmat(N);
                   1707:     for (i=1; i<r; i++)
                   1708:     {
                   1709:       pr=(GEN)list[i];
                   1710:       if (signe(ep[i]))
                   1711:       {
                   1712:         p4=addsi(1,(GEN)ep[i]); p1=powgi((GEN)pr[1],p4);
                   1713:        if (cmpis((GEN)pr[4],N))
                   1714:        {
                   1715:          p2=cgetg(3,t_MAT);
                   1716:           p2[1]=(long)gscalcol_i(p1, N);
                   1717:          p2[2]=(long)element_pow(nf,(GEN)pr[2],p4);
                   1718:           y=idealmat_mul(nf,y,p2);
                   1719:        }
                   1720:        else y=gmul(p1,y);
                   1721:       }
                   1722:       else y=idealmulprime(nf,y,pr);
                   1723:     }
                   1724:   }
                   1725:   else
                   1726:   {
                   1727:     den=denom(x); if (gcmp1(den)) den=NULL; else x=gmul(den,x);
                   1728:     x=idealhermite_aux(nf,x); N=lgef(nf[1])-3;
                   1729:     fact=idealfactor(nf,x);
                   1730:     list=(GEN)fact[1]; ep=(GEN)fact[2]; r=lg(list);
                   1731:     if (r==1) { avma=av; return gscalcol_i(gun,N); }
                   1732:     if (den)
                   1733:     {
                   1734:       fact2=idealfactor(nf,den);
                   1735:       p1=(GEN)fact2[1]; r2=lg(p1);
                   1736:       l=r+r2-1;
                   1737:       z=cgetg(l,t_COL);   for (i=1; i<r; i++) z[i]=list[i];
                   1738:       ep1=cgetg(l,t_COL); for (i=1; i<r; i++) ep1[i]=ep[i];
                   1739:       j=r-1;
                   1740:       for (i=1; i<r2; i++)
                   1741:       {
                   1742:        p3=(GEN)p1[i]; k=1;
                   1743:        while (k<r && !gegal((GEN)list[k],p3)) k++;
                   1744:        if (k==r){ j++; z[j]=(long)p3; ep1[j]=zero; }
                   1745:       }
                   1746:       fact=cgetg(3,t_MAT);
                   1747:       fact[1]=(long)z; setlg(z,j+1);
                   1748:       fact[2]=(long)ep1; setlg(ep1,j+1);
                   1749:       alpha=idealappr0(nf,fact,1);
                   1750:       if (DEBUGLEVEL>2) { fprintferr(" alpha = "); outerr(alpha); }
                   1751:       tetpil=avma; return gerepile(av,tetpil,gdiv(alpha,den));
                   1752:     }
                   1753:     y=x; for (i=1; i<r; i++) y=idealmulprime(nf,y,(GEN)list[i]);
                   1754:   }
                   1755:
                   1756:   z=cgetg(r,t_VEC);
                   1757:   for (i=1; i<r; i++)
                   1758:   {
                   1759:     pr=(GEN)list[i]; p4=addsi(1, (GEN)ep[i]); p1=powgi((GEN)pr[1],p4);
                   1760:     if (cmpis((GEN)pr[4],N))
                   1761:     {
                   1762:       p2=cgetg(3,t_MAT);
                   1763:       p2[1]=(long)gscalcol_i(p1,N);
                   1764:       p2[2]=(long)element_pow(nf,(GEN)pr[5],p4);
                   1765:       z[i]=ldiv(idealmat_mul(nf,y,p2),p1);
                   1766:     }
                   1767:     else z[i]=ldiv(y,p1);
                   1768:   }
                   1769:   v=idealaddmultoone(nf,z);
                   1770:   s=cgetg(N+1,t_COL); for (i=1; i<=N; i++) s[i]=zero;
                   1771:   for (i=1; i<r; i++)
                   1772:   {
                   1773:     pr=(GEN)list[i];
                   1774:     if (signe(ep[i]))
                   1775:       s=gadd(s,element_mul(nf,(GEN)v[i],element_pow(nf,(GEN)pr[2],(GEN)ep[i])));
                   1776:     else s=gadd(s,(GEN)v[i]);
                   1777:   }
                   1778:   p3 = appr_reduce(s,y,N);
                   1779:   if (DEBUGLEVEL>2)
                   1780:     { fprintferr(" sortie de idealappr0 p3 = "); outerr(p3); }
                   1781:   return gerepileupto(av,p3);
                   1782: }
                   1783:
                   1784: /* Given a prime ideal factorization x with possibly zero or negative exponents,
                   1785:  * and a vector y of elements of nf, gives a b such that
                   1786:  * v_p(b-y_p)>=v_p(x) for all prime ideals p in the ideal factorization
                   1787:  * and v_p(b)>=0 for all other p, using the (standard) proof given in GTM 138.
                   1788:  * Certainly not the most efficient, but sure.
                   1789:  */
                   1790: GEN
                   1791: idealchinese(GEN nf, GEN x, GEN y)
                   1792: {
                   1793:   long ty=typ(y),av=avma,i,j,k,l,N,r,r2;
                   1794:   GEN fact,fact2,list,ep,ep1,ep2,z,t,v,p1,p2,p3,p4,s,pr,den;
                   1795:
                   1796:   if (DEBUGLEVEL>4)
                   1797:   {
                   1798:     fprintferr(" entree dans idealchinese() :\n");
                   1799:     fprintferr(" x = "); outerr(x);
                   1800:     fprintferr(" y = "); outerr(y);
                   1801:   }
                   1802:   nf=checknf(nf); N=lgef(nf[1])-3;
                   1803:   if (typ(x)!=t_MAT ||(lg(x)!=3))
                   1804:     err(talker,"not a prime ideal factorization in idealchinese");
                   1805:   fact=x; list=(GEN)fact[1]; ep=(GEN)fact[2]; r=lg(list);
                   1806:   if (!is_vec_t(ty) || lg(y)!=r)
                   1807:     err(talker,"not a suitable vector of elements in idealchinese");
                   1808:   if (r==1) return gscalcol_i(gun,N);
                   1809:
                   1810:   den=denom(y);
                   1811:   if (!gcmp1(den))
                   1812:   {
                   1813:     fact2=idealfactor(nf,den);
                   1814:     p1=(GEN)fact2[1]; r2=lg(p1);
                   1815:     ep2=(GEN)fact2[2]; l=r+r2-1;
                   1816:     z=cgetg(l,t_VEC); for (i=1; i<r; i++) z[i]=list[i];
                   1817:     ep1=cgetg(l,t_VEC); for (i=1; i<r; i++) ep1[i]=ep[i];
                   1818:     j=r-1;
                   1819:     for (i=1; i<r2; i++)
                   1820:     {
                   1821:       p3=(GEN)p1[i]; k=1;
                   1822:       while (k<r && !gegal((GEN)list[k],p3)) k++;
                   1823:       if (k==r) { j++; z[j]=(long)p3; ep1[j]=ep2[i]; }
                   1824:       else ep1[k]=ladd((GEN)ep1[k],(GEN)ep2[i]);
                   1825:     }
                   1826:     r=j+1; setlg(z,r); setlg(ep1,r); list=z; ep=ep1;
                   1827:   }
                   1828:   for (i=1; i<r; i++)
                   1829:     if (signe(ep[i])<0) ep[i] = zero;
                   1830:   t=idmat(N);
                   1831:   for (i=1; i<r; i++)
                   1832:   {
                   1833:     pr=(GEN)list[i]; p4=(GEN)ep[i];
                   1834:     if (signe(p4))
                   1835:     {
                   1836:       if (cmpis((GEN)pr[4],N))
                   1837:       {
                   1838:        p2=cgetg(3,t_MAT);
                   1839:         p2[1]=(long)gscalcol_i(gpui((GEN)pr[1],p4,0), N);
                   1840:        p2[2]=(long)element_pow(nf,(GEN)pr[2],p4);
                   1841:         t=idealmat_mul(nf,t,p2);
                   1842:       }
                   1843:       else t=gmul(gpui((GEN)pr[1],p4,0),t);
                   1844:     }
                   1845:   }
                   1846:   z=cgetg(r,t_VEC);
                   1847:   for (i=1; i<r; i++)
                   1848:   {
                   1849:     pr=(GEN)list[i]; p4=(GEN)ep[i];
                   1850:     if (cmpis((GEN)pr[4],N))
                   1851:     {
                   1852:       p2=cgetg(3,t_MAT); p1=gpui((GEN)pr[1],p4,0);
                   1853:       p2[1]=(long)gscalcol_i(p1,N);
                   1854:       p2[2]=(long)element_pow(nf,(GEN)pr[5],p4);
                   1855:       z[i]=ldiv(idealmat_mul(nf,t,p2),p1);
                   1856:     }
                   1857:     else z[i]=ldiv(t,gpui((GEN)pr[1],p4,0));
                   1858:   }
                   1859:   v=idealaddmultoone(nf,z);
                   1860:   s=cgetg(N+1,t_COL); for (i=1; i<=N; i++) s[i]=zero;
                   1861:   for (i=1; i<r; i++)
                   1862:     s = gadd(s,element_mul(nf,(GEN)v[i],(GEN)y[i]));
                   1863:
                   1864:   p3 = appr_reduce(s,t,N);
                   1865:   if (DEBUGLEVEL>2)
                   1866:     { fprintferr(" sortie de idealchinese() : p3 = "); outerr(p3); }
                   1867:   return gerepileupto(av,p3);
                   1868: }
                   1869:
                   1870: GEN
                   1871: idealappr(GEN nf, GEN x) { return idealappr0(nf,x,0); }
                   1872:
                   1873: GEN
                   1874: idealapprfact(GEN nf, GEN x) { return idealappr0(nf,x,1); }
                   1875:
                   1876: /* Given an integral ideal x and a in x, gives a b such that
                   1877:  * x=aZ_K+bZ_K using a different algorithm than ideal_two_elt
                   1878:  */
                   1879: GEN
                   1880: ideal_two_elt2(GEN nf, GEN x, GEN a)
                   1881: {
                   1882:   long ta=typ(a), av=avma,tetpil,i,r;
                   1883:   GEN con,ep,b,list,fact;
                   1884:
                   1885:   nf = checknf(nf);
                   1886:   if (!is_extscalar_t(ta) && typ(a)!=t_COL)
                   1887:     err(typeer,"ideal_two_elt2");
                   1888:   x = idealhermite_aux(nf,x);
                   1889:   if (gcmp0(x))
                   1890:   {
                   1891:     if (!gcmp0(a)) err(talker,"element not in ideal in ideal_two_elt2");
                   1892:     avma=av; return gcopy(a);
                   1893:   }
                   1894:   con = content(x);
                   1895:   if (gcmp1(con)) con = NULL; else { x = gdiv(x,con); a = gdiv(a,con); }
                   1896:   a = principalideal(nf,a);
                   1897:   if (!gcmp1(denom(gauss(x,a))))
                   1898:     err(talker,"element does not belong to ideal in ideal_two_elt2");
                   1899:
                   1900:   fact=idealfactor(nf,a); list=(GEN)fact[1];
                   1901:   r=lg(list); ep = (GEN)fact[2];
                   1902:   for (i=1; i<r; i++) ep[i]=lstoi(idealval(nf,x,(GEN)list[i]));
                   1903:   b = centermod(idealappr0(nf,fact,1), gcoeff(x,1,1));
                   1904:   tetpil=avma; b = con? gmul(b,con): gcopy(b);
                   1905:   return gerepile(av,tetpil,b);
                   1906: }
                   1907:
                   1908: /* Given 2 integral ideals x and y in a number field nf gives a beta
                   1909:  * belonging to nf such that beta.x is an integral ideal coprime to y
                   1910:  */
                   1911: GEN
                   1912: idealcoprime(GEN nf, GEN x, GEN y)
                   1913: {
                   1914:   long av=avma,tetpil,i,r;
                   1915:   GEN fact,list,p2,ep;
                   1916:
                   1917:   if (DEBUGLEVEL>4)
                   1918:   {
                   1919:     fprintferr(" entree dans idealcoprime() :\n");
                   1920:     fprintferr(" x = "); outerr(x);
                   1921:     fprintferr(" y = "); outerr(y);
                   1922:   }
                   1923:   fact=idealfactor(nf,y); list=(GEN)fact[1];
                   1924:   r=lg(list); ep = (GEN)fact[2];
                   1925:   for (i=1; i<r; i++) ep[i]=lstoi(-idealval(nf,x,(GEN)list[i]));
                   1926:   tetpil=avma; p2=idealappr0(nf,fact,1);
                   1927:   if (DEBUGLEVEL>4)
                   1928:     { fprintferr(" sortie de idealcoprime() : p2 = "); outerr(p2); }
                   1929:   return gerepile(av,tetpil,p2);
                   1930: }
                   1931:
                   1932: /* returns the first index i<=n such that x=v[i] if it exits, 0 otherwise */
                   1933: long
                   1934: isinvector(GEN v, GEN x, long n)
                   1935: {
                   1936:   long i;
                   1937:
                   1938:   for (i=1; i<=n; i++)
                   1939:     if (gegal((GEN)v[i],x)) return i;
                   1940:   return 0;
                   1941: }
                   1942:
                   1943: /* Given an integral ideal x and three algebraic integers a, b and c in a
                   1944:  * number field nf gives a beta belonging to nf such that beta.x^(-1) is an
                   1945:  * integral ideal coprime to abc.Z_k
                   1946:  */
                   1947: static GEN
                   1948: idealcoprimeinvabc(GEN nf, GEN x, GEN a, GEN b, GEN c)
                   1949: {
                   1950:   long av=avma,tetpil,i,j,r,ra,rb,rc;
                   1951:   GEN facta,factb,factc,fact,factall,p1,p2,ep;
                   1952:
                   1953:   if (DEBUGLEVEL>4)
                   1954:   {
                   1955:     fprintferr(" entree dans idealcoprimeinvabc() :\n");
                   1956:     fprintferr(" x = "); outerr(x); fprintferr(" a = "); outerr(a);
                   1957:     fprintferr(" b = "); outerr(b); fprintferr(" c = "); outerr(c);
                   1958:     flusherr();
                   1959:   }
                   1960:   facta=(GEN)idealfactor(nf,a)[1]; factb=(GEN)idealfactor(nf,b)[1];
                   1961:   factc=(GEN)idealfactor(nf,c)[1]; ra=lg(facta); rb=lg(factb); rc=lg(factc);
                   1962:   factall=cgetg(ra+rb+rc-2,t_COL);
                   1963:   for (i=1; i<ra; i++) factall[i]=facta[i]; j=ra-1;
                   1964:   for (i=1; i<rb; i++)
                   1965:     if (!isinvector(factall,(GEN)factb[i],j)) factall[++j]=factb[i];
                   1966:   for (i=1; i<rc; i++)
                   1967:     if (!isinvector(factall,(GEN)factc[i],j)) factall[++j]=factc[i];
                   1968:   r=j+1; fact=cgetg(3,t_MAT); p1=cgetg(r,t_COL); ep=cgetg(r,t_COL);
                   1969:   for (i=1; i<r; i++) p1[i]=factall[i];
                   1970:   for (i=1; i<r; i++) ep[i]=lstoi(idealval(nf,x,(GEN)p1[i]));
                   1971:   fact[1]=(long)p1; fact[2]=(long)ep; tetpil=avma; p2=idealappr0(nf,fact,1);
                   1972:   if (DEBUGLEVEL>2)
                   1973:     { fprintferr(" sortie de idealcoprimeinvabc() : p2 = "); outerr(p2); }
                   1974:   return gerepile(av,tetpil,p2);
                   1975: }
                   1976:
                   1977: /* Solve the equation ((b+aX).Z_k/((a,b).J),M)=Z_k. */
                   1978: static GEN
                   1979: findX(GEN nf, GEN a, GEN b, GEN J, GEN M)
                   1980: {
                   1981:   long N,i,k,r,v;
                   1982:   GEN p1,p2,abJ,fact,list,ve,ep,int0,int1,int2,pr;
                   1983:
                   1984:   if (DEBUGLEVEL>4)
                   1985:   {
                   1986:     fprintferr(" entree dans findX() :\n");
                   1987:     fprintferr(" a = "); outerr(a); fprintferr(" b = "); outerr(b);
                   1988:     fprintferr(" J = "); outerr(J); fprintferr(" M = "); outerr(M);
                   1989:   }
                   1990:   N=lgef(nf[1])-3;
                   1991:   p1=cgetg(3,t_MAT); p1[1]=(long)a; p1[2]=(long)b;
                   1992:   if (N==2) p1=idealmul(nf,p1,idmat(2));
                   1993:   abJ=idealmul(nf,p1,J);
                   1994:   fact=idealfactor(nf,M); list=(GEN)fact[1]; r=lg(list);
                   1995:   ve=cgetg(r,t_VEC); ep=cgetg(r,t_VEC);
                   1996:   int0=cgetg(N+1,t_COL); int1=cgetg(N+1,t_COL); int2=cgetg(N+1,t_COL);
                   1997:   for (i=2; i<=N; i++) int0[i]=int1[i]=int2[i]=zero;
                   1998:   int0[1]=zero; int1[1]=un; int2[1]=deux;
                   1999:   for (i=1; i<r; i++)
                   2000:   {
                   2001:     pr=(GEN)list[i]; v=element_val(nf,a,pr);
                   2002:     if (v)
                   2003:     {
                   2004:       ep[i]=un;
                   2005:       ve[i] = (element_val(nf,b,pr)<=v)? (long)int0: (long)int1;
                   2006:     }
                   2007:     else
                   2008:     {
                   2009:       v=idealval(nf,abJ,pr);
                   2010:       p1=element_div(nf,idealaddtoone_i(nf,a,pr),a);
                   2011:       ep[i]=lstoi(v+1); k=1;
                   2012:       while (k<=v)
                   2013:       {
                   2014:        p1=element_mul(nf,p1,gsub(int2,element_mul(nf,a,p1)));
                   2015:        k<<=1;
                   2016:       }
                   2017:       p1=element_mul(nf,p1,gsub(element_pow(nf,(GEN)pr[2],stoi(v)),b));
                   2018:       ve[i]=lmod(p1,gpuigs((GEN)pr[1],v+1));
                   2019:     }
                   2020:   }
                   2021:   fact[2]=(long)ep; p2=idealchinese(nf,fact,ve);
                   2022:   if (DEBUGLEVEL>2) { fprintferr(" sortie de findX() : p2 = "); outerr(p2); }
                   2023:   return p2;
                   2024: }
                   2025:
                   2026: /* A usage interne. Given a, b, c, d in nf, gives an algebraic integer y in
                   2027:  * nf such that [c,d]-y.[a,b] is "small"
                   2028:  */
                   2029: static GEN
                   2030: nfreducemat(GEN nf, GEN a, GEN b, GEN c, GEN d)
                   2031: {
                   2032:   long av=avma,tetpil,i,i1,i2,j,j1,j2,k,N;
                   2033:   GEN p1,p2,X,M,y,mult,s;
                   2034:
                   2035:   mult=(GEN)nf[9]; N=lgef(nf[1])-3; X=cgetg(N+1,t_COL);
                   2036:   for (j=1; j<=N; j++)
                   2037:   {
                   2038:     s=gzero;
                   2039:     for (i=1; i<=N; i++) for (k=1; k<=N; k++)
                   2040:     {
                   2041:       p1=gcoeff(mult,k,j+(i-1)*N);
                   2042:       if (!gcmp0(p1))
                   2043:        s=gadd(s,gmul(p1,gadd(gmul((GEN)a[i],(GEN)c[k]),
                   2044:                              gmul((GEN)b[i],(GEN)d[k]))));
                   2045:     }
                   2046:     X[j]=(long)s;
                   2047:   }
                   2048:   M=cgetg(N+1,t_MAT);
                   2049:   for (j2=1; j2<=N; j2++)
                   2050:   {
                   2051:     p1=cgetg(N+1,t_COL); M[j2]=(long)p1;
                   2052:     for (j1=1; j1<=N; j1++)
                   2053:     {
                   2054:       s=gzero;
                   2055:       for (i1=1; i1<=N; i1++)
                   2056:        for (i2=1; i2<=N; i2++)
                   2057:         for (k=1; k<=N; k++)
                   2058:        {
                   2059:          p2=gmul(gcoeff(mult,k,j1+(i1-1)*N),gcoeff(mult,k,j2+(i2-1)*N));
                   2060:          if (!gcmp0(p2))
                   2061:             s=gadd(s,gmul(p2,gadd(gmul((GEN)a[i1],(GEN)a[i2]),
                   2062:                                   gmul((GEN)b[i1],(GEN)b[i2]))));
                   2063:        }
                   2064:       p1[j1]=(long)s;
                   2065:     }
                   2066:   }
                   2067:   y=gauss(M,X); tetpil=avma;
                   2068:   return gerepile(av,tetpil,ground(y));
                   2069: }
                   2070:
                   2071: /* Given 3 algebraic integers a,b,c in a number field nf given by their
                   2072:  * components on the integral basis, gives a three-component vector [d,e,U]
                   2073:  * whose first two components are algebraic integers d,e and the third a
                   2074:  * unimodular 3x3-matrix U such that [a,b,c]*U=[0,d,e]
                   2075:  */
                   2076: GEN
                   2077: threetotwo2(GEN nf, GEN a, GEN b, GEN c)
                   2078: {
                   2079:   long av=avma,tetpil,i,N;
                   2080:   GEN y,p1,p2,p3,M,X,Y,J,e,b1,c1,u,v,U,int0,Z,pk;
                   2081:
                   2082:   if (DEBUGLEVEL>2)
                   2083:   {
                   2084:     fprintferr(" On entre dans threetotwo2() : \n");
                   2085:     fprintferr(" a = "); outerr(a);
                   2086:     fprintferr(" b = "); outerr(b);
                   2087:     fprintferr(" c = "); outerr(c);
                   2088:   }
                   2089:   if (gcmp0(a))
                   2090:   {
                   2091:     y=cgetg(4,t_VEC); y[1]=lcopy(b); y[2]=lcopy(c); y[3]=(long)idmat(3);
                   2092:     return y;
                   2093:   }
                   2094:   if (gcmp0(b))
                   2095:   {
                   2096:     y=cgetg(4,t_VEC); y[1]=lcopy(a); y[2]=lcopy(c);
                   2097:     e = idmat(3); i=e[1]; e[1]=e[2]; e[2]=i;
                   2098:     y[3]=(long)e; return y;
                   2099:   }
                   2100:   if (gcmp0(c))
                   2101:   {
                   2102:     y=cgetg(4,t_VEC); y[1]=lcopy(a); y[2]=lcopy(b);
                   2103:     e = idmat(3); i=e[1]; e[1]=e[3]; e[3]=e[2]; e[2]=i;
                   2104:     y[3]=(long)e; return y;
                   2105:   }
                   2106:
                   2107:   N=lgef(nf[1])-3;
                   2108:   p1=cgetg(4,t_MAT); p1[1]=(long)a; p1[2]=(long)b;
                   2109:   p1[3]=(long)c; p1=idealhermite_aux(nf,p1);
                   2110:   if (DEBUGLEVEL>2)
                   2111:     { fprintferr(" ideal a.Z_k+b.Z_k+c.Z_k = "); outerr(p1); }
                   2112:   J=idealdiv(nf,e=idealcoprimeinvabc(nf,p1,a,b,c),p1);
                   2113:   if (DEBUGLEVEL>2)
                   2114:     { fprintferr(" ideal J = "); outerr(J); fprintferr(" e = "); outerr(e); }
                   2115:   p1=cgetg(3,t_MAT); p1[1]=(long)a; p1[2]=(long)b; M=idealmul(nf,p1,J);
                   2116:   if (DEBUGLEVEL>2)
                   2117:     { fprintferr(" ideal M=(a.Z_k+b.Z_k).J = "); outerr(M); }
                   2118:   X=findX(nf,a,b,J,M);
                   2119:   if (DEBUGLEVEL>2){ fprintferr(" X = "); outerr(X); }
                   2120:   p1=gadd(b,element_mul(nf,a,X));
                   2121:   p2=cgetg(3,t_MAT); p2[1]=(long)element_mul(nf,a,p1);
                   2122:   p2[2]=(long)element_mul(nf,c,p1);
                   2123:   if (N==2) p2=idealhermite_aux(nf,p2);
                   2124:   p3=cgetg(3,t_MAT); p3[1]=(long)a; p3[2]=(long)b;
                   2125:   p3=idealhermite_aux(nf,p3);
                   2126:   if (DEBUGLEVEL>2)
                   2127:     { fprintferr(" ideal a.Z_k+b.Z_k = "); outerr(p3); }
                   2128:   Y=findX(nf,a,c,J,idealdiv(nf,p2,p3));
                   2129:   if (DEBUGLEVEL>2) { fprintferr(" Y = "); outerr(Y); }
                   2130:   b1=element_div(nf,p1,e);
                   2131:   if (DEBUGLEVEL>2) { fprintferr(" b1 = "); outerr(b1); }
                   2132:   p2=gadd(c,element_mul(nf,a,Y));
                   2133:   c1=element_div(nf,p2,e);
                   2134:   if (DEBUGLEVEL>2) { fprintferr(" c1 = "); outerr(c1); }
                   2135:   p1=idealhermite_aux(nf,b1);
                   2136:   p2=idealhermite_aux(nf,c1);
                   2137:   p3=idealaddtoone(nf,p1,p2);
                   2138:   u=element_div(nf,(GEN)p3[1],b1); v=element_div(nf,(GEN)p3[2],c1);
                   2139:   if (DEBUGLEVEL>2)
                   2140:     { fprintferr(" u = "); outerr(u); fprintferr(" v = "); outerr(v); }
                   2141:   U=cgetg(4,t_MAT);
                   2142:   p1=cgetg(4,t_COL); p2=cgetg(4,t_COL); p3=cgetg(4,t_COL);
                   2143:   U[1]=(long)p1; U[2]=(long)p2; U[3]=(long)p3;
                   2144:   p1[1]=lsub(element_mul(nf,X,c1),element_mul(nf,Y,b1));
                   2145:   p1[2]=(long)c1; p1[3]=lneg(b1);
                   2146:   int0 = zerocol(N);
                   2147:   p2[1]=(long)gscalcol_i(gun,N);
                   2148:   p2[2]=p2[3]=(long)int0;
                   2149:   Z=gadd(element_mul(nf,X,u),element_mul(nf,Y,v));
                   2150:   pk=nfreducemat(nf,c1,(GEN)p1[3],u,v);
                   2151:   p3[1]=(long)int0; p3[2]=lsub(u,element_mul(nf,pk,c1));
                   2152:   p3[3]=(long)gadd(v,element_mul(nf,pk,b1));
                   2153:   e=gadd(e,element_mul(nf,a,gsub(element_mul(nf,pk,(GEN)p1[1]),Z)));
                   2154:   tetpil=avma;
                   2155:   y=cgetg(4,t_VEC); y[1]=lcopy(a); y[2]=lcopy(e); y[3]=lcopy(U);
                   2156:   if (DEBUGLEVEL>2)
                   2157:     { fprintferr(" sortie de threetotwo2() : y = "); outerr(y); }
                   2158:   return gerepile(av,tetpil,y);
                   2159: }
                   2160:
                   2161: /* Given 3 algebraic integers a,b,c in a number field nf given by their
                   2162:  * components on the integral basis, gives a three-component vector [d,e,U]
                   2163:  * whose first two components are algebraic integers d,e and the third a
                   2164:  * unimodular 3x3-matrix U such that [a,b,c]*U=[0,d,e] Naive method which may
                   2165:  * not work, but fast and small coefficients.
                   2166:  */
                   2167: GEN
                   2168: threetotwo(GEN nf, GEN a, GEN b, GEN c)
                   2169: {
                   2170:   long av=avma,tetpil,i,N;
                   2171:   GEN pol,p1,p2,p3,p4,y,id,hu,h,V,U,r,vd,q1,q1a,q2,q2a,na,nb,nc,nr;
                   2172:
                   2173:   nf=checknf(nf); pol=(GEN)nf[1]; N=lgef(pol)-3; id=idmat(N);
                   2174:   na=gnorml2(a); nb=gnorml2(b); nc=gnorml2(c);
                   2175:   U=gmul(idmat(3),gmodulsg(1,pol));
                   2176:   if (gcmp(nc,nb)<0)
                   2177:   {
                   2178:     p1=c; c=b; b=p1; p1=nc; nc=nb; nb=p1;
                   2179:     p1=(GEN)U[3]; U[3]=U[2]; U[2]=(long)p1;
                   2180:   }
                   2181:   if (gcmp(nc,na)<0)
                   2182:   {
                   2183:     p1=a; a=c; c=p1; p1=na; na=nc; nc=p1;
                   2184:     p1=(GEN)U[1]; U[1]=U[3]; U[3]=(long)p1;
                   2185:   }
                   2186:   while (!gcmp0(gmin(na,nb)))
                   2187:   {
                   2188:     p1=cgetg(2*N+1,t_MAT);
                   2189:     for (i=1; i<=N; i++)
                   2190:     {
                   2191:       p1[i]=(long)element_mul(nf,a,(GEN)id[i]);
                   2192:       p1[i+N]=(long)element_mul(nf,b,(GEN)id[i]);
                   2193:     }
                   2194:     hu=hnfall(p1); h=(GEN)hu[1]; V=(GEN)hu[2];
                   2195:     p2=(GEN)ker(concatsp(h,c))[1]; p3=(GEN)p2[N+1];
                   2196:     p4=cgetg(N+1,t_COL);
                   2197:     for (i=1; i<=N; i++) p4[i]=(long)ground(gdiv((GEN)p2[i],p3));
                   2198:     r=gadd(c,gmul(h,p4));
                   2199:     vd=cgetg(N+1,t_MAT); for (i=1; i<=N; i++) vd[i]=V[N+i];
                   2200:     p2=gmul(vd,p4);
                   2201:     q1=cgetg(N+1,t_COL); q2=cgetg(N+1,t_COL);
                   2202:     for (i=1; i<=N; i++) { q1[i]=p2[i]; q2[i]=p2[i+N]; }
                   2203:     q1a=basistoalg(nf,q1); q2a=basistoalg(nf,q2);
                   2204:     U[3]=(long)gadd((GEN)U[3],gadd(gmul(q1a,(GEN)U[1]),gmul(q2a,(GEN)U[2])));
                   2205:     nr=gnorml2(r);
                   2206:     if (gcmp(nr,gmax(na,nb))>=0) err(talker,"threetotwo does not work");
                   2207:     if (gcmp(na,nb)>=0)
                   2208:     {
                   2209:       c=a; nc=na; a=r; na=nr; p1=(GEN)U[1]; U[1]=U[3]; U[3]=(long)p1;
                   2210:     }
                   2211:     else
                   2212:     {
                   2213:       c=b; nc=nb; b=r; nb=nr; p1=(GEN)U[2]; U[2]=U[3]; U[3]=(long)p1;
                   2214:     }
                   2215:   }
                   2216:   if (!gcmp0(na))
                   2217:   {
                   2218:     p1=a; a=b; b=p1; p1=(GEN)U[1]; U[1]=U[2]; U[2]=(long)p1;
                   2219:   }
                   2220:   tetpil=avma; y=cgetg(4,t_VEC); y[1]=lcopy(b); y[2]=lcopy(c);
                   2221:   y[3]=(long)algtobasis(nf,U); return gerepile(av,tetpil,y);
                   2222: }
                   2223:
                   2224: /* Given 2 algebraic integers a,b in a number field nf given by their
                   2225:  * components on the integral basis, gives a three-components vector [d,e,U]
                   2226:  * whose first two component are algebraic integers d,e and the third a
                   2227:  * unimodular 2x2-matrix U such that [a,b]*U=[d,e], with d and e hopefully
                   2228:  * smaller than a and b.
                   2229:  */
                   2230: GEN
                   2231: twototwo(GEN nf, GEN a, GEN b)
                   2232: {
                   2233:   long av=avma,tetpil;
                   2234:   GEN pol,p1,y,U,r,qr,qa,na,nb,nr;
                   2235:
                   2236:   nf=checknf(nf);
                   2237:   pol=(GEN)nf[1];
                   2238:   na=gnorml2(a); nb=gnorml2(b);
                   2239:   U=gmul(idmat(2),gmodulsg(1,pol));
                   2240:   if (gcmp(na,nb)>0)
                   2241:   {
                   2242:     p1=a; a=b; b=p1; p1=na; na=nb; nb=p1;
                   2243:     p1=(GEN)U[2]; U[2]=U[1]; U[1]=(long)p1;
                   2244:   }
                   2245:
                   2246:   while (!gcmp0(na))
                   2247:   {
                   2248:     qr=nfdivres(nf,b,a); r=(GEN)qr[2]; nr=gnorml2(r);
                   2249:     if (gcmp(nr,na)<0)
                   2250:     {
                   2251:       b=a; a=r; nb=na; na=nr; qa=basistoalg(nf,(GEN)qr[1]);
                   2252:       p1=gsub((GEN)U[2],gmul(qa,(GEN)U[1])); U[2]=U[1]; U[1]=(long)p1;
                   2253:     }
                   2254:     else
                   2255:     {
                   2256:       if (gcmp(nr,nb)<0)
                   2257:       {
                   2258:        qa=basistoalg(nf,(GEN)qr[1]);
                   2259:        U[2]=lsub((GEN)U[2],gmul(qa,(GEN)U[1]));
                   2260:       }
                   2261:       break;
                   2262:     }
                   2263:   }
                   2264:   tetpil=avma; y=cgetg(4,t_VEC); y[1]=lcopy(a); y[2]=lcopy(b);
                   2265:   y[3]=(long)algtobasis(nf,U); return gerepile(av,tetpil,y);
                   2266: }
                   2267:
                   2268: GEN
                   2269: elt_mul_get_table(GEN nf, GEN x)
                   2270: {
                   2271:   long i,lx = lg(x);
                   2272:   GEN mul=cgetg(lx,t_MAT);
                   2273:
                   2274:   /* assume w_1 = 1 */
                   2275:   mul[1]=(long)x;
                   2276:   for (i=2; i<lx; i++) mul[i] = (long)element_mulid(nf,x,i);
                   2277:   return mul;
                   2278: }
                   2279:
                   2280: GEN
                   2281: elt_mul_table(GEN mul, GEN z)
                   2282: {
                   2283:   long av = avma, i, lx = lg(mul);
                   2284:   GEN p1 = gmul((GEN)z[1], (GEN)mul[1]);
                   2285:
                   2286:   for (i=2; i<lx; i++)
                   2287:     if (!gcmp0((GEN)z[i])) p1 = gadd(p1, gmul((GEN)z[i], (GEN)mul[i]));
                   2288:   return gerepileupto(av, p1);
                   2289: }
                   2290:
                   2291: GEN
                   2292: element_mulvec(GEN nf, GEN x, GEN v)
                   2293: {
                   2294:   long lv=lg(v),i;
                   2295:   GEN mul = elt_mul_get_table(nf,x), y=cgetg(lv,t_COL);
                   2296:
                   2297:   for (i=1; i<lv; i++)
                   2298:     y[i] = (long)elt_mul_table(mul,(GEN)v[i]);
                   2299:   return y;
                   2300: }
                   2301:
                   2302: static GEN
                   2303: element_mulvecrow(GEN nf, GEN x, GEN m, long i, long lim)
                   2304: {
                   2305:   long lv,j;
                   2306:   GEN y, mul = elt_mul_get_table(nf,x);
                   2307:
                   2308:   lv=min(lg(m),lim+1); y=cgetg(lv,t_VEC);
                   2309:   for (j=1; j<lv; j++)
                   2310:     y[j] = (long)elt_mul_table(mul,gcoeff(m,i,j));
                   2311:   return y;
                   2312: }
                   2313:
                   2314: /* Given an element x and an ideal in matrix form (not necessarily HNF),
                   2315:  * gives an r such that x-r is in ideal and r is small. No checks
                   2316:  */
                   2317: GEN
                   2318: element_reduce(GEN nf, GEN x, GEN ideal)
                   2319: {
                   2320:   long tx=typ(x),av=avma,tetpil,N,i;
                   2321:   GEN p1,u;
                   2322:
                   2323:   if (is_extscalar_t(tx))
                   2324:     x = algtobasis_intern(checknf(nf), x);
                   2325:   N = lg(x); p1=cgetg(N+1,t_MAT);
                   2326:   for (i=1; i<N; i++) p1[i]=ideal[i];
                   2327:   p1[N]=(long)x; u=(GEN)ker(p1)[1];
                   2328:   p1=(GEN)u[N]; setlg(u,N);
                   2329:   for (i=1; i<N; i++) u[i]=lround(gdiv((GEN)u[i],p1));
                   2330:   u=gmul(ideal,u); tetpil=avma;
                   2331:   return gerepile(av,tetpil,gadd(u,x));
                   2332: }
                   2333:
                   2334: /* A torsion-free module M over Z_K will be given by a row vector [A,I] with
                   2335:  * two components. I=[\a_1,...,\a_k] is a row vector of k fractional ideals
                   2336:  * given in HNF. A is an nxk matrix (same k and n the rank of the module)
                   2337:  * such that if A_j is the j-th column of A then M=\a_1A_1+...\a_kA_k. We say
                   2338:  * that [A,I] is a pseudo-basis if k=n
                   2339:  */
                   2340:
                   2341: /* Given a torsion-free module x as above outputs a pseudo-basis for x in
                   2342:  * Hermite Normal Form
                   2343:  */
                   2344: GEN
                   2345: nfhermite(GEN nf, GEN x)
                   2346: {
                   2347:   long av=avma,tetpil,i,j,def,k,m;
                   2348:   GEN p1,p2,y,A,I,J;
                   2349:
                   2350:   nf=checknf(nf);
                   2351:   if (typ(x)!=t_VEC || lg(x)!=3) err(talker,"not a module in nfhermite");
                   2352:   A=(GEN)x[1]; I=(GEN)x[2]; k=lg(A)-1;
                   2353:   if (typ(A)!=t_MAT) err(talker,"not a matrix in nfhermite");
                   2354:   if (typ(I)!=t_VEC || lg(I)!=k+1)
                   2355:     err(talker,"not a correct ideal list in nfhermite");
                   2356:   if (!k) err(talker,"not a matrix of maximal rank in nfhermite");
                   2357:   m=lg(A[1])-1;
                   2358:   if (k<m) err(talker,"not a matrix of maximal rank in nfhermite");
                   2359:
                   2360:   p1 = cgetg(k+1,t_MAT); for (j=1; j<=k; j++) p1[j]=A[j];
                   2361:   A = p1; I = dummycopy(I);
                   2362:   for (j=1; j<=k; j++)
                   2363:     if (typ(I[j])!=t_MAT) I[j]=(long)idealhermite_aux(nf,(GEN)I[j]);
                   2364:
                   2365:   J=cgetg(k+1,t_VEC); def=k+1;
                   2366:   for (i=m; i>=1; i--)
                   2367:   {
                   2368:     GEN den,p4,p5,p6,u,v,newid, invnewid = NULL;
                   2369:
                   2370:     def--; j=def; while (j>=1 && gcmp0(gcoeff(A,i,j))) j--;
                   2371:     if (!j) err(talker,"not a matrix of maximal rank in nfhermite");
                   2372:     if (j==def) j--;
                   2373:     else
                   2374:     {
                   2375:       p1=(GEN)A[j]; A[j]=A[def]; A[def]=(long)p1;
                   2376:       p1=(GEN)I[j]; I[j]=I[def]; I[def]=(long)p1;
                   2377:     }
                   2378:     p1=gcoeff(A,i,def); p2=element_inv(nf,p1);
                   2379:     A[def]=(long)element_mulvec(nf,p2,(GEN)A[def]);
                   2380:     I[def]=(long)idealmul(nf,p1,(GEN)I[def]);
                   2381:     for (  ; j; j--)
                   2382:     {
                   2383:       p1=gcoeff(A,i,j);
                   2384:       if (!gcmp0(p1))
                   2385:       {
                   2386:        p2=idealmul(nf,p1,(GEN)I[j]);
                   2387:        newid = idealadd(nf,p2,(GEN)I[def]);
                   2388:        invnewid = hnfideal_inv(nf,newid);
                   2389:        p4 = idealmul(nf, p2,        invnewid);
                   2390:        p5 = idealmul(nf,(GEN)I[def],invnewid);
                   2391:        y = idealaddtoone(nf,p4,p5);
                   2392:        u=element_div(nf,(GEN)y[1],p1); v=(GEN)y[2];
                   2393:        p6=gsub((GEN)A[j],element_mulvec(nf,p1,(GEN)A[def]));
                   2394:        A[def]=ladd(element_mulvec(nf,u,(GEN)A[j]),
                   2395:                    element_mulvec(nf,v,(GEN)A[def]));
                   2396:        A[j]=(long)p6;
                   2397:        I[j]=(long)idealmul(nf,idealmul(nf,(GEN)I[j],(GEN)I[def]),invnewid);
                   2398:        I[def]=(long)newid; den=denom((GEN)I[j]);
                   2399:        if (!gcmp1(den))
                   2400:        {
                   2401:          I[j]=lmul(den,(GEN)I[j]);
                   2402:          A[j]=ldiv((GEN)A[j],den);
                   2403:        }
                   2404:       }
                   2405:     }
                   2406:     if (!invnewid) invnewid = hnfideal_inv(nf,(GEN)I[def]);
                   2407:     p1=(GEN)I[def]; J[def]=(long)invnewid;
                   2408:     for (j=def+1; j<=k; j++)
                   2409:     {
                   2410:       p2=gsub(element_reduce(nf,gcoeff(A,i,j),idealmul(nf,p1,(GEN)J[j])),
                   2411:               gcoeff(A,i,j));
                   2412:       A[j]=ladd((GEN)A[j],element_mulvec(nf,p2,(GEN)A[def]));
                   2413:     }
                   2414:   }
                   2415:   tetpil=avma; y=cgetg(3,t_VEC);
                   2416:   p1=cgetg(m+1,t_MAT); y[1]=(long)p1;
                   2417:   p2=cgetg(m+1,t_VEC); y[2]=(long)p2;
                   2418:   for (j=1; j<=m; j++) p1[j]=lcopy((GEN)A[j+k-m]);
                   2419:   for (j=1; j<=m; j++) p2[j]=lcopy((GEN)I[j+k-m]);
                   2420:   return gerepile(av,tetpil,y);
                   2421: }
                   2422:
                   2423: /* A torsion module M over Z_K will be given by a row vector [A,I,J] with
                   2424:  * three components. I=[b_1,...,b_n] is a row vector of k fractional ideals
                   2425:  * given in HNF, J=[a_1,...,a_n] is a row vector of n fractional ideals in
                   2426:  * HNF. A is an nxn matrix (same n) such that if A_j is the j-th column of A
                   2427:  * and e_n is the canonical basis of K^n, then
                   2428:  * M=(b_1e_1+...+b_ne_n)/(a_1A_1+...a_nA_n)
                   2429:  */
                   2430:
                   2431: /* We input a torsion module x=[A,I,J] as above, and output the
                   2432:  * smith normal form as K=[\c_1,...,\c_n] such that x=Z_K/\c_1+...+Z_K/\c_n.
                   2433:  */
                   2434: GEN
                   2435: nfsmith(GEN nf, GEN x)
                   2436: {
                   2437:   long av,tetpil,i,j,k,l,lim,c,fl,n,m,N;
                   2438:   GEN p1,p2,p3,p4,z,b,u,v,w,d,dinv,unnf,A,I,J;
                   2439:
                   2440:   nf=checknf(nf); N=lgef(nf[1])-3;
                   2441:   if (typ(x)!=t_VEC || lg(x)!=4) err(talker,"not a module in nfsmith");
                   2442:   A=(GEN)x[1]; I=(GEN)x[2]; J=(GEN)x[3];
                   2443:   if (typ(A)!=t_MAT) err(talker,"not a matrix in nfsmith");
                   2444:   n=lg(A)-1;
                   2445:   if (typ(I)!=t_VEC || lg(I)!=n+1 || typ(J)!=t_VEC || lg(J)!=n+1)
                   2446:     err(talker,"not a correct ideal list in nfsmith");
                   2447:   if (!n) err(talker,"not a matrix of maximal rank in nfsmith");
                   2448:   m=lg(A[1])-1;
                   2449:   if (n<m) err(talker,"not a matrix of maximal rank in nfsmith");
                   2450:   if (n>m) err(impl,"nfsmith for non square matrices");
                   2451:
                   2452:   av=avma; lim=stack_lim(av,1);
                   2453:   p1 = cgetg(n+1,t_MAT); for (j=1; j<=n; j++) p1[j]=A[j];
                   2454:   A = p1; I = dummycopy(I); J=dummycopy(J);
                   2455:   for (j=1; j<=n; j++)
                   2456:     if (typ(I[j])!=t_MAT) I[j]=(long)idealhermite_aux(nf,(GEN)I[j]);
                   2457:   for (j=1; j<=n; j++)
                   2458:     if (typ(J[j])!=t_MAT) J[j]=(long)idealhermite_aux(nf,(GEN)J[j]);
                   2459:   for (i=n; i>=2; i--)
                   2460:   {
                   2461:     do
                   2462:     {
                   2463:       c=0;
                   2464:       for (j=i-1; j>=1; j--)
                   2465:       {
                   2466:        p1=gcoeff(A,i,j);
                   2467:        if (!gcmp0(p1))
                   2468:        {
                   2469:          p2=gcoeff(A,i,i);
                   2470:          d=nfbezout(nf,p2,p1,(GEN)J[i],(GEN)J[j],&u,&v,&w,&dinv);
                   2471:          if (!gcmp0(u))
                   2472:          {
                   2473:            if (!gcmp0(v))
                   2474:              b=gadd(element_mulvec(nf,u,(GEN)A[i]),
                   2475:                     element_mulvec(nf,v,(GEN)A[j]));
                   2476:            else b=element_mulvec(nf,u,(GEN)A[i]);
                   2477:          }
                   2478:          else b=element_mulvec(nf,v,(GEN)A[j]);
                   2479:          A[j]=lsub(element_mulvec(nf,p2,(GEN)A[j]),
                   2480:                    element_mulvec(nf,p1,(GEN)A[i]));
                   2481:          A[i]=(long)b; J[j]=(long)w; J[i]=(long)d;
                   2482:        }
                   2483:       }
                   2484:       for (j=i-1; j>=1; j--)
                   2485:       {
                   2486:        p1=gcoeff(A,j,i);
                   2487:        if (!gcmp0(p1))
                   2488:        {
                   2489:          p2=gcoeff(A,i,i);
                   2490:          d=nfbezout(nf,p2,p1,(GEN)I[i],(GEN)I[j],&u,&v,&w,&dinv);
                   2491:          if (gcmp0(u))
                   2492:            b=element_mulvecrow(nf,v,A,j,i);
                   2493:          else
                   2494:          {
                   2495:            if (gcmp0(v))
                   2496:              b=element_mulvecrow(nf,u,A,i,i);
                   2497:            else
                   2498:              b=gadd(element_mulvecrow(nf,u,A,i,i),
                   2499:                     element_mulvecrow(nf,v,A,j,i));
                   2500:          }
                   2501:          p3=gsub(element_mulvecrow(nf,p2,A,j,i),
                   2502:                  element_mulvecrow(nf,p1,A,i,i));
                   2503:          for (k=1; k<=i; k++) { coeff(A,j,k)=p3[k]; coeff(A,i,k)=b[k]; }
                   2504:          I[j]=(long)w; I[i]=(long)d; c++;
                   2505:        }
                   2506:       }
                   2507:       if (!c)
                   2508:       {
                   2509:        b=gcoeff(A,i,i); if (gcmp0(b)) break;
                   2510:
                   2511:        b=idealmul(nf,b,idealmul(nf,(GEN)J[i],(GEN)I[i]));
                   2512:        fl=1;
                   2513:        for (k=1; k<i && fl; k++)
                   2514:          for (l=1; l<i && fl; l++)
                   2515:          {
                   2516:            p3=gcoeff(A,k,l);
                   2517:            if (!gcmp0(p3))
                   2518:              fl=gegal(idealadd(nf,b,idealmul(nf,p3,idealmul(nf,(GEN)J[l],(GEN)I[k]))),b);
                   2519:          }
                   2520:        if (!fl)
                   2521:        {
                   2522:          k--; l--;
                   2523:          b=idealdiv(nf,(GEN)I[k],(GEN)I[i]);
                   2524:          p4=gauss(idealdiv(nf,(GEN)J[i],idealmul(nf,p3,(GEN)J[l])),b);
                   2525:          l=1; while (l<=N && gcmp1(denom((GEN)p4[l]))) l++;
                   2526:          if (l>N) err(talker,"bug2 in nfsmith");
                   2527:          p3=element_mulvecrow(nf,(GEN)b[l],A,k,i);
                   2528:          for (l=1; l<=i; l++)
                   2529:            coeff(A,i,l) = ladd(gcoeff(A,i,l),(GEN)p3[l]);
                   2530:        }
                   2531:       }
                   2532:       if (low_stack(lim, stack_lim(av,1)))
                   2533:       {
                   2534:         GEN *gptr[3];
                   2535:        if(DEBUGMEM>1) err(warnmem,"nfsmith");
                   2536:         gptr[0]=&A; gptr[1]=&I; gptr[2]=&J; gerepilemany(av,gptr,3);
                   2537:       }
                   2538:     }
                   2539:     while (c || !fl);
                   2540:   }
                   2541:   unnf=gscalcol_i(gun,N);
                   2542:   p1=gcoeff(A,1,1); coeff(A,1,1)=(long)unnf;
                   2543:   J[1]=(long)idealmul(nf,p1,(GEN)J[1]);
                   2544:   for (i=2; i<=n; i++)
                   2545:     if (!gegal(gcoeff(A,i,i),unnf)) err(talker,"bug in nfsmith");
                   2546:   tetpil=avma; z=cgetg(n+1,t_VEC);
                   2547:   for (i=1; i<=n; i++) z[i]=(long)idealmul(nf,(GEN)I[i],(GEN)J[i]);
                   2548:   return gerepile(av,tetpil,z);
                   2549: }
                   2550:
                   2551: /*******************************************************************/
                   2552: /*                                                                 */
                   2553: /*          ALGEBRE LINEAIRE DANS LES CORPS DE NOMBRES             */
                   2554: /*                                                                 */
                   2555: /*******************************************************************/
                   2556:
                   2557: #define trivlift(x) ((typ(x)==t_POLMOD)? (GEN)x[2]: lift_intern(x))
                   2558:
                   2559: GEN
                   2560: element_mulmodpr2(GEN nf, GEN x, GEN y, GEN prhall)
                   2561: {
                   2562:   long av=avma;
                   2563:   GEN p1;
                   2564:
                   2565:   nf=checknf(nf); checkprhall(prhall);
                   2566:   p1 = element_mul(nf,x,y);
                   2567:   return gerepileupto(av,nfreducemodpr(nf,p1,prhall));
                   2568: }
                   2569:
                   2570: /* On ne peut PAS definir ca comme les autres par
                   2571:  * #define element_divmodpr() nfreducemodpr(element_div())
                   2572:  * car le element_div ne marche pas en general
                   2573:  */
                   2574: GEN
                   2575: element_divmodpr(GEN nf, GEN x, GEN y, GEN prhall)
                   2576: {
                   2577:   long av=avma;
                   2578:   GEN p1;
                   2579:
                   2580:   nf=checknf(nf); checkprhall(prhall);
                   2581:   p1=lift_intern(gdiv(gmodulcp(gmul((GEN)nf[7],trivlift(x)), (GEN)nf[1]),
                   2582:                       gmodulcp(gmul((GEN)nf[7],trivlift(y)), (GEN)nf[1])));
                   2583:   p1=algtobasis_intern(nf,p1);
                   2584:   return gerepileupto(av,nfreducemodpr(nf,p1,prhall));
                   2585: }
                   2586:
                   2587: GEN
                   2588: element_invmodpr(GEN nf, GEN y, GEN prhall)
                   2589: {
                   2590:   long av=avma;
                   2591:   GEN p1;
                   2592:
                   2593:   p1=ginvmod(gmul((GEN)nf[7],trivlift(y)), (GEN)nf[1]);
                   2594:   p1=algtobasis_intern(nf,p1);
                   2595:   return gerepileupto(av,nfreducemodpr(nf,p1,prhall));
                   2596: }
                   2597:
                   2598: GEN
                   2599: element_powmodpr(GEN nf,GEN x,GEN k,GEN prhall)
                   2600: {
                   2601:   long av=avma,N,s;
                   2602:   GEN y,z;
                   2603:
                   2604:   nf=checknf(nf); checkprhall(prhall);
                   2605:   N=lgef(nf[1])-3;
                   2606:   s=signe(k); k=(s>=0)?k:negi(k);
                   2607:   z=x; y = gscalcol_i(gun,N);
                   2608:   for(;;)
                   2609:   {
                   2610:     if (mpodd(k)) y=element_mulmodpr(nf,z,y,prhall);
                   2611:     k=shifti(k,-1);
                   2612:     if (signe(k)) z=element_sqrmodpr(nf,z,prhall);
                   2613:     else
                   2614:     {
                   2615:       cgiv(k); if (s<0) y = element_invmodpr(nf,y,prhall);
                   2616:       return gerepileupto(av,y);
                   2617:     }
                   2618:   }
                   2619: }
                   2620:
                   2621: /* x est une matrice dont les coefficients sont des vecteurs dans la base
                   2622:  * d'entiers modulo un ideal premier prhall, sous forme reduite modulo prhall.
                   2623:  */
                   2624: GEN
                   2625: nfkermodpr(GEN nf, GEN x, GEN prhall)
                   2626: {
                   2627:   long i,j,k,r,t,n,m,av0,av,av1,av2,N,lim;
                   2628:   GEN c,d,y,unnf,munnf,zeromodp,zeronf,p,pp,prh;
                   2629:
                   2630:   nf=checknf(nf); checkprhall(prhall);
                   2631:   if (typ(x)!=t_MAT) err(typeer,"nfkermodpr");
                   2632:   n=lg(x)-1; if (!n) return cgetg(1,t_MAT);
                   2633:   prh=(GEN)prhall[1]; av0=avma;
                   2634:   N=lgef(nf[1])-3; pp=gcoeff(prh,1,1);
                   2635:
                   2636:   zeromodp=gmodulsg(0,pp);
                   2637:   unnf=cgetg(N+1,t_COL); unnf[1]=(long)gmodulsg(1,pp);
                   2638:   zeronf=cgetg(N+1,t_COL); zeronf[1]=(long)zeromodp;
                   2639:
                   2640:   av=avma; munnf=cgetg(N+1,t_COL); munnf[1]=(long)gmodulsg(-1,pp);
                   2641:   for (i=2; i<=N; i++)
                   2642:     zeronf[i] = munnf[i] = unnf[i] = (long)zeromodp;
                   2643:
                   2644:   m=lg(x[1])-1; x=dummycopy(x); r=0;
                   2645:   c=new_chunk(m+1); for (k=1; k<=m; k++) c[k]=0;
                   2646:   d=new_chunk(n+1); av1=avma; lim=stack_lim(av1,1);
                   2647:   for (k=1; k<=n; k++)
                   2648:   {
                   2649:     j=1;
                   2650:     while (j<=m && (c[j] || gcmp0(gcoeff(x,j,k)))) j++;
                   2651:     if (j>m) { r++; d[k]=0; }
                   2652:     else
                   2653:     {
                   2654:       p=element_divmodpr(nf,munnf,gcoeff(x,j,k),prhall);
                   2655:       c[j]=k; d[k]=j; coeff(x,j,k)=(long)munnf;
                   2656:       for (i=k+1; i<=n; i++)
                   2657:        coeff(x,j,i)=(long)element_mulmodpr(nf,p,gcoeff(x,j,i),prhall);
                   2658:       for (t=1; t<=m; t++)
                   2659:        if (t!=j)
                   2660:        {
                   2661:          p=gcoeff(x,t,k); coeff(x,t,k)=(long)zeronf;
                   2662:          for (i=k+1; i<=n; i++)
                   2663:             coeff(x,t,i)=ladd(gcoeff(x,t,i),
                   2664:                              element_mulmodpr(nf,p,gcoeff(x,j,i),prhall));
                   2665:        }
                   2666:       if (low_stack(lim, stack_lim(av1,1)))
                   2667:       {
                   2668:         if (DEBUGMEM>1) err(warnmem,"nfkermodpr, k = %ld / %ld",k,n);
                   2669:         av2=avma; x=gerepile(av1,av2,gcopy(x));
                   2670:       }
                   2671:     }
                   2672:   }
                   2673:   if (!r) { avma=av0; return cgetg(1,t_MAT); }
                   2674:   av1=avma; y=cgetg(r+1,t_MAT);
                   2675:   for (j=k=1; j<=r; j++,k++)
                   2676:   {
                   2677:     p=cgetg(n+1,t_COL); y[j]=(long)p; while (d[k]) k++;
                   2678:     for (i=1; i<k; i++) p[i]=d[i]? lcopy(gcoeff(x,d[i],k)): (long)zeronf;
                   2679:     p[k]=(long)unnf; for (i=k+1; i<=n; i++) p[i]=(long)zeronf;
                   2680:   }
                   2681:   return gerepile(av,av1,y);
                   2682: }
                   2683:
                   2684: /* a.x=b ou b est un vecteur */
                   2685: GEN
                   2686: nfsolvemodpr(GEN nf, GEN a, GEN b, GEN prhall)
                   2687: {
                   2688:   long nbli,nbco,i,j,k,av=avma,tetpil;
                   2689:   GEN aa,x,p,m,u;
                   2690:
                   2691:   nf=checknf(nf); checkprhall(prhall);
                   2692:   if (typ(a)!=t_MAT) err(typeer,"nfsolvemodpr");
                   2693:   nbco=lg(a)-1; nbli=lg(a[1])-1;
                   2694:   if (typ(b)!=t_COL) err(typeer,"nfsolvemodpr");
                   2695:   if (lg(b)!=nbco+1) err(mattype1,"nfsolvemodpr");
                   2696:   x=cgetg(nbli+1,t_COL);
                   2697:   for (j=1; j<=nbco; j++) x[j]=b[j];
                   2698:   aa=cgetg(nbco+1,t_MAT);
                   2699:   for (j=1; j<=nbco; j++)
                   2700:   {
                   2701:     aa[j]=lgetg(nbli+1,t_COL);
                   2702:     for (i=1; i<=nbli; i++) coeff(aa,i,j)=coeff(a,i,j);
                   2703:   }
                   2704:   for (i=1; i<nbli; i++)
                   2705:   {
                   2706:     p=gcoeff(aa,i,i); k=i;
                   2707:     if (gcmp0(p))
                   2708:     {
                   2709:       k=i+1; while (k<=nbli && gcmp0(gcoeff(aa,k,i))) k++;
                   2710:       if (k>nbco) err(matinv1);
                   2711:       for (j=i; j<=nbco; j++)
                   2712:       {
                   2713:        u=gcoeff(aa,i,j); coeff(aa,i,j)=coeff(aa,k,j);
                   2714:        coeff(aa,k,j)=(long)u;
                   2715:       }
                   2716:       u=(GEN)x[i]; x[i]=x[k]; x[k]=(long)u;
                   2717:       p=gcoeff(aa,i,i);
                   2718:     }
                   2719:     for (k=i+1; k<=nbli; k++)
                   2720:     {
                   2721:       m=gcoeff(aa,k,i);
                   2722:       if (!gcmp0(m))
                   2723:       {
                   2724:        m=element_divmodpr(nf,m,p,prhall);
                   2725:        for (j=i+1; j<=nbco; j++)
                   2726:          coeff(aa,k,j)=lsub(gcoeff(aa,k,j),
                   2727:                             element_mulmodpr(nf,m,gcoeff(aa,i,j),prhall));
                   2728:        x[k]=lsub((GEN)x[k],element_mulmodpr(nf,m,(GEN)x[i],prhall));
                   2729:       }
                   2730:     }
                   2731:   }
                   2732:   /* Resolution systeme triangularise */
                   2733:   p=gcoeff(aa,nbli,nbco); if (gcmp0(p)) err(matinv1);
                   2734:
                   2735:   x[nbli]=(long)element_divmodpr(nf,(GEN)x[nbli],p,prhall);
                   2736:   for (i=nbli-1; i>0; i--)
                   2737:   {
                   2738:     m=(GEN)x[i];
                   2739:     for (j=i+1; j<=nbco; j++)
                   2740:       m=gsub(m,element_mulmodpr(nf,gcoeff(aa,i,j),(GEN)x[j],prhall));
                   2741:     x[i]=(long)element_divmodpr(nf,m,gcoeff(aa,i,i),prhall);
                   2742:   }
                   2743:   tetpil=avma; return gerepile(av,tetpil,gcopy(x));
                   2744: }
                   2745:
                   2746: GEN
                   2747: nfsuppl(GEN nf, GEN x, long n, GEN prhall)
                   2748: {
                   2749:   long av=avma,av2,k,s,t,N,lx=lg(x);
                   2750:   GEN y,p1,p2,p,unmodp,zeromodp,unnf,zeronf,prh;
                   2751:   stackzone *zone;
                   2752:
                   2753:   k=lx-1; if (k>n) err(suppler2);
                   2754:   if (k && lg(x[1])!=n+1) err(talker,"incorrect dimension in nfsupl");
                   2755:   N=lgef(nf[1])-3; prh=(GEN)prhall[1]; p=gcoeff(prh,1,1);
                   2756:
                   2757:   zone  = switch_stack(NULL, 2*(3 + 2*lg(p) + N+1) + (n+3)*(n+1));
                   2758:   switch_stack(zone,1);
                   2759:   unmodp=gmodulsg(1,p); zeromodp=gmodulsg(0,p);
                   2760:   unnf=gscalcol_proto(unmodp,zeromodp,N);
                   2761:   zeronf=gscalcol_proto(zeromodp,zeromodp,N);
                   2762:   y = idmat_intern(n,unnf,zeronf);
                   2763:   switch_stack(zone,0); av2=avma;
                   2764:
                   2765:   for (s=1; s<=k; s++)
                   2766:   {
                   2767:     p1=nfsolvemodpr(nf,y,(GEN)x[s],prhall); t=s;
                   2768:     while (t<=n && gcmp0((GEN)p1[t])) t++;
                   2769:     avma=av2; if (t>n) err(suppler2);
                   2770:     p2=(GEN)y[s]; y[s]=x[s]; if (s!=t) y[t]=(long)p2;
                   2771:   }
                   2772:   avma=av; y=gcopy(y);
                   2773:   free(zone); return y;
                   2774: }
                   2775:
                   2776: /* Given two fractional ideals a and b, gives x in a, y in b, z in b^-1,
                   2777:    t in a^-1 such that xt-yz=1. In the present version, z is in Z. */
                   2778: GEN
                   2779: nfidealdet1(GEN nf, GEN a, GEN b)
                   2780: {
                   2781:   long av=avma,tetpil;
                   2782:   GEN x,p1,p2,res,z,da,db;
                   2783:
                   2784:   da=denom(a); if (gcmp1(da)) da = NULL; else a=gmul(da,a);
                   2785:   db=denom(b); if (gcmp1(db)) db = NULL; else b=gmul(db,b);
                   2786:   a = idealinv(nf,a); x=idealcoprime(nf,a,b);
                   2787:   p1=idealmul(nf,x,a); p2=idealaddtoone(nf,p1,b);
                   2788:
                   2789:   tetpil=avma; res=cgetg(5,t_VEC);
                   2790:   res[1] = da? ldiv(x,da): lcopy(x);
                   2791:   res[2] = db? ldiv((GEN)p2[2],db): lcopy((GEN)p2[2]);
                   2792:   z = db? gneg_i(db): negi(gun);
                   2793:   res[3] = (long) gscalcol_i(z, lgef(nf[1])-3);
                   2794:   res[4] = (long) element_div(nf,(GEN)p2[1],(GEN)res[1]);
                   2795:   return gerepile(av,tetpil,res);
                   2796: }
                   2797:
                   2798: /* Given a pseudo basis pseudo, outputs a multiple of its ideal determinant */
                   2799: GEN
                   2800: nfdetint(GEN nf,GEN pseudo)
                   2801: {
                   2802:   GEN pass,c,v,det1,piv,pivprec,vi,p1,x,I,unnf,zeronf,id,idprod;
                   2803:   long i,j,k,rg,n,n1,m,m1,av=avma,av1,tetpil,lim,cm=0,N;
                   2804:
                   2805:   nf=checknf(nf); N=lgef(nf[1])-3;
                   2806:   if (typ(pseudo)!=t_VEC || lg(pseudo)!=3)
                   2807:     err(talker,"not a module in nfdetint");
                   2808:   x=(GEN)pseudo[1]; I=(GEN)pseudo[2];
                   2809:   if (typ(x)!=t_MAT) err(talker,"not a matrix in nfdetint");
                   2810:   n1=lg(x); n=n1-1; if (!n) return gun;
                   2811:
                   2812:   m1=lg(x[1]); m=m1-1;
                   2813:   if (typ(I)!=t_VEC || lg(I)!=n1)
                   2814:     err(talker,"not a correct ideal list in nfdetint");
                   2815:
                   2816:   unnf=gscalcol_i(gun,N); zeronf=zerocol(N);
                   2817:   id=idmat(N); c=new_chunk(m1); for (k=1; k<=m; k++) c[k]=0;
                   2818:   piv = pivprec = unnf;
                   2819:
                   2820:   av1=avma; lim=stack_lim(av1,1);
                   2821:   det1=idprod=gzero; /* dummy for gerepilemany */
                   2822:   pass=cgetg(m1,t_MAT); v=cgetg(m1,t_COL);
                   2823:   for (j=1; j<=m; j++)
                   2824:   {
                   2825:     v[j] = zero; /* dummy */
                   2826:     p1=cgetg(m1,t_COL); pass[j]=(long)p1;
                   2827:     for (i=1; i<=m; i++) p1[i]=(long)zeronf;
                   2828:   }
                   2829:   for (rg=0,k=1; k<=n; k++)
                   2830:   {
                   2831:     long t = 0;
                   2832:     for (i=1; i<=m; i++)
                   2833:       if (!c[i])
                   2834:       {
                   2835:        vi=element_mul(nf,piv,gcoeff(x,i,k));
                   2836:        for (j=1; j<=m; j++)
                   2837:          if (c[j]) vi=gadd(vi,element_mul(nf,gcoeff(pass,i,j),gcoeff(x,j,k)));
                   2838:        v[i]=(long)vi; if (!t && !gcmp0(vi)) t=i;
                   2839:       }
                   2840:     if (t)
                   2841:     {
                   2842:       pivprec = piv;
                   2843:       if (rg == m-1)
                   2844:       {
                   2845:         if (!cm)
                   2846:         {
                   2847:           cm=1; idprod = id;
                   2848:           for (i=1; i<=m; i++)
                   2849:             if (i!=t)
                   2850:               idprod = (idprod==id)? (GEN)I[c[i]]
                   2851:                                    : idealmul(nf,idprod,(GEN)I[c[i]]);
                   2852:         }
                   2853:         p1 = idealmul(nf,(GEN)v[t],(GEN)I[k]); c[t]=0;
                   2854:         det1 = (typ(det1)==t_INT)? p1: idealadd(nf,p1,det1);
                   2855:       }
                   2856:       else
                   2857:       {
                   2858:         rg++; piv=(GEN)v[t]; c[t]=k;
                   2859:        for (i=1; i<=m; i++)
                   2860:          if (!c[i])
                   2861:           {
                   2862:            for (j=1; j<=m; j++)
                   2863:              if (c[j] && j!=t)
                   2864:              {
                   2865:                p1=gsub(element_mul(nf,piv,gcoeff(pass,i,j)),
                   2866:                        element_mul(nf,(GEN)v[i],gcoeff(pass,t,j)));
                   2867:                coeff(pass,i,j) = rg>1? (long) element_div(nf,p1,pivprec)
                   2868:                                      : (long) p1;
                   2869:              }
                   2870:             coeff(pass,i,t)=lneg((GEN)v[i]);
                   2871:           }
                   2872:       }
                   2873:     }
                   2874:     if (low_stack(lim, stack_lim(av1,1)))
                   2875:     {
                   2876:       GEN *gptr[6];
                   2877:       if(DEBUGMEM>1) err(warnmem,"nfdetint");
                   2878:       gptr[0]=&det1; gptr[1]=&piv; gptr[2]=&pivprec; gptr[3]=&pass;
                   2879:       gptr[4]=&v; gptr[5]=&idprod; gerepilemany(av1,gptr,6);
                   2880:     }
                   2881:   }
                   2882:   if (!cm) { avma=av; return gscalmat(gzero,N); }
                   2883:   tetpil=avma; return gerepile(av,tetpil,idealmul(nf,idprod,det1));
                   2884: }
                   2885:
                   2886: /* clean in place (destroy x) */
                   2887: static void
                   2888: nfcleanmod(GEN nf, GEN x, long lim, GEN detmat)
                   2889: {
                   2890:   long lx=lg(x),i;
                   2891:
                   2892:   if (lim<=0 || lim>=lx) lim=lx-1;
                   2893:   for (i=1; i<=lim; i++)
                   2894:     x[i]=(long)element_reduce(nf,(GEN)x[i],detmat);
                   2895: }
                   2896:
                   2897: static GEN
                   2898: zero_nfbezout(GEN nf,GEN b, GEN ida,GEN idb,GEN *u,GEN *v,GEN *w,GEN *di)
                   2899: {
                   2900:   long av, tetpil, j, N=lgef(nf[1])-3;
                   2901:   GEN pab,d;
                   2902:
                   2903:   d=idealmulelt(nf,b,idb); *di=idealinv(nf,d);
                   2904:   av=avma; pab=idealmul(nf,ida,idb); tetpil=avma;
                   2905:   *w=gerepile(av,tetpil, idealmul(nf,pab,*di));
                   2906:
                   2907:   *u=cgetg(N+1,t_COL); for (j=1; j<=N; j++) (*u)[j]=zero;
                   2908:   *v=element_inv(nf,b); return d;
                   2909: }
                   2910:
                   2911: /* a usage interne
                   2912:  * Given elements a,b, ideals ida, idb, outputs d=a.ida+b.idb and gives
                   2913:  * di=d^-1, w=ida.idb.di, u, v such that au+bv=1 and u in ida.di, v in
                   2914:  * idb.di. We assume ida, idb non-zero, but a and b can be zero. Error if a
                   2915:  * and b are both zero.
                   2916:  */
                   2917: static GEN
                   2918: nfbezout(GEN nf,GEN a,GEN b, GEN ida,GEN idb, GEN *u,GEN *v,GEN *w,GEN *di)
                   2919: {
                   2920:   GEN pab,pu,pv,pw,uv,d,dinv,pa,pb,pa1,pb1, *gptr[5];
                   2921:   long av,tetpil;
                   2922:
                   2923:   if (gcmp0(a))
                   2924:   {
                   2925:     if (gcmp0(b)) err(talker,"both elements zero in nfbezout");
                   2926:     return zero_nfbezout(nf,b,ida,idb,u,v,w,di);
                   2927:   }
                   2928:   if (gcmp0(b))
                   2929:     return zero_nfbezout(nf,a,idb,ida,v,u,w,di);
                   2930:
                   2931:   av = avma;
                   2932:   pa=idealmulelt(nf,a,ida);
                   2933:   pb=idealmulelt(nf,b,idb);
                   2934:
                   2935:   d=idealadd(nf,pa,pb); dinv=idealinv(nf,d);
                   2936:   pa1=idealmullll(nf,pa,dinv);
                   2937:   pb1=idealmullll(nf,pb,dinv);
                   2938:   uv=idealaddtoone(nf,pa1,pb1);
                   2939:   pab=idealmul(nf,ida,idb); tetpil=avma;
                   2940:
                   2941:   pu=element_div(nf,(GEN)uv[1],a);
                   2942:   pv=element_div(nf,(GEN)uv[2],b);
                   2943:   d=gcopy(d); dinv=gcopy(dinv);
                   2944:   pw=idealmul(nf,pab,dinv);
                   2945:
                   2946:   *u=pu; *v=pv; *w=pw; *di=dinv;
                   2947:   gptr[0]=u; gptr[1]=v; gptr[2]=w; gptr[3]=di;
                   2948:   gptr[4]=&d; gerepilemanysp(av,tetpil,gptr,5);
                   2949:   return d;
                   2950: }
                   2951:
                   2952: /* A usage interne. Pas de verifs ni gestion de pile */
                   2953: GEN
                   2954: idealoplll(GEN op(GEN,GEN,GEN), GEN nf, GEN x, GEN y)
                   2955: {
                   2956:   GEN z = op(nf,x,y), den = denom(z);
                   2957:
                   2958:   if (gcmp1(den)) den = NULL; else z=gmul(den,z);
                   2959:   z=gmul(z,lllintpartial(z));
                   2960:   return den? gdiv(z,den): z;
                   2961: }
                   2962:
                   2963: /* A usage interne. Pas de verifs ni gestion de pile */
                   2964: GEN
                   2965: idealmulelt(GEN nf, GEN elt, GEN x)
                   2966: {
                   2967:   long lx=lg(x),j;
                   2968:   GEN z=cgetg(lx,t_MAT);
                   2969:   for (j=1; j<lx; j++) z[j]=(long)element_mul(nf,elt,(GEN)x[j]);
                   2970:   return z;
                   2971: }
                   2972:
                   2973: GEN
                   2974: nfhermitemod(GEN nf, GEN pseudo, GEN detmat)
                   2975: {
                   2976:   long av0=avma,li,co,av,tetpil,i,j,jm1,def,ldef,lim,N;
                   2977:   GEN b,q,w,p1,p2,d,u,v,den,x,I,J,dinv,unnf,wh;
                   2978:
                   2979:   nf=checknf(nf); N=lgef(nf[1])-3;
                   2980:   if (typ(pseudo)!=t_VEC || lg(pseudo)!=3)
                   2981:     err(talker,"not a module in nfhermitemod");
                   2982:   x=(GEN)pseudo[1]; I=(GEN)pseudo[2];
                   2983:   if (typ(x)!=t_MAT) err(talker,"not a matrix in nfhermitemod");
                   2984:   co=lg(x);
                   2985:   if (typ(I)!=t_VEC || lg(I)!=co)
                   2986:     err(talker,"not a correct ideal list in nfhermitemod");
                   2987:   if (co==1) return cgetg(1,t_MAT);
                   2988:
                   2989:   li=lg(x[1]); x=dummycopy(x); I=dummycopy(I);
                   2990:   unnf=gscalcol_i(gun,N);
                   2991:   for (j=1; j<co; j++)
                   2992:     if (typ(I[j])!=t_MAT) I[j]=(long)idealhermite_aux(nf,(GEN)I[j]);
                   2993:
                   2994:   den=denom(detmat); if (!gcmp1(den)) detmat=gmul(den,detmat);
                   2995:   detmat=gmul(detmat,lllintpartial(detmat));
                   2996:
                   2997:   av=avma; lim=stack_lim(av,1);
                   2998:   def=co; ldef=(li>co)?li-co+1:1;
                   2999:   for (i=li-1; i>=ldef; i--)
                   3000:   {
                   3001:     def--; j=def-1; while (j && gcmp0(gcoeff(x,i,j))) j--;
                   3002:     while (j)
                   3003:     {
                   3004:       jm1=j-1; if (!jm1) jm1=def;
                   3005:       d=nfbezout(nf,gcoeff(x,i,j),gcoeff(x,i,jm1),(GEN)I[j],(GEN)I[jm1],
                   3006:                  &u,&v,&w,&dinv);
                   3007:       if (!gcmp0(u))
                   3008:       {
                   3009:        p1=element_mulvec(nf,u,(GEN)x[j]);
                   3010:        if (!gcmp0(v)) p1=gadd(p1, element_mulvec(nf,v,(GEN)x[jm1]));
                   3011:       }
                   3012:       else p1=element_mulvec(nf,v,(GEN)x[jm1]);
                   3013:       x[j]=lsub(element_mulvec(nf,gcoeff(x,i,j),(GEN)x[jm1]),
                   3014:                 element_mulvec(nf,gcoeff(x,i,jm1),(GEN)x[j]));
                   3015:       nfcleanmod(nf,(GEN)x[j],i,idealdivlll(nf,detmat,w));
                   3016:       nfcleanmod(nf,p1,i,idealmullll(nf,detmat,dinv));
                   3017:       x[jm1]=(long)p1; I[j]=(long)w; I[jm1]=(long)d;
                   3018:       j--; while (j && gcmp0(gcoeff(x,i,j))) j--;
                   3019:     }
                   3020:     if (low_stack(lim, stack_lim(av,1)))
                   3021:     {
                   3022:       GEN *gptr[2];
                   3023:       if(DEBUGMEM>1) err(warnmem,"[1]: nfhermitemod");
                   3024:       gptr[0]=&x; gptr[1]=&I; gerepilemany(av,gptr,2);
                   3025:     }
                   3026:   }
                   3027:   b=detmat; wh=cgetg(li,t_MAT); def--;
                   3028:   for (i=li-1; i>=1; i--)
                   3029:   {
                   3030:     d = nfbezout(nf,gcoeff(x,i,i+def),unnf,(GEN)I[i+def],b,&u,&v,&w,&dinv);
                   3031:     p1 = element_mulvec(nf,u,(GEN)x[i+def]);
                   3032:     nfcleanmod(nf,p1,i,idealmullll(nf,b,dinv));
                   3033:     wh[i]=(long)p1; coeff(wh,i,i)=(long)unnf; I[i+def]=(long)d;
                   3034:     if (i>1) b=idealmul(nf,b,dinv);
                   3035:   }
                   3036:   J=cgetg(li,t_VEC); J[1]=zero;
                   3037:   for (j=2; j<li; j++) J[j]=(long)idealinv(nf,(GEN)I[j+def]);
                   3038:   for (i=li-2; i>=1; i--)
                   3039:   {
                   3040:     for (j=i+1; j<li; j++)
                   3041:     {
                   3042:       q=idealmul(nf,(GEN)I[i+def],(GEN)J[j]);
                   3043:       p1=gsub(element_reduce(nf,gcoeff(wh,i,j),q),gcoeff(wh,i,j));
                   3044:       wh[j]=(long)gadd((GEN)wh[j],element_mulvec(nf,p1,(GEN)wh[i]));
                   3045:     }
                   3046:     if (low_stack(lim, stack_lim(av,1)))
                   3047:     {
                   3048:       GEN *gptr[3];
                   3049:       if(DEBUGMEM>1) err(warnmem,"[2]: nfhermitemod");
                   3050:       gptr[0]=&wh; gptr[1]=&I; gptr[2]=&J; gerepilemany(av,gptr,3);
                   3051:     }
                   3052:   }
                   3053:   tetpil=avma; p1=cgetg(3,t_VEC); p1[1]=lcopy(wh);
                   3054:   p2=cgetg(li,t_VEC); p1[2]=(long)p2;
                   3055:   for (j=1; j<li; j++) p2[j]=lcopy((GEN)I[j+def]);
                   3056:   return gerepile(av0,tetpil,p1);
                   3057: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>