Annotation of OpenXM_contrib/pari/src/gp/whatnow.c, Revision 1.1.1.1
1.1 maekawa 1: /* $Id: whatnow.c,v 1.1.1.1 1999/09/16 13:47:42 karim Exp $ */
2: #include "pari.h"
3: #include "../language/anal.h"
4:
5: typedef struct whatnow_t
6: {
7: char *name, *oldarg, *newarg;
8: } whatnow_t;
9:
10: #define SAME NULL
11: #define REMOV (char *) 1
12:
13: /* generated by PERL script ../util/dico */
14: static const whatnow_t whatnowlist[]={
15: {SAME},
16: {SAME},
17: {SAME},
18: {SAME},
19: {"elladd","(e,z1,z2)","(e,z1,z2)"},
20: {SAME},
21: {"matadjoint","(x)","(x)"},
22: {SAME},
23: {"ellak","(e,n)","(e,n)"},
24: {SAME},
25: {"algdep","(x,n,dec)","(x,n,dec)"},
26: {"nfalgtobasis","(nf,x)","(nf,x)"},
27: {"ellan","(e,n)","(e,n)"},
28: {"ellap","(e,n)","(e,n)"},
29: {"ellap","(e,n)","(e,n,1)"},
30: {"padicappr","(x,a)","(x,a)"},
31: {SAME},
32: {SAME},
33: {SAME},
34: {"matcompanion","(x)","(x)"},
35: {SAME},
36: {SAME},
37: {"nfbasis","(x)","(x)"},
38: {"nfbasis","(x)","(x,2)"},
39: {"nfbasistoalg","(nf,x)","(nf,x)"},
40: {SAME},
41: {SAME},
42: {SAME},
43: {SAME},
44: {SAME},
45: {SAME},
46: {"ellbil","(e,z1,z2)","(e,z1,z2)"},
47: {"binomial","(x,y)","(x,y)"},
48: {SAME},
49: {SAME},
50: {"contfrac","(x,lmax)","(x,,lmax)"},
51: {"factor","(x,lim)","(x,lim)"},
52: {"bnfcertify","(bnf)","(bnf)"},
53: {"bnfunit","(bnf)","(bnf)"},
54: {"bnfclassunit","(P)","(P,2)"},
55: {"bnfclassunit","(P)","(P,1)"},
56: {"bnfclassunit","(P)","(P)"},
57: {"quadclassunit","(D,c1,c2,g)","(D,,[c1,c2,g])"},
58: {"bnfinit","(P)","(P,2)"},
59: {"bnfinit","(P)","(P,1)"},
60: {"bnfinit","(P)","(P)"},
61: {"bnfnarrow","(bnf)","(bnf)"},
62: {"bnrclass","(bnf,ideal)","(bnf,ideal)"},
63: {"bnrclass","(bnf,ideal)","(bnf,ideal,1)"},
64: {"bnrclass","(bnf,ideal)","(bnf,ideal,2)"},
65: {"quadclassunit","(D)","(D)"},
66: {"sizebyte","(x)","(x)"},
67: {SAME},
68: {SAME},
69: {"contfrac","(x)","(x)"},
70: {"contfrac","(b,x)","(x,b)"},
71: {SAME},
72: {"charpoly","(x,y)","(x,y)"},
73: {"charpoly","(x,y)","(x,y,1)"},
74: {"charpoly","(x,y)","(x,y,2)"},
75: {"ellchangecurve","(x,y)","(x,y)"},
76: {SAME},
77: {"ellchangepoint","(x,y)","(x,y)"},
78: {"qfbclassno","(x)","(x)"},
79: {"qfbclassno","(x)","(x,1)"},
80: {"polcoeff","(x,s)","(x,s)"},
81: {"x*y","(x,y)",""},
82: {"component","(x,s)","(x,s)"},
83: {"polcompositum","(pol1,pol2)","(pol1,pol2)"},
84: {"polcompositum","(pol1,pol2)","(pol1,pol2,1)"},
85: {"qfbcompraw","(x,y)","(x,y)"},
86: {SAME},
87: {"bnrconductor","(a1)","(a1)"},
88: {"bnrconductorofchar","(bnr,chi)","(bnr,chi)"},
89: {SAME},
90: {SAME},
91: {SAME},
92: {"serconvol","(x,y)","(x,y)"},
93: {SAME},
94: {"core","(x)","(x,1)"},
95: {SAME},
96: {"coredisc","(x)","(x,1)"},
97: {SAME},
98: {SAME},
99: {"truncate","(x)","(x,&e)"},
100: {"polcyclo","(n)","(n)"},
101: {"factorback","(fa)","(fa)"},
102: {"bnfdecodemodule","(nf,fa)","(nf,fa)"},
103: {"poldegree","(x)","(x)"},
104: {"denominator","(x)","(x)"},
105: {"lindep","(x)","(x,-1)"},
106: {SAME},
107: {"matdet","(x)","(x)"},
108: {"matdet","(x)","(x,1)"},
109: {"matdetint","(x)","(x)"},
110: {"matdiagonal","(x)","(x)"},
111: {SAME},
112: {SAME},
113: {SAME},
114: {SAME},
115: {SAME},
116: {"poldisc","(x)","(x)"},
117: {"nfdisc","(x)","(x)"},
118: {"nfdisc","(x)","(x,2)"},
119: {"bnrdisc","(bnr,subgroup)","(bnr,subgroup)"},
120: {"bnrdisc","(bnr)","(bnr,,,2)"},
121: {"bnrdisclist","(bnf,list)","(bnf,list)"},
122: {"bnrdisclist","(bnf,arch,bound)","(bnf,bound,arch)"},
123: {"bnrdisclist","(bnf,bound)","(bnf,bound,,1)"},
124: {"bnrdisclist","(bnf,bound)","(bnf,bound)"},
125: {"bnrdisc","(bnr,subgroup)","(bnr,subgroup,,1)"},
126: {"bnrdisc","(bnr,subgroup)","(bnr,subgroup,,3)"},
127: {SAME},
128: {"divrem","(x,y)","(x,y)"},
129: {"sumdiv","(n,X,expr)","(n,X,expr)"},
130: {"mateigen","(x)","(x)"},
131: {SAME},
132: {SAME},
133: {SAME},
134: {"Euler","",""},
135: {SAME},
136: {SAME},
137: {"vecextract","(x,y)","(x,y)"},
138: {"factorial","(x)","(x)"},
139: {"factorcantor","(x,p)","(x,p)"},
140: {"factorff","(x,p,a)","(x,p,a)"},
141: {"factormod","(x,p)","(x,p)"},
142: {SAME},
143: {"nfbasis","(x,p)","(x,,p)"},
144: {"nfdisc","(x,p)","(x,,p)"},
145: {"polred","(x,p)","(x,,p)"},
146: {"polred","(x,p)","(x,2,p)"},
147: {SAME},
148: {SAME},
149: {"factorpadic","(x,p,r)","(x,p,r,1)"},
150: {"factor","(x,l,hint)","(x)"},
151: {"factor","(x,l,hint)","(x)"},
152: {"fibonacci","(x)","(x)"},
153: {SAME},
154: {SAME},
155: {SAME},
156: {SAME},
157: {SAME},
158: {SAME},
159: {"ffinit","(p,n)","(p,n)"},
160: {SAME},
161: {"polgalois","(x)","(x)"},
162: {"nfgaloisapply","(nf,aut,x)","(nf,aut,x)"},
163: {"nfgaloisconj","(nf)","(nf)"},
164: {"nfgaloisconj","(nf)","(nf,2)"},
165: {"nfgaloisconj","","(nf,1)"},
166: {"gammah","(x)","(x)"},
167: {SAME},
168: {"matsolve","(a,b)","(a,b)"},
169: {"matsolvemod","(M,D,Y)","(M,D,Y)"},
170: {"matsolvemod","(M,D,Y)","(M,D,Y,1)"},
171: {SAME},
172: {SAME},
173: {SAME},
174: {SAME},
175: {SAME},
176: {"ellglobalred","(x,y)","(x,y)"},
177: {REMOV},
178: {"qfbhclassno","(x)","(x)"},
179: {"ellheight","(e,x)","(e,x)"},
180: {"ellheight","(e,x)","(e,x,1)"},
181: {"mathnf","(x)","(x)"},
182: {"mathnf","(x)","(x,1)"},
183: {"mathnf","(x)","(x,2)"},
184: {"mathnfmod","(x,d)","(x,d)"},
185: {"mathnfmodid","(x,d)","(x,d)"},
186: {"mathnf","(x)","(x,3)"},
187: {"mathess","(x)","(x)"},
188: {"hilbert","(x,y)","(x,y)"},
189: {"mathilbert","(n)","(n)"},
190: {"hilbert","(x,y,p)","(x,y,p)"},
191: {"vector","(n,X,expr)","(n,X,expr)"},
192: {SAME},
193: {"I","",""},
194: {SAME},
195: {"idealaddtoone","(nf,list)","(nf,list)"},
196: {"idealaddtoone","(nf,x,y)","(nf,x,y)"},
197: {SAME},
198: {"idealappr","(nf,x)","(nf,x,1)"},
199: {SAME},
200: {SAME},
201: {SAME},
202: {"idealdiv","(nf,x,y)","(nf,x,y,1)"},
203: {SAME},
204: {"idealhnf","(nf,x)","(nf,x)"},
205: {"idealhnf","(nf,x)","(nf,x)"},
206: {SAME},
207: {SAME},
208: {"idealinv","(nf,x)","(nf,x,1)"},
209: {SAME},
210: {SAME},
211: {"ideallistarch","(nf,list,arch)","(nf,list,arch,1)"},
212: {"ideallist","(nf,list)","(nf,list,2)"},
213: {"ideallistarch","","(nf,list,arch,2)"},
214: {"ideallistarch","","(nf,list,arch,3)"},
215: {"ideallist","","(nf,list,3)"},
216: {"ideallist","(nf,bound)","(nf,bound)"},
217: {"ideallist","(nf,bound)","(nf,bound,1)"},
218: {"idealred","(nf,x,vdir)","(nf,x,vdir)"},
219: {SAME},
220: {"idealmul","(nf,x,y)","(nf,x,y,1)"},
221: {SAME},
222: {SAME},
223: {"idealpow","(nf,x,y)","(nf,x,y,1)"},
224: {SAME},
225: {"idealtwoelt","(nf,x,a)","(nf,x,a)"},
226: {SAME},
227: {"matid","(n)","(n)"},
228: {SAME},
229: {SAME},
230: {"matimage","(x)","(x)"},
231: {"matimage","(x)","(x,1)"},
232: {"matimagecompl","(x)","(x)"},
233: {SAME},
234: {REMOV},
235: {REMOV},
236: {REMOV},
237: {"incgam","(s,x,y)","(s,x,y)"},
238: {"matindexrank","(x)","(x)"},
239: {"vecsort","(x)","(x,,1)"},
240: {"nfinit","(pol)","(pol)"},
241: {"nfinit","(x)","(x,2)"},
242: {"nfinit","(x)","(x,3)"},
243: {"ellinit","(x)","(x)"},
244: {"zetakinit","(x)","(x)"},
245: {"intformal","(x,y)","(x,y)"},
246: {"matintersect","(x,y)","(x,y)"},
247: {"intnum","(x=a,b,s)","(x=a,b,s,1)"},
248: {"intnum","(x=a,b,s)","(x=a,b,s,2)"},
249: {SAME},
250: {"intnum","(x=a,b,s)","(x=a,b,s,3)"},
251: {"matinverseimage","(x,y)","(x,y)"},
252: {"matisdiagonal","(x)","(x)"},
253: {"isfundamental","(x)","(x)"},
254: {"nfisideal","(nf,x)","(nf,x)"},
255: {"nfisincl","(x,y)","(x,y)"},
256: {"nfisincl","(nf1,nf2)","(nf1,nf2,1)"},
257: {"polisirreducible","(x)","(x)"},
258: {"nfisisom","(x,y)","(x,y)"},
259: {"nfisisom","(x,y)","(x,y)"},
260: {"ellisoncurve","(e,x)","(e,x)"},
261: {SAME},
262: {"bnfisprincipal","(bnf,x)","(bnf,x,0)"},
263: {"bnfisprincipal","(bnf,x)","(bnf,x,2)"},
264: {"bnfisprincipal","(bnf,x)","(bnf,x)"},
265: {"bnfisprincipal","(bnf,x)","(bnf,x,3)"},
266: {"bnrisprincipal","(bnf,x)","(bnf,x)"},
267: {SAME},
268: {"ispseudoprime","(x)","(x)"},
269: {"sqrtint","(x)","(x)"},
270: {"setisset","(x)","(x)"},
271: {"issquarefree","(x)","(x)"},
272: {SAME},
273: {"bnfisunit","(bnf,x)","(bnf,x)"},
274: {"qfjacobi","(x)","(x)"},
275: {"besseljh","(n,x)","(n,x)"},
276: {"ellj","(x)","(x)"},
277: {REMOV},
278: {"besselk","(nu,x)","(nu,x)"},
279: {"besselk","(nu,x)","(nu,x,1)"},
280: {"matker","(x)","(x)"},
281: {"matker","(x)","(x,1)"},
282: {"matkerint","(x)","(x)"},
283: {"matkerint","(x)","(x,1)"},
284: {"matkerint","(x)","(x,2)"},
285: {"kronecker","(x,y)","(x,y)"},
286: {REMOV},
287: {"zetak","(nfz,s)","(nfz,s,1)"},
288: {"serlaplace","(x)","(x)"},
289: {SAME},
290: {"pollegendre","(n)","(n)"},
291: {SAME},
292: {SAME},
293: {"vecsort","(x)","(x,,2)"},
294: {SAME},
295: {SAME},
296: {"lindep","(x)","(x,1)"},
297: {"qflll","(x)","(x)"},
298: {"qflll","(x)","(x,7)"},
299: {"qflll","(x)","(x,8)"},
300: {"qflllgram","(x)","(x)"},
301: {"qflllgram","(x)","(x,7)"},
302: {"qflllgram","(x)","(x,8)"},
303: {"qflllgram","(x)","(x,1)"},
304: {"qflllgram","(x)","(x,4)"},
305: {"qflllgram","(x)","(x,5)"},
306: {"qflll","(x)","(x,1)"},
307: {"qflll","(x)","(x,2)"},
308: {"qflll","(x)","(x,4)"},
309: {"qflll","(x)","(x,5)"},
310: {"qflll","(x)","(x,3)"},
311: {"log","(x)","(x)"},
312: {SAME},
313: {"elllocalred","(e)","(e)"},
314: {SAME},
315: {"log","(x)","(x,1)"},
316: {"elllseries","(e,s,N,A)","(e,s,A)"},
317: {"bnfmake","(sbnf)","(sbnf)"},
318: {"Mat","(x)","(x)"},
319: {"vecextract","(x,y,z)","(x,y,z)"},
320: {"ellheightmatrix","(e,x)","(e,x)"},
321: {SAME},
322: {SAME},
323: {"matrixqz","(x,p)","(x,-1)"},
324: {"matrixqz","(x,p)","(x,-2)"},
325: {SAME},
326: {SAME},
327: {SAME},
328: {"idealmin","(nf,ix,vdir)","(nf,ix,vdir)"},
329: {"qfminim","(x,bound,maxnum)","(x,bound,maxnum)"},
330: {"qfminim","(x,bound)","(x,bound,,1)"},
331: {"Mod","(x,y)","(x,y)"},
332: {"Mod","(x,y,p)","(x,y,1)"},
333: {SAME},
334: {"gcd","(x,y)","(x,y,1)"},
335: {"moebius","(n)","(n)"},
336: {SAME},
337: {SAME},
338: {SAME},
339: {"nfeltdiv","(nf,a,b)","(nf,a,b)"},
340: {"nfeltdiveuc","(nf,a,b)","(nf,a,b)"},
341: {"nfeltdivrem","(nf,a,b)","(nf,a,b)"},
342: {"nfhnf","(nf,x)","(nf,x)"},
343: {"nfhnfmod","(nf,x,detx)","(nf,x,detx)"},
344: {"nfeltmod","(nf,a,b)","(nf,a,b)"},
345: {"nfeltmul","(nf,a,b)","(nf,a,b)"},
346: {"nfeltpow","(nf,a,k)","(nf,a,k)"},
347: {"nfeltreduce","(nf,a,id)","(nf,a,id)"},
348: {"nfsnf","(nf,x)","(nf,x)"},
349: {"nfeltval","(nf,a,pr)","(nf,a,pr)"},
350: {SAME},
351: {SAME},
352: {"qfbnucomp","(x,y,l)","(x,y,l)"},
353: {SAME},
354: {"numerator","(x)","(x)"},
355: {"qfbnupow","(x,n)","(x,n)"},
356: {"O","(x)","(x)"},
357: {SAME},
358: {"ellordinate","(e,x)","(e,x)"},
359: {"znorder","(x)","(x)"},
360: {"ellorder","(e,x)","(e,x)"},
361: {"polredord","(x)","(x)"},
362: {SAME},
363: {"matpascal","(n)","(n)"},
364: {"qfperfection","(a)","(a)"},
365: {"numtoperm","(n,k)","(n,k)"},
366: {"permtonum","(vect)","(vect)"},
367: {"qfbprimeform","(x,p)","(x,p)"},
368: {"eulerphi","(x)","(x)"},
369: {"Pi","",""},
370: {"contfracpnqn","(x)","(x)"},
371: {"ellztopoint","(e,z)","(e,z)"},
372: {"polinterpolate","(xa,ya,x)","(xa,ya,p)"},
373: {SAME},
374: {"polred","(x)","(x,2)"},
375: {SAME},
376: {"polredabs","(x)","(x,1)"},
377: {"polredabs","(x)","(x,4)"},
378: {"polredabs","(x)","(x,8)"},
379: {"polredabs","(x)","(x,2)"},
380: {SAME},
381: {"variable","(x)","(x)"},
382: {"Pol","(x,v)","(x,v)"},
383: {SAME},
384: {"polylog","(m,x)","(m,x,1)"},
385: {"polylog","(m,x)","(m,x,2)"},
386: {"polylog","(m,x)","(m,x,3)"},
387: {"Polrev","(x,v)","(x,v)"},
388: {"polzagier","(n,m)","(n,m)"},
389: {"ellpow","(e,x,n)","(e,x,n)"},
390: {"qfbpowraw","(x,n)","(x,n)"},
391: {"precision","(x,n)","(x,n)"},
392: {SAME},
393: {SAME},
394: {"idealprimedec","(nf,p)","(nf,p)"},
395: {SAME},
396: {"znprimroot","(n)","(n)"},
397: {"idealprincipal","(nf,x)","(nf,x)"},
398: {"ideleprincipal","(nf,x)","(nf,x)"},
399: {"prod","(x,X=a,b,expr)","(X=a,b,expr,x)"},
400: {SAME},
401: {SAME},
402: {"prodinf","(X=a,expr)","(X=a,expr,1)"},
403: {SAME},
404: {"Qfb","(a,b,c)","(a,b,c)"},
405: {"Qfb","(a,b,c,d)","(a,b,c,d)"},
406: {SAME},
407: {SAME},
408: {SAME},
409: {SAME},
410: {"matrank","(x)","(x)"},
411: {"bnrclassno","(bnf,x)","(bnf,x)"},
412: {"bnrclassnolist","(bnf,liste)","(bnf,liste)"},
413: {SAME},
414: {"polrecip","(x)","(x)"},
415: {"qfbred","(x)","(x)"},
416: {"qfbred","(x)","(x)"},
417: {"qfbred","(x,d)","(x,2,,d)"},
418: {"poldiscreduced","(f)","(f)"},
419: {"quadregulator","(x)","(x)"},
420: {SAME},
421: {"polresultant","(x,y)","(x,y)"},
422: {"polresultant","(x,y)","(x,y,1)"},
423: {"serreverse","(x)","(x)"},
424: {"qfbred","(x)","(x,1)"},
425: {"qfbred","(x,d)","(x,3,,d)"},
426: {"round","(x)","(x,&e)"},
427: {SAME},
428: {"rnfdisc","(nf,pol)","(nf,pol)"},
429: {SAME},
430: {"rnfequation","(nf,pol)","(nf,pol,1)"},
431: {"rnfhnfbasis","(bnf,order)","(bnf,order)"},
432: {SAME},
433: {SAME},
434: {SAME},
435: {SAME},
436: {SAME},
437: {"polrootsmod","(x,p)","(x,p)"},
438: {"polrootsmod","(x,p)","(x,p,1)"},
439: {"polrootspadic","(x,p,r)","(x,p,r)"},
440: {"polroots","(x)","(x)"},
441: {"nfrootsof1","(nf)","(nf)"},
442: {"polroots","(x)","(x,1)"},
443: {SAME},
444: {"round","(x)","(x,&e)"},
445: {"Ser","(x,v)","(x,v)"},
446: {"Set","(x)","(x)"},
447: {SAME},
448: {SAME},
449: {SAME},
450: {SAME},
451: {SAME},
452: {SAME},
453: {SAME},
454: {SAME},
455: {"sigma","(k,x)","(x,k)"},
456: {SAME},
457: {"qfsign","(x)","(x)"},
458: {"bnfsignunit","(bnf)","(bnf)"},
459: {"factormod","(x,p)","(x,p,1)"},
460: {SAME},
461: {SAME},
462: {SAME},
463: {"sizedigit","(x)","(x)"},
464: {"nfbasis","(x)","(x,1)"},
465: {"bnfinit","(x)","(x,3)"},
466: {"nfdisc","(x)","(x,1)"},
467: {"factor","(x)","(x,0)"},
468: {"ellinit","(x)","(x,1)"},
469: {"polred","(x)","(x,1)"},
470: {"polred","(x)","(x,3)"},
471: {"matsnf","(x)","(x)"},
472: {"matsnf","(x)","(x,1)"},
473: {"matsnf","(x)","(x,4)"},
474: {"matsnf","(x)","(x,2)"},
475: {SAME},
476: {"vecsort","(x)","(x)"},
477: {SAME},
478: {"qfgaussred","(x)","(x)"},
479: {SAME},
480: {"gcd","(x,y)","(x,y,2)"},
481: {"polsturm","(x)","(x)"},
482: {"polsturm","(x,a,b)","(x,a,b)"},
483: {"polsubcyclo","(p,d)","(p,d)"},
484: {"ellsub","(e,a,b)","(e,a,b)"},
485: {SAME},
486: {"sum","(x,X=a,b,expr)","(X=a,b,expr,x)"},
487: {SAME},
488: {"sumalt","(X=a,expr)","(X=a,expr,1)"},
489: {SAME},
490: {SAME},
491: {"sumpos","(X=a,expr)","(X=a,expr,1)"},
492: {"matsupplement","(x)","(x)"},
493: {"polsylvestermatrix","(x,y)","(x,y)"},
494: {SAME},
495: {SAME},
496: {"elltaniyama","(e)","(e)"},
497: {SAME},
498: {"poltchebi","(n)","(n)"},
499: {"teichmuller","(x)","(x)"},
500: {SAME},
501: {SAME},
502: {REMOV},
503: {REMOV},
504: {"elltors","(e)","(e)"},
505: {SAME},
506: {"mattranspose","(x)","(x)"},
507: {"truncate","(x)","(x)"},
508: {"poltschirnhaus","(x)","(x)"},
509: {REMOV},
510: {"quadunit","(x)","(x)"},
511: {SAME},
512: {SAME},
513: {"Vec","(x)","(x)"},
514: {"vecsort","(x)","(x,,1)"},
515: {"vecsort","(x)","(x,,2)"},
516: {SAME},
517: {SAME},
518: {SAME},
519: {SAME},
520: {"vectorv","(n,X,expr)","(n,X,expr)"},
521: {"ellwp","(e)","(e)"},
522: {"weber","(x)","(x)"},
523: {"weber","(x)","(x,2)"},
524: {SAME},
525: {"ellpointtoz","(e,P)","(e,P)"},
526: {SAME},
527: {SAME},
528: {"ideallog","(nf,x,bid)","(nf,x,bid)"},
529: {"idealstar","(nf,I)","(nf,I)"},
530: {"idealstar","(nf,id)","(nf,id,1)"},
531: {"idealstar","(nf,id)","(nf,id,2)"},
532: {SAME},
533:
534: {SAME},
535: {"plotbox","(x,a)","(x,a)"},
536: {"plotcolor","(w,c)","(w,c)"},
537: {"plotcursor","(w)","(w)"},
538: {SAME},
539: {"plotdraw","(list)","(list)"},
540: {"plotinit","(w,x,y)","(w,x,y)"},
541: {SAME},
542: {"plotkill","(w)","(w)"},
543: {"plotlines","(w,x2,y2)","(w,x2,y2)"},
544: {"plotlines","(w,x2,y2)","(w,x2,y2)"},
545: {"plotmove","(w,x,y)","(w,x,y)"},
546: {SAME},
547: {SAME},
548: {"ploth","(X=a,b,expr)","(X=a,b,expr,1)"},
549: {"ploth","(X=a,b,expr)","(X=a,b,expr)"},
550: {SAME},
551: {"plotpoints","(w,x,y)","(w,x,y)"},
552: {"plotpoints","(w,x,y)","(w,x,y)"},
553: {"psdraw","(list)","(list)"},
554: {"psploth","(X=a,b,expr)","(X=a,b,expr)"},
555: {"psploth","(X=a,b,expr)","(X=a,b,expr,1)"},
556: {"psplothraw","(listx,listy)","(listx,listy)"},
557: {"printp","(x)","(x)"},
558: {"printp1","(x)","(x)"},
559: {SAME},
560: {SAME},
561: {"plotrbox","(w,dx,dy)","(w,dx,dy)"},
562: {"input","(x)","(x)"},
563: {"plotrline","(w,dx,dy)","(w,dx,dy)"},
564: {"plotrlines","(w,dx,dy)","(w,dx,dy,1)"},
565: {"plotrmove","(w,dx,dy)","(w,dx,dy)"},
566: {"plotrpoint","(w,dx,dy)","(w,dx,dy)"},
567: {"plotrpoints","(w,dx,dy)","(w,dx,dy)"},
568: {"plotscale","(w,x1,x2,y1,y2)","(w,x1,x2,y1,y2)"},
569: {"default","(n)","(realprecision,n)"},
570: {"default","(n)","(seriesprecision,n)"},
571: {"type","(x,t)","(x,t)"},
572: {"plotstring","(w,x)","(w,x)"},
573: {SAME},
574: {"printtex","(x)","(x)"},
575: {SAME}
576: };
577:
578: /* If flag = 0 (default): check if s existed in 1.39.15 and print verbosely
579: * the answer.
580: * If flag > 0: silently return n+1 if function changed, 0 otherwise.
581: * (where n is the index of s in whatnowlist).
582: * If flag < 0: -flag-1 is the index in whatnowlist
583: */
584: int
585: whatnow(char *s, int flag)
586: {
587: int n;
588: char *def;
589: whatnow_t wp;
590: entree *ep;
591:
592: if (flag < 0) { n = -flag; flag = 0; }
593: else
594: {
595: if (flag && strlen(s)==1) return 0; /* special case "i" and "o" */
596: if (!is_identifier(s) || !is_entry_intern(s,funct_old_hash,NULL))
597: {
598: if (flag) return 0;
599: err(talker,"as far as I can recall, this function never existed");
600: }
601: n = 0;
602: do
603: def = (oldfonctions[n++]).name;
604: while (def && strcmp(def,s));
605: if (!def)
606: {
607: int m=0;
608: do
609: def = (functions_oldgp[m++]).name;
610: while (def && strcmp(def,s));
611: n += m - 1;
612: }
613: }
614:
615: wp=whatnowlist[n-1]; def=wp.name;
616: if (def == SAME)
617: {
618: if (flag) return 0;
619: err(talker,"this function did not change");
620: }
621: if (flag) return n;
622:
623: if (def == REMOV)
624: err(talker,"this function was suppressed");
625: if (!strcmp(def,"x*y"))
626: {
627: pariputsf(" %s is now called *.\n\n",s);
628: pariputsf(" %s%s ===> %s%s\n\n",s,wp.oldarg,wp.name,wp.newarg);
629: return 1;
630: }
631: ep = is_entry(wp.name);
632: if (!ep) err(bugparier,"whatnow");
633: pariputs("New syntax: "); term_color(c_ERR);
634: pariputsf("%s%s ===> %s%s\n\n",s,wp.oldarg,wp.name,wp.newarg);
635: term_color(c_NONE);
636: print_text(ep->help); pariputc('\n');
637: return 1;
638: }
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>