Annotation of OpenXM_contrib/pari/src/gp/whatnow.c, Revision 1.1
1.1 ! maekawa 1: /* $Id: whatnow.c,v 1.1.1.1 1999/09/16 13:47:42 karim Exp $ */
! 2: #include "pari.h"
! 3: #include "../language/anal.h"
! 4:
! 5: typedef struct whatnow_t
! 6: {
! 7: char *name, *oldarg, *newarg;
! 8: } whatnow_t;
! 9:
! 10: #define SAME NULL
! 11: #define REMOV (char *) 1
! 12:
! 13: /* generated by PERL script ../util/dico */
! 14: static const whatnow_t whatnowlist[]={
! 15: {SAME},
! 16: {SAME},
! 17: {SAME},
! 18: {SAME},
! 19: {"elladd","(e,z1,z2)","(e,z1,z2)"},
! 20: {SAME},
! 21: {"matadjoint","(x)","(x)"},
! 22: {SAME},
! 23: {"ellak","(e,n)","(e,n)"},
! 24: {SAME},
! 25: {"algdep","(x,n,dec)","(x,n,dec)"},
! 26: {"nfalgtobasis","(nf,x)","(nf,x)"},
! 27: {"ellan","(e,n)","(e,n)"},
! 28: {"ellap","(e,n)","(e,n)"},
! 29: {"ellap","(e,n)","(e,n,1)"},
! 30: {"padicappr","(x,a)","(x,a)"},
! 31: {SAME},
! 32: {SAME},
! 33: {SAME},
! 34: {"matcompanion","(x)","(x)"},
! 35: {SAME},
! 36: {SAME},
! 37: {"nfbasis","(x)","(x)"},
! 38: {"nfbasis","(x)","(x,2)"},
! 39: {"nfbasistoalg","(nf,x)","(nf,x)"},
! 40: {SAME},
! 41: {SAME},
! 42: {SAME},
! 43: {SAME},
! 44: {SAME},
! 45: {SAME},
! 46: {"ellbil","(e,z1,z2)","(e,z1,z2)"},
! 47: {"binomial","(x,y)","(x,y)"},
! 48: {SAME},
! 49: {SAME},
! 50: {"contfrac","(x,lmax)","(x,,lmax)"},
! 51: {"factor","(x,lim)","(x,lim)"},
! 52: {"bnfcertify","(bnf)","(bnf)"},
! 53: {"bnfunit","(bnf)","(bnf)"},
! 54: {"bnfclassunit","(P)","(P,2)"},
! 55: {"bnfclassunit","(P)","(P,1)"},
! 56: {"bnfclassunit","(P)","(P)"},
! 57: {"quadclassunit","(D,c1,c2,g)","(D,,[c1,c2,g])"},
! 58: {"bnfinit","(P)","(P,2)"},
! 59: {"bnfinit","(P)","(P,1)"},
! 60: {"bnfinit","(P)","(P)"},
! 61: {"bnfnarrow","(bnf)","(bnf)"},
! 62: {"bnrclass","(bnf,ideal)","(bnf,ideal)"},
! 63: {"bnrclass","(bnf,ideal)","(bnf,ideal,1)"},
! 64: {"bnrclass","(bnf,ideal)","(bnf,ideal,2)"},
! 65: {"quadclassunit","(D)","(D)"},
! 66: {"sizebyte","(x)","(x)"},
! 67: {SAME},
! 68: {SAME},
! 69: {"contfrac","(x)","(x)"},
! 70: {"contfrac","(b,x)","(x,b)"},
! 71: {SAME},
! 72: {"charpoly","(x,y)","(x,y)"},
! 73: {"charpoly","(x,y)","(x,y,1)"},
! 74: {"charpoly","(x,y)","(x,y,2)"},
! 75: {"ellchangecurve","(x,y)","(x,y)"},
! 76: {SAME},
! 77: {"ellchangepoint","(x,y)","(x,y)"},
! 78: {"qfbclassno","(x)","(x)"},
! 79: {"qfbclassno","(x)","(x,1)"},
! 80: {"polcoeff","(x,s)","(x,s)"},
! 81: {"x*y","(x,y)",""},
! 82: {"component","(x,s)","(x,s)"},
! 83: {"polcompositum","(pol1,pol2)","(pol1,pol2)"},
! 84: {"polcompositum","(pol1,pol2)","(pol1,pol2,1)"},
! 85: {"qfbcompraw","(x,y)","(x,y)"},
! 86: {SAME},
! 87: {"bnrconductor","(a1)","(a1)"},
! 88: {"bnrconductorofchar","(bnr,chi)","(bnr,chi)"},
! 89: {SAME},
! 90: {SAME},
! 91: {SAME},
! 92: {"serconvol","(x,y)","(x,y)"},
! 93: {SAME},
! 94: {"core","(x)","(x,1)"},
! 95: {SAME},
! 96: {"coredisc","(x)","(x,1)"},
! 97: {SAME},
! 98: {SAME},
! 99: {"truncate","(x)","(x,&e)"},
! 100: {"polcyclo","(n)","(n)"},
! 101: {"factorback","(fa)","(fa)"},
! 102: {"bnfdecodemodule","(nf,fa)","(nf,fa)"},
! 103: {"poldegree","(x)","(x)"},
! 104: {"denominator","(x)","(x)"},
! 105: {"lindep","(x)","(x,-1)"},
! 106: {SAME},
! 107: {"matdet","(x)","(x)"},
! 108: {"matdet","(x)","(x,1)"},
! 109: {"matdetint","(x)","(x)"},
! 110: {"matdiagonal","(x)","(x)"},
! 111: {SAME},
! 112: {SAME},
! 113: {SAME},
! 114: {SAME},
! 115: {SAME},
! 116: {"poldisc","(x)","(x)"},
! 117: {"nfdisc","(x)","(x)"},
! 118: {"nfdisc","(x)","(x,2)"},
! 119: {"bnrdisc","(bnr,subgroup)","(bnr,subgroup)"},
! 120: {"bnrdisc","(bnr)","(bnr,,,2)"},
! 121: {"bnrdisclist","(bnf,list)","(bnf,list)"},
! 122: {"bnrdisclist","(bnf,arch,bound)","(bnf,bound,arch)"},
! 123: {"bnrdisclist","(bnf,bound)","(bnf,bound,,1)"},
! 124: {"bnrdisclist","(bnf,bound)","(bnf,bound)"},
! 125: {"bnrdisc","(bnr,subgroup)","(bnr,subgroup,,1)"},
! 126: {"bnrdisc","(bnr,subgroup)","(bnr,subgroup,,3)"},
! 127: {SAME},
! 128: {"divrem","(x,y)","(x,y)"},
! 129: {"sumdiv","(n,X,expr)","(n,X,expr)"},
! 130: {"mateigen","(x)","(x)"},
! 131: {SAME},
! 132: {SAME},
! 133: {SAME},
! 134: {"Euler","",""},
! 135: {SAME},
! 136: {SAME},
! 137: {"vecextract","(x,y)","(x,y)"},
! 138: {"factorial","(x)","(x)"},
! 139: {"factorcantor","(x,p)","(x,p)"},
! 140: {"factorff","(x,p,a)","(x,p,a)"},
! 141: {"factormod","(x,p)","(x,p)"},
! 142: {SAME},
! 143: {"nfbasis","(x,p)","(x,,p)"},
! 144: {"nfdisc","(x,p)","(x,,p)"},
! 145: {"polred","(x,p)","(x,,p)"},
! 146: {"polred","(x,p)","(x,2,p)"},
! 147: {SAME},
! 148: {SAME},
! 149: {"factorpadic","(x,p,r)","(x,p,r,1)"},
! 150: {"factor","(x,l,hint)","(x)"},
! 151: {"factor","(x,l,hint)","(x)"},
! 152: {"fibonacci","(x)","(x)"},
! 153: {SAME},
! 154: {SAME},
! 155: {SAME},
! 156: {SAME},
! 157: {SAME},
! 158: {SAME},
! 159: {"ffinit","(p,n)","(p,n)"},
! 160: {SAME},
! 161: {"polgalois","(x)","(x)"},
! 162: {"nfgaloisapply","(nf,aut,x)","(nf,aut,x)"},
! 163: {"nfgaloisconj","(nf)","(nf)"},
! 164: {"nfgaloisconj","(nf)","(nf,2)"},
! 165: {"nfgaloisconj","","(nf,1)"},
! 166: {"gammah","(x)","(x)"},
! 167: {SAME},
! 168: {"matsolve","(a,b)","(a,b)"},
! 169: {"matsolvemod","(M,D,Y)","(M,D,Y)"},
! 170: {"matsolvemod","(M,D,Y)","(M,D,Y,1)"},
! 171: {SAME},
! 172: {SAME},
! 173: {SAME},
! 174: {SAME},
! 175: {SAME},
! 176: {"ellglobalred","(x,y)","(x,y)"},
! 177: {REMOV},
! 178: {"qfbhclassno","(x)","(x)"},
! 179: {"ellheight","(e,x)","(e,x)"},
! 180: {"ellheight","(e,x)","(e,x,1)"},
! 181: {"mathnf","(x)","(x)"},
! 182: {"mathnf","(x)","(x,1)"},
! 183: {"mathnf","(x)","(x,2)"},
! 184: {"mathnfmod","(x,d)","(x,d)"},
! 185: {"mathnfmodid","(x,d)","(x,d)"},
! 186: {"mathnf","(x)","(x,3)"},
! 187: {"mathess","(x)","(x)"},
! 188: {"hilbert","(x,y)","(x,y)"},
! 189: {"mathilbert","(n)","(n)"},
! 190: {"hilbert","(x,y,p)","(x,y,p)"},
! 191: {"vector","(n,X,expr)","(n,X,expr)"},
! 192: {SAME},
! 193: {"I","",""},
! 194: {SAME},
! 195: {"idealaddtoone","(nf,list)","(nf,list)"},
! 196: {"idealaddtoone","(nf,x,y)","(nf,x,y)"},
! 197: {SAME},
! 198: {"idealappr","(nf,x)","(nf,x,1)"},
! 199: {SAME},
! 200: {SAME},
! 201: {SAME},
! 202: {"idealdiv","(nf,x,y)","(nf,x,y,1)"},
! 203: {SAME},
! 204: {"idealhnf","(nf,x)","(nf,x)"},
! 205: {"idealhnf","(nf,x)","(nf,x)"},
! 206: {SAME},
! 207: {SAME},
! 208: {"idealinv","(nf,x)","(nf,x,1)"},
! 209: {SAME},
! 210: {SAME},
! 211: {"ideallistarch","(nf,list,arch)","(nf,list,arch,1)"},
! 212: {"ideallist","(nf,list)","(nf,list,2)"},
! 213: {"ideallistarch","","(nf,list,arch,2)"},
! 214: {"ideallistarch","","(nf,list,arch,3)"},
! 215: {"ideallist","","(nf,list,3)"},
! 216: {"ideallist","(nf,bound)","(nf,bound)"},
! 217: {"ideallist","(nf,bound)","(nf,bound,1)"},
! 218: {"idealred","(nf,x,vdir)","(nf,x,vdir)"},
! 219: {SAME},
! 220: {"idealmul","(nf,x,y)","(nf,x,y,1)"},
! 221: {SAME},
! 222: {SAME},
! 223: {"idealpow","(nf,x,y)","(nf,x,y,1)"},
! 224: {SAME},
! 225: {"idealtwoelt","(nf,x,a)","(nf,x,a)"},
! 226: {SAME},
! 227: {"matid","(n)","(n)"},
! 228: {SAME},
! 229: {SAME},
! 230: {"matimage","(x)","(x)"},
! 231: {"matimage","(x)","(x,1)"},
! 232: {"matimagecompl","(x)","(x)"},
! 233: {SAME},
! 234: {REMOV},
! 235: {REMOV},
! 236: {REMOV},
! 237: {"incgam","(s,x,y)","(s,x,y)"},
! 238: {"matindexrank","(x)","(x)"},
! 239: {"vecsort","(x)","(x,,1)"},
! 240: {"nfinit","(pol)","(pol)"},
! 241: {"nfinit","(x)","(x,2)"},
! 242: {"nfinit","(x)","(x,3)"},
! 243: {"ellinit","(x)","(x)"},
! 244: {"zetakinit","(x)","(x)"},
! 245: {"intformal","(x,y)","(x,y)"},
! 246: {"matintersect","(x,y)","(x,y)"},
! 247: {"intnum","(x=a,b,s)","(x=a,b,s,1)"},
! 248: {"intnum","(x=a,b,s)","(x=a,b,s,2)"},
! 249: {SAME},
! 250: {"intnum","(x=a,b,s)","(x=a,b,s,3)"},
! 251: {"matinverseimage","(x,y)","(x,y)"},
! 252: {"matisdiagonal","(x)","(x)"},
! 253: {"isfundamental","(x)","(x)"},
! 254: {"nfisideal","(nf,x)","(nf,x)"},
! 255: {"nfisincl","(x,y)","(x,y)"},
! 256: {"nfisincl","(nf1,nf2)","(nf1,nf2,1)"},
! 257: {"polisirreducible","(x)","(x)"},
! 258: {"nfisisom","(x,y)","(x,y)"},
! 259: {"nfisisom","(x,y)","(x,y)"},
! 260: {"ellisoncurve","(e,x)","(e,x)"},
! 261: {SAME},
! 262: {"bnfisprincipal","(bnf,x)","(bnf,x,0)"},
! 263: {"bnfisprincipal","(bnf,x)","(bnf,x,2)"},
! 264: {"bnfisprincipal","(bnf,x)","(bnf,x)"},
! 265: {"bnfisprincipal","(bnf,x)","(bnf,x,3)"},
! 266: {"bnrisprincipal","(bnf,x)","(bnf,x)"},
! 267: {SAME},
! 268: {"ispseudoprime","(x)","(x)"},
! 269: {"sqrtint","(x)","(x)"},
! 270: {"setisset","(x)","(x)"},
! 271: {"issquarefree","(x)","(x)"},
! 272: {SAME},
! 273: {"bnfisunit","(bnf,x)","(bnf,x)"},
! 274: {"qfjacobi","(x)","(x)"},
! 275: {"besseljh","(n,x)","(n,x)"},
! 276: {"ellj","(x)","(x)"},
! 277: {REMOV},
! 278: {"besselk","(nu,x)","(nu,x)"},
! 279: {"besselk","(nu,x)","(nu,x,1)"},
! 280: {"matker","(x)","(x)"},
! 281: {"matker","(x)","(x,1)"},
! 282: {"matkerint","(x)","(x)"},
! 283: {"matkerint","(x)","(x,1)"},
! 284: {"matkerint","(x)","(x,2)"},
! 285: {"kronecker","(x,y)","(x,y)"},
! 286: {REMOV},
! 287: {"zetak","(nfz,s)","(nfz,s,1)"},
! 288: {"serlaplace","(x)","(x)"},
! 289: {SAME},
! 290: {"pollegendre","(n)","(n)"},
! 291: {SAME},
! 292: {SAME},
! 293: {"vecsort","(x)","(x,,2)"},
! 294: {SAME},
! 295: {SAME},
! 296: {"lindep","(x)","(x,1)"},
! 297: {"qflll","(x)","(x)"},
! 298: {"qflll","(x)","(x,7)"},
! 299: {"qflll","(x)","(x,8)"},
! 300: {"qflllgram","(x)","(x)"},
! 301: {"qflllgram","(x)","(x,7)"},
! 302: {"qflllgram","(x)","(x,8)"},
! 303: {"qflllgram","(x)","(x,1)"},
! 304: {"qflllgram","(x)","(x,4)"},
! 305: {"qflllgram","(x)","(x,5)"},
! 306: {"qflll","(x)","(x,1)"},
! 307: {"qflll","(x)","(x,2)"},
! 308: {"qflll","(x)","(x,4)"},
! 309: {"qflll","(x)","(x,5)"},
! 310: {"qflll","(x)","(x,3)"},
! 311: {"log","(x)","(x)"},
! 312: {SAME},
! 313: {"elllocalred","(e)","(e)"},
! 314: {SAME},
! 315: {"log","(x)","(x,1)"},
! 316: {"elllseries","(e,s,N,A)","(e,s,A)"},
! 317: {"bnfmake","(sbnf)","(sbnf)"},
! 318: {"Mat","(x)","(x)"},
! 319: {"vecextract","(x,y,z)","(x,y,z)"},
! 320: {"ellheightmatrix","(e,x)","(e,x)"},
! 321: {SAME},
! 322: {SAME},
! 323: {"matrixqz","(x,p)","(x,-1)"},
! 324: {"matrixqz","(x,p)","(x,-2)"},
! 325: {SAME},
! 326: {SAME},
! 327: {SAME},
! 328: {"idealmin","(nf,ix,vdir)","(nf,ix,vdir)"},
! 329: {"qfminim","(x,bound,maxnum)","(x,bound,maxnum)"},
! 330: {"qfminim","(x,bound)","(x,bound,,1)"},
! 331: {"Mod","(x,y)","(x,y)"},
! 332: {"Mod","(x,y,p)","(x,y,1)"},
! 333: {SAME},
! 334: {"gcd","(x,y)","(x,y,1)"},
! 335: {"moebius","(n)","(n)"},
! 336: {SAME},
! 337: {SAME},
! 338: {SAME},
! 339: {"nfeltdiv","(nf,a,b)","(nf,a,b)"},
! 340: {"nfeltdiveuc","(nf,a,b)","(nf,a,b)"},
! 341: {"nfeltdivrem","(nf,a,b)","(nf,a,b)"},
! 342: {"nfhnf","(nf,x)","(nf,x)"},
! 343: {"nfhnfmod","(nf,x,detx)","(nf,x,detx)"},
! 344: {"nfeltmod","(nf,a,b)","(nf,a,b)"},
! 345: {"nfeltmul","(nf,a,b)","(nf,a,b)"},
! 346: {"nfeltpow","(nf,a,k)","(nf,a,k)"},
! 347: {"nfeltreduce","(nf,a,id)","(nf,a,id)"},
! 348: {"nfsnf","(nf,x)","(nf,x)"},
! 349: {"nfeltval","(nf,a,pr)","(nf,a,pr)"},
! 350: {SAME},
! 351: {SAME},
! 352: {"qfbnucomp","(x,y,l)","(x,y,l)"},
! 353: {SAME},
! 354: {"numerator","(x)","(x)"},
! 355: {"qfbnupow","(x,n)","(x,n)"},
! 356: {"O","(x)","(x)"},
! 357: {SAME},
! 358: {"ellordinate","(e,x)","(e,x)"},
! 359: {"znorder","(x)","(x)"},
! 360: {"ellorder","(e,x)","(e,x)"},
! 361: {"polredord","(x)","(x)"},
! 362: {SAME},
! 363: {"matpascal","(n)","(n)"},
! 364: {"qfperfection","(a)","(a)"},
! 365: {"numtoperm","(n,k)","(n,k)"},
! 366: {"permtonum","(vect)","(vect)"},
! 367: {"qfbprimeform","(x,p)","(x,p)"},
! 368: {"eulerphi","(x)","(x)"},
! 369: {"Pi","",""},
! 370: {"contfracpnqn","(x)","(x)"},
! 371: {"ellztopoint","(e,z)","(e,z)"},
! 372: {"polinterpolate","(xa,ya,x)","(xa,ya,p)"},
! 373: {SAME},
! 374: {"polred","(x)","(x,2)"},
! 375: {SAME},
! 376: {"polredabs","(x)","(x,1)"},
! 377: {"polredabs","(x)","(x,4)"},
! 378: {"polredabs","(x)","(x,8)"},
! 379: {"polredabs","(x)","(x,2)"},
! 380: {SAME},
! 381: {"variable","(x)","(x)"},
! 382: {"Pol","(x,v)","(x,v)"},
! 383: {SAME},
! 384: {"polylog","(m,x)","(m,x,1)"},
! 385: {"polylog","(m,x)","(m,x,2)"},
! 386: {"polylog","(m,x)","(m,x,3)"},
! 387: {"Polrev","(x,v)","(x,v)"},
! 388: {"polzagier","(n,m)","(n,m)"},
! 389: {"ellpow","(e,x,n)","(e,x,n)"},
! 390: {"qfbpowraw","(x,n)","(x,n)"},
! 391: {"precision","(x,n)","(x,n)"},
! 392: {SAME},
! 393: {SAME},
! 394: {"idealprimedec","(nf,p)","(nf,p)"},
! 395: {SAME},
! 396: {"znprimroot","(n)","(n)"},
! 397: {"idealprincipal","(nf,x)","(nf,x)"},
! 398: {"ideleprincipal","(nf,x)","(nf,x)"},
! 399: {"prod","(x,X=a,b,expr)","(X=a,b,expr,x)"},
! 400: {SAME},
! 401: {SAME},
! 402: {"prodinf","(X=a,expr)","(X=a,expr,1)"},
! 403: {SAME},
! 404: {"Qfb","(a,b,c)","(a,b,c)"},
! 405: {"Qfb","(a,b,c,d)","(a,b,c,d)"},
! 406: {SAME},
! 407: {SAME},
! 408: {SAME},
! 409: {SAME},
! 410: {"matrank","(x)","(x)"},
! 411: {"bnrclassno","(bnf,x)","(bnf,x)"},
! 412: {"bnrclassnolist","(bnf,liste)","(bnf,liste)"},
! 413: {SAME},
! 414: {"polrecip","(x)","(x)"},
! 415: {"qfbred","(x)","(x)"},
! 416: {"qfbred","(x)","(x)"},
! 417: {"qfbred","(x,d)","(x,2,,d)"},
! 418: {"poldiscreduced","(f)","(f)"},
! 419: {"quadregulator","(x)","(x)"},
! 420: {SAME},
! 421: {"polresultant","(x,y)","(x,y)"},
! 422: {"polresultant","(x,y)","(x,y,1)"},
! 423: {"serreverse","(x)","(x)"},
! 424: {"qfbred","(x)","(x,1)"},
! 425: {"qfbred","(x,d)","(x,3,,d)"},
! 426: {"round","(x)","(x,&e)"},
! 427: {SAME},
! 428: {"rnfdisc","(nf,pol)","(nf,pol)"},
! 429: {SAME},
! 430: {"rnfequation","(nf,pol)","(nf,pol,1)"},
! 431: {"rnfhnfbasis","(bnf,order)","(bnf,order)"},
! 432: {SAME},
! 433: {SAME},
! 434: {SAME},
! 435: {SAME},
! 436: {SAME},
! 437: {"polrootsmod","(x,p)","(x,p)"},
! 438: {"polrootsmod","(x,p)","(x,p,1)"},
! 439: {"polrootspadic","(x,p,r)","(x,p,r)"},
! 440: {"polroots","(x)","(x)"},
! 441: {"nfrootsof1","(nf)","(nf)"},
! 442: {"polroots","(x)","(x,1)"},
! 443: {SAME},
! 444: {"round","(x)","(x,&e)"},
! 445: {"Ser","(x,v)","(x,v)"},
! 446: {"Set","(x)","(x)"},
! 447: {SAME},
! 448: {SAME},
! 449: {SAME},
! 450: {SAME},
! 451: {SAME},
! 452: {SAME},
! 453: {SAME},
! 454: {SAME},
! 455: {"sigma","(k,x)","(x,k)"},
! 456: {SAME},
! 457: {"qfsign","(x)","(x)"},
! 458: {"bnfsignunit","(bnf)","(bnf)"},
! 459: {"factormod","(x,p)","(x,p,1)"},
! 460: {SAME},
! 461: {SAME},
! 462: {SAME},
! 463: {"sizedigit","(x)","(x)"},
! 464: {"nfbasis","(x)","(x,1)"},
! 465: {"bnfinit","(x)","(x,3)"},
! 466: {"nfdisc","(x)","(x,1)"},
! 467: {"factor","(x)","(x,0)"},
! 468: {"ellinit","(x)","(x,1)"},
! 469: {"polred","(x)","(x,1)"},
! 470: {"polred","(x)","(x,3)"},
! 471: {"matsnf","(x)","(x)"},
! 472: {"matsnf","(x)","(x,1)"},
! 473: {"matsnf","(x)","(x,4)"},
! 474: {"matsnf","(x)","(x,2)"},
! 475: {SAME},
! 476: {"vecsort","(x)","(x)"},
! 477: {SAME},
! 478: {"qfgaussred","(x)","(x)"},
! 479: {SAME},
! 480: {"gcd","(x,y)","(x,y,2)"},
! 481: {"polsturm","(x)","(x)"},
! 482: {"polsturm","(x,a,b)","(x,a,b)"},
! 483: {"polsubcyclo","(p,d)","(p,d)"},
! 484: {"ellsub","(e,a,b)","(e,a,b)"},
! 485: {SAME},
! 486: {"sum","(x,X=a,b,expr)","(X=a,b,expr,x)"},
! 487: {SAME},
! 488: {"sumalt","(X=a,expr)","(X=a,expr,1)"},
! 489: {SAME},
! 490: {SAME},
! 491: {"sumpos","(X=a,expr)","(X=a,expr,1)"},
! 492: {"matsupplement","(x)","(x)"},
! 493: {"polsylvestermatrix","(x,y)","(x,y)"},
! 494: {SAME},
! 495: {SAME},
! 496: {"elltaniyama","(e)","(e)"},
! 497: {SAME},
! 498: {"poltchebi","(n)","(n)"},
! 499: {"teichmuller","(x)","(x)"},
! 500: {SAME},
! 501: {SAME},
! 502: {REMOV},
! 503: {REMOV},
! 504: {"elltors","(e)","(e)"},
! 505: {SAME},
! 506: {"mattranspose","(x)","(x)"},
! 507: {"truncate","(x)","(x)"},
! 508: {"poltschirnhaus","(x)","(x)"},
! 509: {REMOV},
! 510: {"quadunit","(x)","(x)"},
! 511: {SAME},
! 512: {SAME},
! 513: {"Vec","(x)","(x)"},
! 514: {"vecsort","(x)","(x,,1)"},
! 515: {"vecsort","(x)","(x,,2)"},
! 516: {SAME},
! 517: {SAME},
! 518: {SAME},
! 519: {SAME},
! 520: {"vectorv","(n,X,expr)","(n,X,expr)"},
! 521: {"ellwp","(e)","(e)"},
! 522: {"weber","(x)","(x)"},
! 523: {"weber","(x)","(x,2)"},
! 524: {SAME},
! 525: {"ellpointtoz","(e,P)","(e,P)"},
! 526: {SAME},
! 527: {SAME},
! 528: {"ideallog","(nf,x,bid)","(nf,x,bid)"},
! 529: {"idealstar","(nf,I)","(nf,I)"},
! 530: {"idealstar","(nf,id)","(nf,id,1)"},
! 531: {"idealstar","(nf,id)","(nf,id,2)"},
! 532: {SAME},
! 533:
! 534: {SAME},
! 535: {"plotbox","(x,a)","(x,a)"},
! 536: {"plotcolor","(w,c)","(w,c)"},
! 537: {"plotcursor","(w)","(w)"},
! 538: {SAME},
! 539: {"plotdraw","(list)","(list)"},
! 540: {"plotinit","(w,x,y)","(w,x,y)"},
! 541: {SAME},
! 542: {"plotkill","(w)","(w)"},
! 543: {"plotlines","(w,x2,y2)","(w,x2,y2)"},
! 544: {"plotlines","(w,x2,y2)","(w,x2,y2)"},
! 545: {"plotmove","(w,x,y)","(w,x,y)"},
! 546: {SAME},
! 547: {SAME},
! 548: {"ploth","(X=a,b,expr)","(X=a,b,expr,1)"},
! 549: {"ploth","(X=a,b,expr)","(X=a,b,expr)"},
! 550: {SAME},
! 551: {"plotpoints","(w,x,y)","(w,x,y)"},
! 552: {"plotpoints","(w,x,y)","(w,x,y)"},
! 553: {"psdraw","(list)","(list)"},
! 554: {"psploth","(X=a,b,expr)","(X=a,b,expr)"},
! 555: {"psploth","(X=a,b,expr)","(X=a,b,expr,1)"},
! 556: {"psplothraw","(listx,listy)","(listx,listy)"},
! 557: {"printp","(x)","(x)"},
! 558: {"printp1","(x)","(x)"},
! 559: {SAME},
! 560: {SAME},
! 561: {"plotrbox","(w,dx,dy)","(w,dx,dy)"},
! 562: {"input","(x)","(x)"},
! 563: {"plotrline","(w,dx,dy)","(w,dx,dy)"},
! 564: {"plotrlines","(w,dx,dy)","(w,dx,dy,1)"},
! 565: {"plotrmove","(w,dx,dy)","(w,dx,dy)"},
! 566: {"plotrpoint","(w,dx,dy)","(w,dx,dy)"},
! 567: {"plotrpoints","(w,dx,dy)","(w,dx,dy)"},
! 568: {"plotscale","(w,x1,x2,y1,y2)","(w,x1,x2,y1,y2)"},
! 569: {"default","(n)","(realprecision,n)"},
! 570: {"default","(n)","(seriesprecision,n)"},
! 571: {"type","(x,t)","(x,t)"},
! 572: {"plotstring","(w,x)","(w,x)"},
! 573: {SAME},
! 574: {"printtex","(x)","(x)"},
! 575: {SAME}
! 576: };
! 577:
! 578: /* If flag = 0 (default): check if s existed in 1.39.15 and print verbosely
! 579: * the answer.
! 580: * If flag > 0: silently return n+1 if function changed, 0 otherwise.
! 581: * (where n is the index of s in whatnowlist).
! 582: * If flag < 0: -flag-1 is the index in whatnowlist
! 583: */
! 584: int
! 585: whatnow(char *s, int flag)
! 586: {
! 587: int n;
! 588: char *def;
! 589: whatnow_t wp;
! 590: entree *ep;
! 591:
! 592: if (flag < 0) { n = -flag; flag = 0; }
! 593: else
! 594: {
! 595: if (flag && strlen(s)==1) return 0; /* special case "i" and "o" */
! 596: if (!is_identifier(s) || !is_entry_intern(s,funct_old_hash,NULL))
! 597: {
! 598: if (flag) return 0;
! 599: err(talker,"as far as I can recall, this function never existed");
! 600: }
! 601: n = 0;
! 602: do
! 603: def = (oldfonctions[n++]).name;
! 604: while (def && strcmp(def,s));
! 605: if (!def)
! 606: {
! 607: int m=0;
! 608: do
! 609: def = (functions_oldgp[m++]).name;
! 610: while (def && strcmp(def,s));
! 611: n += m - 1;
! 612: }
! 613: }
! 614:
! 615: wp=whatnowlist[n-1]; def=wp.name;
! 616: if (def == SAME)
! 617: {
! 618: if (flag) return 0;
! 619: err(talker,"this function did not change");
! 620: }
! 621: if (flag) return n;
! 622:
! 623: if (def == REMOV)
! 624: err(talker,"this function was suppressed");
! 625: if (!strcmp(def,"x*y"))
! 626: {
! 627: pariputsf(" %s is now called *.\n\n",s);
! 628: pariputsf(" %s%s ===> %s%s\n\n",s,wp.oldarg,wp.name,wp.newarg);
! 629: return 1;
! 630: }
! 631: ep = is_entry(wp.name);
! 632: if (!ep) err(bugparier,"whatnow");
! 633: pariputs("New syntax: "); term_color(c_ERR);
! 634: pariputsf("%s%s ===> %s%s\n\n",s,wp.oldarg,wp.name,wp.newarg);
! 635: term_color(c_NONE);
! 636: print_text(ep->help); pariputc('\n');
! 637: return 1;
! 638: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>