[BACK]Return to galois.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari / src / modules

Annotation of OpenXM_contrib/pari/src/modules/galois.c, Revision 1.1

1.1     ! maekawa     1: /**************************************************************/
        !             2: /*                                                            */
        !             3: /*    Galois group for degree between 8 and 11 (included)     */
        !             4: /*                                                            */
        !             5: /**************************************************************/
        !             6: /* $Id: galois.c,v 1.1.1.1 1999/09/16 13:48:11 karim Exp $ */
        !             7: #include "pari.h"
        !             8: #ifndef WINCE
        !             9: #  include <fcntl.h>
        !            10: #endif
        !            11:
        !            12: #define NMAX 11 /* maximum degree */
        !            13:
        !            14: typedef char *OBJ;
        !            15: typedef OBJ *POBJ;
        !            16: typedef OBJ PERM;
        !            17: typedef POBJ GROUP;
        !            18: typedef POBJ RESOLVANTE;
        !            19:
        !            20: static long isin_G_H(GEN po, GEN *r, long n1, long n2);
        !            21:
        !            22: static long N,CAR,PREC,PRMAX,TSCHMAX,coeff[9][10];
        !            23: static char SID[] = { 0,1,2,3,4,5,6,7,8,9,10,11 };
        !            24: static char* str_coset  = GPDATADIR"/COS";
        !            25: static char* str_resolv = GPDATADIR"/RES";
        !            26:
        !            27: static long par_N, *par_vec;
        !            28:
        !            29: static void
        !            30: do_par(long k, long n, long m)
        !            31: {
        !            32:   long i;
        !            33:
        !            34:   if (n<=0)
        !            35:   {
        !            36:     GEN p1 = new_chunk(par_N+1);
        !            37:     for (i=1; i<k     ; i++) p1[i] = par_vec[i];
        !            38:     for (   ; i<=par_N; i++) p1[i] = 0;
        !            39:     return;
        !            40:   }
        !            41:   if (n<m) m=n;
        !            42:   for (i=1; i<=m; i++)
        !            43:   {
        !            44:     par_vec[k] = i;
        !            45:     do_par(k+1, n-i, i);
        !            46:   }
        !            47: }
        !            48:
        !            49: /* compute the partitions of m. T[0][0] = p(m) */
        !            50: static long **
        !            51: partitions(long n)
        !            52: {
        !            53:   long av,av1,i, j = 1, l = n+1;
        !            54:   GEN T;
        !            55:
        !            56:   par_vec = new_chunk(l); par_N = n;
        !            57:   l = l*sizeof(long);
        !            58:   av = avma; do_par(1,n,n); av1 = avma;
        !            59:   T = new_chunk((av-av1)/l + 1);
        !            60:   for (i=av-l; i>=av1; i-=l) T[j++]=i;
        !            61:
        !            62:   if (DEBUGLEVEL > 7)
        !            63:   {
        !            64:     fprintferr("Partitions of %ld: p(%ld) = %ld\n",n,n,j-1);
        !            65:     for (i=1; i<j; i++)
        !            66:     {
        !            67:       fprintferr("i = %ld: ",i);
        !            68:       for (l=1; l<=n; l++)
        !            69:         fprintferr("%ld ",((long**)T)[i][l]);
        !            70:       fprintferr("\n"); flusherr();
        !            71:     }
        !            72:   }
        !            73:   T[0] = lgeti(1); ((long**)T)[0][0] = j-1;
        !            74:   return (long**)T;
        !            75: }
        !            76:
        !            77: /* affect to the permutation x the N arguments that follow */
        !            78: static void
        !            79: _aff(char *x,...)
        !            80: {
        !            81:   va_list args; long i;
        !            82:   va_start(args,x); for (i=1; i<=N; i++) x[i] = va_arg(args,int);
        !            83:   va_end(args);
        !            84: }
        !            85:
        !            86: /* return an array of length |len| from the arguments (for galoismodulo) */
        !            87: static GEN
        !            88: _gr(long len,...)
        !            89: {
        !            90:   va_list args;
        !            91:   long i, l = labs(len);
        !            92:   GEN x = new_chunk(l+1);
        !            93:
        !            94:   va_start(args,len); x[0] = len;
        !            95:   for (i=1; i<=l; i++) x[i] = va_arg(args,int);
        !            96:   va_end(args); return x;
        !            97: }
        !            98:
        !            99: /* create a permutation with the N arguments of the function */
        !           100: static PERM
        !           101: _cr(char a,...)
        !           102: {
        !           103:   static char x[NMAX+1];
        !           104:   va_list args;
        !           105:   long i;
        !           106:
        !           107:   va_start(args, a); x[0] = N; x[1] = a;
        !           108:   for (i=2; i<=N; i++) x[i] = va_arg(args,int);
        !           109:   va_end(args); return x;
        !           110: }
        !           111:
        !           112: static PERM
        !           113: permmul(PERM s1, PERM s2)
        !           114: {
        !           115:   long i, n1 = s1[0];
        !           116:   PERM s3 = gpmalloc(n1+1);
        !           117:   for (i=1; i<=n1; i++) s3[i]=s1[(int)s2[i]];
        !           118:   s3[0]=n1; return s3;
        !           119: }
        !           120:
        !           121: static void
        !           122: printperm(PERM perm)
        !           123: {
        !           124:   long i, n = perm[0];
        !           125:   fprintferr("(");
        !           126:   for (i=1; i<=n; i++) fprintferr(" %d",perm[i]);
        !           127:   fprintferr(" )\n");
        !           128: }
        !           129:
        !           130: /* ranger dans l'ordre decroissant (quicksort) */
        !           131: static void
        !           132: ranger(long *t, long n)
        !           133: {
        !           134:   long tpro,l,r,i,j;
        !           135:
        !           136:   l=1+n/2; r=n; tpro=t[1];
        !           137:   for(;;)
        !           138:   {
        !           139:     if (l>1) { l--; tpro=t[l]; }
        !           140:     else
        !           141:     {
        !           142:       tpro=t[r]; t[r]=t[1]; r--;
        !           143:       if (r==1) { t[1]=tpro; return; }
        !           144:     }
        !           145:     i=l;
        !           146:     for (j=i<<1; j<=r; j<<=1)
        !           147:     {
        !           148:       if (j < r && t[j] > t[j+1]) j++;
        !           149:       if (t[j] >= tpro) break;
        !           150:       t[i] = t[j]; i=j;
        !           151:     }
        !           152:     t[i]=tpro;
        !           153:   }
        !           154: }
        !           155:
        !           156: /* 0 if t1=t2, -1 if t1<t2, 1 if t1>t2 */
        !           157: static long
        !           158: compareupletlong(long *t1,long *t2)
        !           159: {
        !           160:   long i;
        !           161:   for (i=1; i<=N; i++)
        !           162:     if (t1[i]!=t2[i]) return (t1[i] < t2[i])? -1: 1;
        !           163:   return 0;
        !           164: }
        !           165:
        !           166: /* return i if typ = TYP[i], 0 otherwise */
        !           167: static long
        !           168: numerotyp(long **TYP, long *galtyp)
        !           169: {
        !           170:   long i, nb = TYP[0][0];
        !           171:   for (i=1; i<=nb; i++)
        !           172:     if (!compareupletlong(galtyp,TYP[i])) return i;
        !           173:   return 0;
        !           174: }
        !           175:
        !           176: static int
        !           177: raye(long *g, long num)
        !           178: {
        !           179:   long i, nb = labs(g[0]);
        !           180:   for (i=1; i<=nb; i++)
        !           181:     if (g[i] == num) return 0;
        !           182:   return 1;
        !           183: }
        !           184:
        !           185: /* we can never determine the group completely in there */
        !           186: static long
        !           187: rayergroup11(long num, long *gr)
        !           188: {
        !           189:   long r = 0;
        !           190:
        !           191:   if (CAR)
        !           192:     switch(num)
        !           193:     {
        !           194:       case 2: case 5:
        !           195:         if (gr[3]) { gr[3]=0; r++; }
        !           196:       case 3: case 6: case 7:
        !           197:         if (gr[2]) { gr[2]=0; r++; }
        !           198:       case 4:
        !           199:         if (gr[1]) { gr[1]=0; r++; }
        !           200:     }
        !           201:   else
        !           202:     switch(num)
        !           203:     {
        !           204:       case 2: case 3:
        !           205:         if (gr[1]) { gr[1]=0; r++; }
        !           206:     }
        !           207:   return r;
        !           208: }
        !           209:
        !           210: static long
        !           211: rayergroup(long **GR, long num, long *gr)
        !           212: {
        !           213:   long i,nbgr,r;
        !           214:
        !           215:   if (!GR) return rayergroup11(num,gr);
        !           216:   nbgr = lg(GR); r = 0 ;
        !           217:   if (CAR)
        !           218:   {
        !           219:     for (i=1; i<nbgr; i++)
        !           220:       if (gr[i] && GR[i][0] < 0 && raye(GR[i],num)) { gr[i]=0; r++; }
        !           221:   }
        !           222:   else
        !           223:   {
        !           224:     for (i=1; i<nbgr; i++)
        !           225:       if (gr[i] && GR[i][0] > 0 && raye(GR[i],num)) { gr[i]=0; r++; }
        !           226:   }
        !           227:   return r;
        !           228: }
        !           229:
        !           230: static long
        !           231: galmodp(GEN pol, GEN dpol, long **TYP, long *gr, long **GR)
        !           232: {
        !           233:   long p = 0, i,k,l,n,nbremain,dtyp[NMAX+1];
        !           234:   byteptr d = diffptr;
        !           235:   GEN p1;
        !           236:
        !           237:   switch(N)
        !           238:   {
        !           239:     case  8: nbremain = CAR? 28: 22; break;
        !           240:     case  9: nbremain = CAR? 18: 16; break;
        !           241:     case 10: nbremain = CAR? 12: 33; break;
        !           242:     case 11: nbremain = CAR?  5:  3; break;
        !           243:   }
        !           244:
        !           245:   k = gr[0]; for (i=1; i<k; i++) gr[i]=1;
        !           246:   for (k=1; k<15; k++, d++)
        !           247:   {
        !           248:     p += *d; if (!*d) err(primer1);
        !           249:     if (smodis(dpol,p)) /* p does not divide dpol */
        !           250:     {
        !           251:       p1 = simplefactmod(pol,stoi(p));
        !           252:       p1 = (GEN)p1[1]; l = lg(p1);
        !           253:       for (i=1; i<l ; i++) dtyp[i] = itos((GEN)(p1[l-i]));
        !           254:       for (   ; i<=N; i++) dtyp[i] = 0;
        !           255:       ranger(dtyp,N); n = numerotyp(TYP,dtyp);
        !           256:       if (!n) return 1; /* only for N=11 */
        !           257:       nbremain -= rayergroup(GR,n,gr);
        !           258:       if (nbremain==1) return 1;
        !           259:     }
        !           260:   }
        !           261:   return 0;
        !           262: }
        !           263:
        !           264: static long
        !           265: _aux(GEN z)
        !           266: {
        !           267:   return signe(z)? ((expo(z)+165) >> TWOPOTBITS_IN_LONG) - lg(z)
        !           268:                  :  (expo(z)+101) >> TWOPOTBITS_IN_LONG;
        !           269: }
        !           270:
        !           271: static long
        !           272: suffprec(GEN z)
        !           273: {
        !           274:   long s,t;
        !           275:
        !           276:   if (typ(z)==t_COMPLEX)
        !           277:   {
        !           278:     s=_aux((GEN)z[1]);
        !           279:     t=_aux((GEN)z[2]); return (t>s)? t: s;
        !           280:   }
        !           281:   return _aux(z);
        !           282: }
        !           283:
        !           284: static void
        !           285: preci(GEN *r, long p)
        !           286: {
        !           287:   GEN x;
        !           288:   long d,i;
        !           289:
        !           290:   if (p>PRMAX) err(talker,"too large precision in preci()");
        !           291:   for (d=0; d<TSCHMAX; d++) for (i=1; i<=N; i++)
        !           292:   {
        !           293:     x = (GEN) r[d][i];
        !           294:     if (typ(x)==t_COMPLEX) { setlg(x[1],p); setlg(x[2],p); } else setlg(x,p);
        !           295:   }
        !           296: }
        !           297:
        !           298: static long
        !           299: getpreci(GEN *r)
        !           300: {
        !           301:   GEN x = (GEN)r[0][1];
        !           302:   return (typ(x)==t_COMPLEX)? lg(x[1]): lg(x);
        !           303: }
        !           304:
        !           305: static void
        !           306: new_pol(GEN *r, long *a, long d)
        !           307: {
        !           308:   long av,i,j;
        !           309:   GEN x, p1;
        !           310:   for (i=1; i<=N; i++)
        !           311:   {
        !           312:     av =avma; p1 = (GEN)r[0][i]; x = gaddsg(a[0], p1);
        !           313:     for (j=1; j<=d; j++) x = gaddsg(a[j], gmul(p1,x));
        !           314:     r[d][i] = (long) gerepileupto(av,x);
        !           315:   }
        !           316: }
        !           317:
        !           318: static void
        !           319: rangeroots(GEN newr, GEN oldr)
        !           320: {
        !           321:   long av = avma,i,j,k,z[NMAX+1],t[NMAX+1];
        !           322:   GEN diff,diff0;
        !           323:
        !           324:   for (i=1; i<=N; i++) t[i]=1;
        !           325:   for (i=1; i<=N; i++)
        !           326:   {
        !           327:     diff0 = gun;
        !           328:     for (j=1; j<=N; j++)
        !           329:       if (t[j])
        !           330:       {
        !           331:         diff = gabs(gsub((GEN)oldr[i], (GEN)newr[j]), PREC);
        !           332:         if (gcmp(diff,diff0) < 0) { diff0=diff; k=j; }
        !           333:       }
        !           334:     z[i]=newr[k]; t[k]=0;
        !           335:   }
        !           336:   avma=av; for (i=1; i<=N; i++) newr[i]=z[i];
        !           337: }
        !           338:
        !           339: /* clean up roots. If root is real replace it by its real part */
        !           340: GEN
        !           341: myroots(GEN p, long prec)
        !           342: {
        !           343:   GEN y,x = roots(p,prec);
        !           344:   long i,lx = lg(x);
        !           345:   for (i=1; i<lx; i++)
        !           346:   {
        !           347:     y = (GEN)x[i];
        !           348:     if (signe(y[2])) break; /* remaining roots are complex */
        !           349:     x[i]=y[1]; /* root is real; take real part */
        !           350:   }
        !           351:   return x;
        !           352: }
        !           353:
        !           354: /* increase the roots accuracy */
        !           355: static void
        !           356: moreprec(GEN po, GEN *r, long pr)
        !           357: {
        !           358:   if (DEBUGLEVEL) { fprintferr("$$$$$ New prec = %ld\n",pr); flusherr(); }
        !           359:   if (pr > PRMAX)
        !           360:   { /* recompute roots */
        !           361:     GEN p1;
        !           362:     long d = PRMAX + 5;
        !           363:
        !           364:     PRMAX = (pr < d)? d: pr;
        !           365:     p1 = myroots(po,PRMAX); rangeroots(p1,*r); *r=p1;
        !           366:     for (d=1; d<TSCHMAX; d++) new_pol(r,coeff[d],d);
        !           367:   }
        !           368:   preci(r,pr);
        !           369: }
        !           370:
        !           371: #define setcard_obj(x,n) ((x)[0] = (char*)(n))
        !           372: #define getcard_obj(x)   ((long)((x)[0]))
        !           373:
        !           374: /* allocate a list of m arrays of length n (index 0 is codeword) */
        !           375: static POBJ
        !           376: alloc_pobj(long n, long m)
        !           377: {
        !           378:   long i, sz = (m+1)*sizeof(OBJ) + (n+1)*m;
        !           379:   POBJ g = (POBJ) gpmalloc(sz);
        !           380:   OBJ gpt = (OBJ) (g + (m+1));
        !           381:
        !           382:   for (i=1; i<=m; i++) { g[i] = gpt; gpt += (n+1); }
        !           383:   setcard_obj(g, m); return g;
        !           384: }
        !           385:
        !           386: /* swap args ! Return an empty RESOLVANTE */
        !           387: #define allocresolv(n,m) alloc_pobj(m, n)
        !           388:
        !           389: static GROUP
        !           390: allocgroup(long n, long card)
        !           391: {
        !           392:   GROUP gr = alloc_pobj(n,card);
        !           393:   long i;
        !           394:
        !           395:   for (i=1; i<=card; i++) gr[i][0]=(char)n;
        !           396:   return gr;
        !           397: }
        !           398:
        !           399: static char *
        !           400: name(char *pre, long n, long n1, long n2, long no)
        !           401: {
        !           402:   static char chn[128];
        !           403:   char ch[6];
        !           404:
        !           405:   sprintf(chn, "%s%ld_%ld_%ld", pre,n,n1,n2);
        !           406:   if (no) { sprintf(ch,"_%ld",no); strcat(chn, ch); }
        !           407:   return chn;
        !           408: }
        !           409:
        !           410: static long
        !           411: galopen(char *s)
        !           412: {
        !           413: #ifdef WINCE
        !           414:        HANDLE h;
        !           415:        short ws[256];
        !           416:        MultiByteToWideChar(CP_ACP, 0, s, strlen(s)+1, ws, 256);
        !           417:        h = CreateFile(ws,GENERIC_READ,FILE_SHARE_READ,NULL,OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL,NULL);
        !           418:        if (h == INVALID_HANDLE_VALUE)
        !           419:                err(talker, "galois files not available in this version, sorry");
        !           420:        if (DEBUGLEVEL > 3) msgtimer("opening %s", s);
        !           421:        return (long)h;
        !           422: #else
        !           423:   long fd = open(s,O_RDONLY);
        !           424:
        !           425:   if (fd == -1)
        !           426:     err(talker,"galois files not available in this version, sorry");
        !           427:
        !           428:   if (DEBUGLEVEL > 3) msgtimer("opening %s",s);
        !           429:   return fd;
        !           430: #endif
        !           431: }
        !           432:
        !           433: static char
        !           434: bin(char c)
        !           435: {
        !           436:   if (c>='0' && c<='9') c=c-'0';
        !           437:   else if (c>='A' && c<='Z') c=c-'A'+10;
        !           438:   else if (c>='a' && c<='z') c=c-'a'+36;
        !           439:   else err(talker,"incorrect value in bin()");
        !           440:   return c;
        !           441: }
        !           442:
        !           443: #define BUFFS 512
        !           444: /* fill in g[i][j] (i<=n, j<=m) with (buffered) data from fd */
        !           445: static void
        !           446: read_obj(POBJ g, long fd, long n, long m)
        !           447: {
        !           448:   char ch[BUFFS];
        !           449:   long i,j, k = BUFFS;
        !           450:
        !           451:   i = j = 1;
        !           452:   for(;;)
        !           453:   {
        !           454: #ifdef WINCE
        !           455:          if (k==BUFFS) { DWORD chRead; ReadFile((HANDLE)fd, ch, BUFFS, &chRead, NULL); k=0; }
        !           456: #else
        !           457:     if (k==BUFFS) { read(fd,ch,BUFFS); k=0; }
        !           458: #endif
        !           459:     g[i][j++] = bin(ch[k++]);
        !           460:     if (j>m) { j=1; i++; if (i>n) break; }
        !           461:   }
        !           462: #ifdef WINCE
        !           463:   CloseHandle((HANDLE)fd); if (DEBUGLEVEL > 3) msgtimer("read_object");
        !           464: #else
        !           465:   close(fd); if (DEBUGLEVEL > 3) msgtimer("read_object");
        !           466: #endif
        !           467: }
        !           468: #undef BUFFS
        !           469:
        !           470: /* the first 8 bytes contain size data (possibly padded with \0) */
        !           471: static GROUP
        !           472: lirecoset(long n1, long n2, long n)
        !           473: {
        !           474:   GROUP gr, grptr;
        !           475:   char c, ch[8];
        !           476:   long no,m,cardgr,fd;
        !           477:
        !           478: #ifdef WINCE
        !           479:   long chRead;
        !           480:   if (n<11 || n1<8)
        !           481:   {
        !           482:     fd = galopen(name(str_coset, n, n1, n2, 0));
        !           483:     ReadFile((HANDLE)fd,&c,1, &chRead, NULL); m=bin(c); ReadFile((HANDLE)fd,&c,1, &chRead, NULL);
        !           484:     ReadFile((HANDLE)fd,ch,6, &chRead, NULL); cardgr=atol(ch); gr=allocgroup(m,cardgr);
        !           485:     read_obj(gr, fd,cardgr,m); return gr;
        !           486:   }
        !           487:   m = 11; cardgr = 45360;
        !           488:   gr = grptr = allocgroup(n, 8 * cardgr);
        !           489:   for (no=1; no<=8; no++)
        !           490:   {
        !           491:     fd = galopen(name(str_coset, n, n1, n2, no)); ReadFile((HANDLE)fd,ch,8, &chRead, NULL);
        !           492:     read_obj(grptr, fd,cardgr,m); grptr += cardgr;
        !           493:   }
        !           494:   return gr;
        !           495: #else
        !           496:   if (n<11 || n1<8)
        !           497:   {
        !           498:     fd = galopen(name(str_coset, n, n1, n2, 0));
        !           499:     read(fd,&c,1); m=bin(c); read(fd,&c,1);
        !           500:     read(fd,ch,6); cardgr=atol(ch); gr=allocgroup(m,cardgr);
        !           501:     read_obj(gr, fd,cardgr,m); return gr;
        !           502:   }
        !           503:   m = 11; cardgr = 45360;
        !           504:   gr = grptr = allocgroup(n, 8 * cardgr);
        !           505:   for (no=1; no<=8; no++)
        !           506:   {
        !           507:     fd = galopen(name(str_coset, n, n1, n2, no)); read(fd,ch,8);
        !           508:     read_obj(grptr, fd,cardgr,m); grptr += cardgr;
        !           509:   }
        !           510:   return gr;
        !           511: #endif
        !           512: }
        !           513:
        !           514: static RESOLVANTE
        !           515: lireresolv(long n1, long n2, long n, long *nv, long *nm)
        !           516: {
        !           517:   RESOLVANTE b;
        !           518:   char ch[5];
        !           519:   long fd;
        !           520:
        !           521: #ifdef WINCE
        !           522:   long chRead;
        !           523:   fd = galopen(name(str_resolv, n, n1, n2, 0));
        !           524:   ReadFile((HANDLE)fd,ch,5, &chRead, NULL); *nm=atol(ch);
        !           525:   ReadFile((HANDLE)fd,ch,3, &chRead, NULL); *nv=atol(ch);
        !           526:   b = allocresolv(*nm,*nv);
        !           527:   read_obj(b, fd,*nm,*nv); return b;
        !           528: #else
        !           529:   fd = galopen(name(str_resolv, n, n1, n2, 0));
        !           530:   read(fd,ch,5); *nm=atol(ch);
        !           531:   read(fd,ch,3); *nv=atol(ch);
        !           532:   b = allocresolv(*nm,*nv);
        !           533:   read_obj(b, fd,*nm,*nv); return b;
        !           534: #endif
        !           535: }
        !           536:
        !           537: static GEN
        !           538: monomial(GEN r, PERM bb, long nbv)
        !           539: {
        !           540:   long i; GEN p1 = (GEN)r[(int)bb[1]];
        !           541:
        !           542:   for (i=2; i<=nbv; i++) p1 = gmul(p1, (GEN)r[(int)bb[i]]);
        !           543:   return p1;
        !           544: }
        !           545:
        !           546: static GEN
        !           547: gpolynomial(GEN r, RESOLVANTE aa, long nbm, long nbv)
        !           548: {
        !           549:   long i; GEN p1 = monomial(r,aa[1],nbv);
        !           550:
        !           551:   for (i=2; i<=nbm; i++) p1 = gadd(p1, monomial(r,aa[i],nbv));
        !           552:   return p1;
        !           553: }
        !           554:
        !           555: static void
        !           556: zaux1(GEN *z, GEN *r)
        !           557: {
        !           558:   GEN p2,p1;
        !           559:   p2=gsub(r[1],gadd(r[2],r[5]));
        !           560:   p2=gmul(p2,gsub(r[2],r[5]));
        !           561:   p1=gmul(p2,r[1]);
        !           562:   p2=gsub(r[3],gadd(r[2],r[4]));
        !           563:   p2=gmul(p2,gsub(r[4],r[2]));
        !           564:   p1=gadd(p1,gmul(p2,r[3]));
        !           565:   p2=gmul(r[5],gsub(r[4],r[5]));
        !           566:   z[1]=gadd(p1,gmul(p2,r[4]));
        !           567:
        !           568:   p2=gsub(r[1],gadd(r[3],r[4]));
        !           569:   p2=gmul(p2,gsub(r[3],r[4]));
        !           570:   p1=gmul(p2,r[1]);
        !           571:   p2=gsub(r[5],gadd(r[3],r[2]));
        !           572:   p2=gmul(p2,gsub(r[2],r[3]));
        !           573:   p1=gadd(p1,gmul(p2,r[5]));
        !           574:   p2=gmul(r[4],gsub(r[2],r[4]));
        !           575:   z[2]=gadd(p1,gmul(p2,r[2]));
        !           576: }
        !           577:
        !           578: static void
        !           579: zaux(GEN *z, GEN *r)
        !           580: {
        !           581:   zaux1(z, r); zaux1(z+2, r+5);
        !           582: }
        !           583:
        !           584: static GEN
        !           585: gpoly(GEN rr, long n1, long n2)
        !           586: {
        !           587:   GEN p1,p2,z[6], *r = (GEN*)rr; /* syntaxic kludge */
        !           588:   long i,j;
        !           589:
        !           590:   if (N==8)
        !           591:   {
        !           592:     if (n1==47 && n2==46)
        !           593:     {
        !           594:       p1=gsub(r[3],r[4]);
        !           595:       for (i=1; i<3; i++) for (j=i+1; j<5; j++) p1 = gmul(p1,gsub(r[i],r[j]));
        !           596:       for (i=5; i<8; i++) for (j=i+1; j<9; j++) p1 = gmul(p1,gsub(r[i],r[j]));
        !           597:       p2=r[1];
        !           598:       for (i=2; i<5; i++) p2=gadd(p2,r[i]);
        !           599:       for (i=5; i<9; i++) p2=gsub(p2,r[i]);
        !           600:     }
        !           601:     else /* n1==44 && n2==40 */
        !           602:     {
        !           603:       for (i=1; i<5; i++) z[i] = gadd(r[2*i-1],r[2*i]);
        !           604:       p1 = gsub(r[1],r[2]);
        !           605:       for (i=2; i<5; i++) p1 = gmul(p1,gsub(r[2*i-1],r[2*i]));
        !           606:       p2=gsub(z[3],z[4]);
        !           607:       for (i=1; i<3; i++) for (j=i+1; j<5; j++) p2 = gmul(p2,gsub(z[i],z[j]));
        !           608:     }
        !           609:     return gmul(p1,p2);
        !           610:   }
        !           611:
        !           612:   if (N==9)
        !           613:   {
        !           614:     if (n1==31 && n2==29)
        !           615:     {
        !           616:       p1=gsub(r[2],r[3]);
        !           617:       for (j=2; j<4; j++) p1 = gmul(p1,gsub(r[1],r[j]));
        !           618:       for (i=4; i<6; i++) for (j=i+1; j<7; j++) p1 = gmul(p1,gsub(r[i],r[j]));
        !           619:       p2 = gsub(r[8],r[9]);
        !           620:       for (j=8; j<10; j++) p2 = gmul(p2,gsub(r[7],r[j]));
        !           621:     }
        !           622:     else /* ((n1==34 && n2==31) || (n1=33 && n2==30)) */
        !           623:     {
        !           624:       p1=r[1]; for (i=2; i<4; i++) p1=gadd(p1,r[i]);
        !           625:       p2=r[4]; for (i=5; i<7; i++) p2=gadd(p2,r[i]);
        !           626:       p1=gmul(p1,p2);
        !           627:       p2=r[7]; for (i=8; i<10; i++) p2=gadd(p2,r[i]);
        !           628:     }
        !           629:     return gmul(p1,p2);
        !           630:   }
        !           631:
        !           632:   if (N==10)
        !           633:   {
        !           634:     if ((n1==45 && n2==43) || (n1==44 && n2==42))
        !           635:     {
        !           636:       p1=r[1]; for (i=2; i<6; i++) p1=gadd(p1,r[i]);
        !           637:       p2=r[6]; for (i=7; i<11; i++) p2=gadd(p2,r[i]);
        !           638:       return gmul(p1,p2);
        !           639:     }
        !           640:     else if ((n1==45 && n2==39) || (n1==44 && n2==37))
        !           641:     {
        !           642:       p1 = gadd(r[1],r[2]);
        !           643:       for (i=2; i<6; i++) p1 = gmul(p1,gadd(r[2*i-1],r[2*i]));
        !           644:       return p1;
        !           645:     }
        !           646:     else if ((n1==43 && n2==41) || (n1==33 && n2==27))
        !           647:     {
        !           648:       p1=gsub(r[4],r[5]);
        !           649:       for (i=1; i<4; i++) for (j=i+1; j<6; j++) p1=gmul(p1,gsub(r[i],r[j]));
        !           650:       p2=gsub(r[9],r[10]);
        !           651:       for (i=6; i<9; i++) for (j=i+1; j<11; j++) p2=gmul(p2,gsub(r[i],r[j]));
        !           652:       return gmul(p1,p2);
        !           653:     }
        !           654:     else if ((n1==43 && n2==33) || (n1==42 && n2==28) || (n1==41 && n2==27)
        !           655:           || (n1==40 && n2==21))
        !           656:     {
        !           657:       p2=gadd(r[2],r[5]);
        !           658:       p2=gsub(p2,gadd(r[3],r[4]));
        !           659:       p1=gmul(p2,r[1]);
        !           660:       p2=gsub(r[3],gadd(r[4],r[5]));
        !           661:       p1=gadd(p1,gmul(p2,r[2]));
        !           662:       p2=gsub(r[4],r[5]);
        !           663:       p1=gadd(p1,gmul(p2,r[3]));
        !           664:       z[1]=gadd(p1,gmul(r[4],r[5]));
        !           665:
        !           666:       p2=gadd(r[7],r[10]);
        !           667:       p2=gsub(p2,gadd(r[8],r[9]));
        !           668:       p1=gmul(p2,r[6]);
        !           669:       p2=gsub(r[8],gadd(r[9],r[10]));
        !           670:       p1=gadd(p1,gmul(p2,r[7]));
        !           671:       p2=gsub(r[9],r[10]);
        !           672:       p1=gadd(p1,gmul(p2,r[8]));
        !           673:       z[2]=gadd(p1,gmul(r[9],r[10]));
        !           674:       return gadd(gsqr(z[1]), gsqr(z[2]));
        !           675:     }
        !           676:     else if (n1==41 && n2==40)
        !           677:     {
        !           678:       p1=gsub(r[4],r[5]);
        !           679:       for (i=1; i<4; i++) for (j=i+1; j<6; j++) p1 = gmul(p1,gsub(r[i],r[j]));
        !           680:       p2=gsub(r[9],r[10]);
        !           681:       for (i=6; i<9; i++) for (j=i+1; j<11; j++) p2 = gmul(p2,gsub(r[i],r[j]));
        !           682:       return gadd(p1,p2);
        !           683:     }
        !           684:     else if ((n1==41 && n2==22) || (n1==40 && n2==11) || (n1==17 && n2==5)
        !           685:             || (n1==10 && n2==4) || (n1==9 && n2==3) || (n1==6 && n2==1))
        !           686:     {
        !           687:       p1=gadd(r[1],r[6]);
        !           688:       for (i=2; i<6; i++) p1=gmul(p1,gadd(r[i],r[i+5]));
        !           689:       return p1;
        !           690:     }
        !           691:     else if ((n1==39 && n2==38) || (n1==29 && n2==25))
        !           692:     {
        !           693:       for (i=1; i<6; i++) z[i]=gadd(r[2*i-1],r[2*i]);
        !           694:       p1=gsub(r[1],r[2]);
        !           695:       for (i=2; i<6; i++) p1=gmul(p1,gsub(r[2*i-1],r[2*i]));
        !           696:       p2=gsub(z[4],z[5]);
        !           697:       for (i=1; i<4; i++) for (j=i+1; j<6; j++) p2=gmul(p2,gsub(z[i],z[j]));
        !           698:       return gmul(p1,p2);
        !           699:     }
        !           700:     else if ((n1==39 && n2==36) || (n1==37 && n2==34) || (n1==29 && n2==23)
        !           701:           || (n1==24 && n2==15))
        !           702:     {
        !           703:       for (i=1; i<6; i++) z[i]=gadd(r[2*i-1],r[2*i]);
        !           704:       p1=gsub(z[4],z[5]); p2=gmul(gsub(z[3],z[4]),gsub(z[3],z[5]));
        !           705:       for (i=1; i<3; i++) for (j=i+1; j<6; j++) p2=gmul(p2,gsub(z[i],z[j]));
        !           706:       return gmul(p1,p2);
        !           707:     }
        !           708:     else if ((n1==39 && n2==29) || (n1==38 && n2==25) || (n1==37 && n2==24)
        !           709:           || (n1==36 && n2==23) || (n1==34 && n2==15))
        !           710:     {
        !           711:       for (i=1; i<6; i++) z[i]=gadd(r[2*i-1],r[2*i]);
        !           712:       p2=gadd(z[2],z[5]); p2=gsub(p2,gadd(z[3],z[4]));
        !           713:       p1=gmul(p2,z[1]);
        !           714:       p2=gsub(z[3],gadd(z[4],z[5]));
        !           715:       p1=gadd(p1,gmul(p2,z[2]));
        !           716:       p2=gsub(z[4],z[5]);
        !           717:       p1=gadd(p1,gmul(p2,z[3]));
        !           718:       p1=gadd(p1,gmul(z[4],z[5])); return gsqr(p1);
        !           719:     }
        !           720:     else if ((n1==39 && n2==22) || (n1==38 && n2==12) || (n1==36 && n2==11)
        !           721:           || (n1==29 && n2== 5) || (n1==25 && n2== 4) || (n1==23 && n2== 3)
        !           722:           || (n1==16 && n2== 2) || (n1==14 && n2== 1))
        !           723:     {
        !           724:       p1=r[1]; for (i=2; i<6; i++) p1=gadd(p1,r[2*i-1]);
        !           725:       p2=r[2]; for (i=2; i<6; i++) p2=gadd(p2,r[2*i]);
        !           726:       return gmul(p1,p2);
        !           727:     }
        !           728:     else if (n1==28 && n2==18)
        !           729:     {
        !           730:       zaux(z, r);
        !           731:       p1=gmul(z[1],gsub(z[3],z[4]));
        !           732:       p2=gmul(z[2],gadd(z[3],z[4])); return gadd(p1,p2);
        !           733:     }
        !           734:     else if (n1==27 && n2==20)
        !           735:     {
        !           736:       zaux(z, r); p1=gmul(z[1],z[3]); p2=gmul(z[2],z[4]);
        !           737:       p1 = gsub(p1,p2); p2=r[1];
        !           738:       for (i=2; i<6 ; i++) p2=gadd(p2,r[i]);
        !           739:       for (   ; i<11; i++) p2=gsub(p2,r[i]);
        !           740:       return gmul(p1,p2);
        !           741:     }
        !           742:     else if (n1==27 && n2==19)
        !           743:     {
        !           744:       zaux(z, r); p1=gmul(z[1],z[3]); p2=gmul(z[2],z[4]);
        !           745:       return gsub(p1,p2);
        !           746:     }
        !           747:     else if ((n1==27 && n2==17) || (n1==21 && n2==9))
        !           748:     {
        !           749:       zaux(z, r); p1=gmul(z[1],z[3]); p2=gmul(z[2],z[4]);
        !           750:       return gadd(p1,p2);
        !           751:     }
        !           752:     else if (n1==23 && n2==16)
        !           753:     {
        !           754:       for (i=1; i<6; i++) z[i]=gadd(r[2*i-1],r[2*i]);
        !           755:       p1=gsub(z[1],gadd(z[2],z[5])); p1=gmul(p1,gsub(z[2],z[5]));
        !           756:       p2=gmul(p1,z[1]); p1=gsub(z[3],gadd(z[2],z[4]));
        !           757:       p1=gmul(  p1,gsub(z[4],z[2])); p2=gadd(p2,gmul(p1,z[3]));
        !           758:       p1=gmul(z[5],gsub(z[4],z[5])); p2=gadd(p2,gmul(p1,z[4]));
        !           759:       p1=gsub(r[1],r[2]);
        !           760:       for (i=2; i<6; i++) p1=gmul(p1,gsub(r[2*i-1],r[2*i]));
        !           761:       return gmul(p1,p2);
        !           762:     }
        !           763:     else if (n1==22 && n2==12)
        !           764:     {
        !           765:       for (i=1; i<6; i++) z[i]=gadd(r[i],r[i+5]);
        !           766:       p1=gsub(r[1],r[6]);
        !           767:       for (i=2; i<6; i++) p1=gmul(p1,gsub(r[i],r[i+5]));
        !           768:       p2=gsub(z[4],z[5]);
        !           769:       for (i=1; i<4; i++) for (j=i+1; j<6; j++) p2=gmul(p2,gsub(z[i],z[j]));
        !           770:       return gmul(p1,p2);
        !           771:     }
        !           772:     else if ((n1==22 && n2==11) || (n1==5 && n2==3))
        !           773:     {
        !           774:       for (i=1; i<6; i++) z[i]=gadd(r[i],r[i+5]);
        !           775:       p1=gsub(z[4],z[5]); p2=gmul(gsub(z[3],z[4]),gsub(z[3],z[5]));
        !           776:       for (i=1; i<3; i++) for (j=i+1; j<6; j++) p2=gmul(p2,gsub(z[i],z[j]));
        !           777:       return gmul(p1,p2);
        !           778:     }
        !           779:     else if ((n1==22 && n2==5) || (n1==12 && n2==4) || (n1==11 && n2==3))
        !           780:     {
        !           781:       for (i=1; i<6; i++) z[i]=gadd(r[i],r[i+5]);
        !           782:       p2=gadd(z[2],z[5]); p2=gsub(p2,gadd(z[3],z[4])); p1=gmul(p2,z[1]);
        !           783:       p2=gsub(z[3],gadd(z[4],z[5])); p1=gadd(p1,gmul(p2,z[2]));
        !           784:       p2=gsub(z[4],z[5]);
        !           785:       p1=gadd(p1,gmul(p2,z[3])); p1=gadd(p1,gmul(z[4],z[5]));
        !           786:       return gsqr(p1);
        !           787:     }
        !           788:     else if (n1==21 && n2==10)
        !           789:     {
        !           790:       zaux(z, r); p1=gmul(z[1],z[4]); p2=gmul(z[2],z[3]);
        !           791:       return gsub(p1,p2);
        !           792:     }
        !           793:   }
        !           794:   err(talker,"indefinite invariant polynomial in gpoly()");
        !           795:   return NULL; /* not reached */
        !           796: }
        !           797:
        !           798: static void
        !           799: tschirn(GEN po, GEN *r, long pr)
        !           800: {
        !           801:   long av0 = avma, a[NMAX],v,i,d;
        !           802:   GEN h,u;
        !           803:
        !           804:   d = TSCHMAX+1;
        !           805:   if (d>=N)
        !           806:     err(talker,"too large degree for Tschirnhaus transformation in tschirn");
        !           807:   if (DEBUGLEVEL)
        !           808:   {
        !           809:     fprintferr("\n$$$$$ Tschirnhaus transformation of degree %ld: $$$$$\n",d);
        !           810:     flusherr();
        !           811:   }
        !           812:   v=varn(po); h=polun[v];
        !           813:   do
        !           814:   {
        !           815:     avma = av0;
        !           816:     for (i=0; i<d; i++)
        !           817:     {
        !           818:       a[i] = ((mymyrand()>>4) & 7) + 1;
        !           819:       h = gaddsg(a[i],gmul(polx[v],h));
        !           820:     }
        !           821:     u=caract(gmodulcp(h,po),v);
        !           822:   }
        !           823:   while (lgef(srgcd(u,deriv(u,v))) > 3);
        !           824:   if (DEBUGLEVEL>2) { bruterr(u,'g',-1); fprintferr("\n"); flusherr(); }
        !           825:
        !           826:   avma = av0; d = TSCHMAX;
        !           827:   for (i=0; i<=d; i++) coeff[d][i] = a[i];
        !           828:   preci(r,PRMAX); r[d]=cgetg(N+1,t_VEC);
        !           829:   new_pol(r,a,d); preci(r,pr); TSCHMAX++;
        !           830: }
        !           831:
        !           832: static GEN
        !           833: get_pol_perm(PERM S1, PERM S2, GEN rr, RESOLVANTE a,
        !           834:              long nbm, long nbv)
        !           835: {
        !           836:   static long r[NMAX+1];
        !           837:   long i;
        !           838:
        !           839:   for (i=1; i<=N; i++) r[i] = rr[(int)S1[(int)S2[i]]];
        !           840:   return a? gpolynomial(r,a,nbm,nbv): gpoly(r,nbm,nbv);
        !           841: }
        !           842:
        !           843: static void
        !           844: dbg_rac(long nri,long nbracint,long numi[],GEN racint[],long multi[])
        !           845: {
        !           846:   long k;
        !           847:   if (nbracint>nri+1)
        !           848:     fprintferr("        there are %ld rational integer roots:\n",nbracint-nri);
        !           849:   else if (nbracint==nri+1)
        !           850:     fprintferr("        there is 1 rational integer root:\n");
        !           851:   else
        !           852:     fprintferr("        there is no rational integer root.\n");
        !           853:   for (k=nri+1; k<=nbracint; k++)
        !           854:   {
        !           855:     fprintferr("          number%2ld: ",numi[k]);
        !           856:     bruterr(racint[k],'g',-1); fprintferr(", order %ld.\n",multi[k]);
        !           857:   }
        !           858:   flusherr();
        !           859: }
        !           860:
        !           861: static GEN
        !           862: is_int(GEN g)
        !           863: {
        !           864:   GEN gint,p1;
        !           865:   long av;
        !           866:
        !           867:   if (typ(g) == t_COMPLEX)
        !           868:   {
        !           869:     p1 = (GEN)g[2];
        !           870:     if (signe(p1) && expo(p1) >= - (bit_accuracy(lg(p1))>>1)) return NULL;
        !           871:     g = (GEN)g[1];
        !           872:   }
        !           873:   gint = ground(g); av=avma; p1 = subri(g,gint);
        !           874:   if (signe(p1) && expo(p1) >= - (bit_accuracy(lg(p1))>>1)) return NULL;
        !           875:   avma=av; return gint;
        !           876: }
        !           877:
        !           878: static PERM
        !           879: isin_end(PERM S, PERM uu, PERM s0, GEN gpol, long av1)
        !           880: {
        !           881:   PERM vv = permmul(S,uu), ww = permmul(vv,s0);
        !           882:
        !           883:   if (DEBUGLEVEL)
        !           884:   {
        !           885:     fprintferr("      testing roots reordering: ");
        !           886:     bruterr(gpol,'g',-1); flusherr();
        !           887:   }
        !           888:   free(vv); avma = av1; return ww;
        !           889: }
        !           890:
        !           891: #define M 2521
        !           892: /* return NULL if not included, the permutation of the roots otherwise */
        !           893: static PERM
        !           894: check_isin(GEN po,GEN *r,long nbm,long nbv, POBJ a, POBJ tau, POBJ ss, PERM s0)
        !           895: {
        !           896:   long pr = PREC, av1 = avma, av2,nogr,nocos,init,i,j,k,l,d,nrm,nri,sp;
        !           897:   long nbgr,nbcos,nbracint,nbrac,lastnbri,lastnbrm;
        !           898:   static long numi[M],numj[M],lastnum[M],multi[M],norac[M],lastnor[M];
        !           899:   GEN rr,ro,roint,racint[M];
        !           900:   PERM uu;
        !           901:
        !           902:   nbcos = getcard_obj(ss);
        !           903:   nbgr  = getcard_obj(tau);
        !           904:   lastnbri = lastnbrm = -1; /* for lint */
        !           905:   for (nogr=1; nogr<=nbgr; nogr++)
        !           906:   {
        !           907:     if (DEBUGLEVEL)
        !           908:       { fprintferr("    ----> Group # %ld/%ld:\n",nogr,nbgr); flusherr(); }
        !           909:     init = 0;
        !           910:     for (d=1; ; d++)
        !           911:     {
        !           912:       if (d > 1)
        !           913:       {
        !           914:         if (DEBUGLEVEL)
        !           915:         {
        !           916:           fprintferr("        all integer roots are double roots\n");
        !           917:           fprintferr("      Working with polynomial #%ld:\n", d); flusherr();
        !           918:         }
        !           919:         if (d > TSCHMAX) { tschirn(po,r,pr); av1 = avma; }
        !           920:       }
        !           921:       if (!init)
        !           922:       {
        !           923:         init = 1;
        !           924:         for(;;)
        !           925:         {
        !           926:           av2=avma; rr = r[d-1]; nbrac = nbracint = 0;
        !           927:           for (nocos=1; nocos<=nbcos; nocos++)
        !           928:           {
        !           929:             ro = get_pol_perm(tau[nogr], ss[nocos], rr,a,nbm,nbv);
        !           930:             sp = suffprec(ro); if (sp > 0) break;
        !           931:             roint = is_int(ro);
        !           932:             if (roint)
        !           933:             {
        !           934:               nbrac++;
        !           935:               if (nbrac >= M)
        !           936:               {
        !           937:                 err(warner, "more than %ld rational integer roots\n", M);
        !           938:                 avma = av1; init = 0; break;
        !           939:               }
        !           940:               for (j=1; j<=nbracint; j++)
        !           941:                 if (gegal(roint,racint[j])) { multi[j]++; break; }
        !           942:               if (j > nbracint)
        !           943:               {
        !           944:                 nbracint = j; multi[j]=1; numi[j]=nocos;
        !           945:                 racint[j] = gerepileupto(av2,roint); av2=avma;
        !           946:               }
        !           947:               numj[nbrac]=nocos; norac[nbrac]=j;
        !           948:             }
        !           949:             avma=av2;
        !           950:           }
        !           951:           if (sp <= 0) break;
        !           952:           avma = av1; pr+=sp; moreprec(po,r,pr); av1 = avma;
        !           953:         }
        !           954:         if (!init) continue;
        !           955:
        !           956:         if (DEBUGLEVEL) dbg_rac(0,nbracint,numi,racint,multi);
        !           957:         for (i=1; i<=nbracint; i++)
        !           958:           if (multi[i]==1)
        !           959:           {
        !           960:             uu = ss[numi[i]];
        !           961:             ro = DEBUGLEVEL? get_pol_perm(SID,uu,rr,a,nbm,nbv): (GEN)NULL;
        !           962:             return isin_end(tau[nogr], uu, s0, ro, av1);
        !           963:           }
        !           964:       }
        !           965:       else
        !           966:       {
        !           967:         nrm = nri = 0;
        !           968:         for (l=1; l<=lastnbri; l++)
        !           969:         {
        !           970:           for(;;)
        !           971:           {
        !           972:             av2=avma; rr = r[d-1]; nbrac=nrm; nbracint=nri;
        !           973:             for (k=1; k<=lastnbrm; k++)
        !           974:               if (lastnor[k]==l)
        !           975:               {
        !           976:                 nocos = lastnum[k];
        !           977:                 ro = get_pol_perm(tau[nogr], ss[nocos], rr,a,nbm,nbv);
        !           978:                 sp = suffprec(ro); if (sp > 0) break;
        !           979:                 roint = is_int(ro);
        !           980:                 if (roint)
        !           981:                 {
        !           982:                   nbrac++;
        !           983:                   for (j=nri+1; j<=nbracint; j++)
        !           984:                     if (gegal(roint,racint[j])) { multi[j]++; break; }
        !           985:                   if (j > nbracint)
        !           986:                   {
        !           987:                     nbracint = j; multi[j]=1; numi[j]=nocos;
        !           988:                     racint[j] = gerepileupto(av2,roint); av2=avma;
        !           989:                   }
        !           990:                   numj[nbrac]=nocos; norac[nbrac]=j;
        !           991:                 }
        !           992:                 avma=av2;
        !           993:               }
        !           994:             if (sp <= 0) break;
        !           995:             avma = av1; pr+=sp; moreprec(po,r,pr); av1 = avma;
        !           996:           }
        !           997:           if (DEBUGLEVEL) dbg_rac(nri,nbracint,numi,racint,multi);
        !           998:           for (i=nri+1; i<=nbracint; i++)
        !           999:             if (multi[i]==1)
        !          1000:             {
        !          1001:               uu = ss[numi[i]];
        !          1002:               ro = DEBUGLEVEL? get_pol_perm(SID,uu,rr,a,nbm,nbv): (GEN)NULL;
        !          1003:               return isin_end(tau[nogr], uu, s0, ro, av1);
        !          1004:             }
        !          1005:           avma = av1; nri=nbracint; nrm=nbrac;
        !          1006:         }
        !          1007:       }
        !          1008:       avma = av1; if (!nbracint) break;
        !          1009:
        !          1010:       lastnbri=nbracint; lastnbrm=nbrac;
        !          1011:       for (j=1; j<=nbrac; j++)
        !          1012:         { lastnum[j]=numj[j]; lastnor[j]=norac[j]; }
        !          1013:     }
        !          1014:   }
        !          1015:   return NULL;
        !          1016: }
        !          1017: #undef M
        !          1018:
        !          1019: /* BIBLIOTHEQUE POUR LE DEGRE 8 */
        !          1020:
        !          1021: static long
        !          1022: galoisprim8(GEN po, GEN *r)
        !          1023: {
        !          1024:   long rep;
        !          1025:
        !          1026: /* PRIM_8_1: */
        !          1027:   rep=isin_G_H(po,r,50,43);
        !          1028:   if (rep) return CAR? 37: 43;
        !          1029: /* PRIM_8_2: */
        !          1030:   if (!CAR) return 50;
        !          1031: /* PRIM_8_3: */
        !          1032:   rep=isin_G_H(po,r,49,48);
        !          1033:   if (!rep) return 49;
        !          1034: /* PRIM_8_4: */
        !          1035:   rep=isin_G_H(po,r,48,36);
        !          1036:   if (!rep) return 48;
        !          1037: /* PRIM_8_5: */
        !          1038:   rep=isin_G_H(po,r,36,25);
        !          1039:   return rep? 25: 36;
        !          1040: }
        !          1041:
        !          1042: static long
        !          1043: galoisimpodd8(GEN po, GEN *r, long nh)
        !          1044: {
        !          1045:   long rep;
        !          1046: /* IMPODD_8_1: */
        !          1047:   if (nh!=47) goto IMPODD_8_6;
        !          1048: /* IMPODD_8_2: */
        !          1049:   rep=isin_G_H(po,r,47,46);
        !          1050:   if (!rep) goto IMPODD_8_5;
        !          1051: /* IMPODD_8_4: */
        !          1052:   rep=isin_G_H(po,r,46,28);
        !          1053:   if (rep) goto IMPODD_8_7; else return 46;
        !          1054:
        !          1055: IMPODD_8_5:
        !          1056:   rep=isin_G_H(po,r,47,35);
        !          1057:   if (rep) goto IMPODD_8_9; else return 47;
        !          1058:
        !          1059: IMPODD_8_6:
        !          1060:   rep=isin_G_H(po,r,44,40);
        !          1061:   if (rep) goto IMPODD_8_10; else goto IMPODD_8_11;
        !          1062:
        !          1063: IMPODD_8_7:
        !          1064:   rep=isin_G_H(po,r,28,21);
        !          1065:   if (rep) return 21; else goto IMPODD_8_33;
        !          1066:
        !          1067: IMPODD_8_9:
        !          1068:   rep=isin_G_H(po,r,35,31);
        !          1069:   if (rep) goto IMPODD_8_13; else goto IMPODD_8_14;
        !          1070:
        !          1071: IMPODD_8_10:
        !          1072:   rep=isin_G_H(po,r,40,26);
        !          1073:   if (rep) goto IMPODD_8_15; else goto IMPODD_8_16;
        !          1074:
        !          1075: IMPODD_8_11:
        !          1076:   rep=isin_G_H(po,r,44,38);
        !          1077:   if (rep) goto IMPODD_8_17; else goto IMPODD_8_18;
        !          1078:
        !          1079: IMPODD_8_12:
        !          1080:   rep=isin_G_H(po,r,16,7);
        !          1081:   if (rep) goto IMPODD_8_19; else return 16;
        !          1082:
        !          1083: IMPODD_8_13:
        !          1084:   rep=isin_G_H(po,r,31,21);
        !          1085:   return rep? 21: 31;
        !          1086:
        !          1087: IMPODD_8_14:
        !          1088:   rep=isin_G_H(po,r,35,30);
        !          1089:   if (rep) goto IMPODD_8_34; else goto IMPODD_8_20;
        !          1090:
        !          1091: IMPODD_8_15:
        !          1092:   rep=isin_G_H(po,r,26,16);
        !          1093:   if (rep) goto IMPODD_8_12; else goto IMPODD_8_21;
        !          1094:
        !          1095: IMPODD_8_16:
        !          1096:   rep=isin_G_H(po,r,40,23);
        !          1097:   if (rep) goto IMPODD_8_22; else return 40;
        !          1098:
        !          1099: IMPODD_8_17:
        !          1100:   rep=isin_G_H(po,r,38,31);
        !          1101:   if (rep) goto IMPODD_8_13; else return 38;
        !          1102:
        !          1103: IMPODD_8_18:
        !          1104:   rep=isin_G_H(po,r,44,35);
        !          1105:   if (rep) goto IMPODD_8_9; else return 44;
        !          1106:
        !          1107: IMPODD_8_19:
        !          1108:   rep=isin_G_H(po,r,7,1);
        !          1109:   return rep? 1: 7;
        !          1110:
        !          1111: IMPODD_8_20:
        !          1112:   rep=isin_G_H(po,r,35,28);
        !          1113:   if (rep) goto IMPODD_8_7; else goto IMPODD_8_23;
        !          1114:
        !          1115: IMPODD_8_21:
        !          1116:   rep=isin_G_H(po,r,26,17);
        !          1117:   if (rep) goto IMPODD_8_24; else goto IMPODD_8_25;
        !          1118:
        !          1119: IMPODD_8_22:
        !          1120:   rep=isin_G_H(po,r,23,8);
        !          1121:   if (rep) goto IMPODD_8_26; else return 23;
        !          1122:
        !          1123: IMPODD_8_23:
        !          1124:   rep=isin_G_H(po,r,35,27);
        !          1125:   if (rep) goto IMPODD_8_27; else goto IMPODD_8_28;
        !          1126:
        !          1127: IMPODD_8_24:
        !          1128:   rep=isin_G_H(po,r,17,7);
        !          1129:   if (rep) goto IMPODD_8_19; else return 17;
        !          1130:
        !          1131: IMPODD_8_25:
        !          1132:   rep=isin_G_H(po,r,26,15);
        !          1133:   if (rep) goto IMPODD_8_29; else return 26;
        !          1134:
        !          1135: IMPODD_8_26:
        !          1136:   rep=isin_G_H(po,r,8,1);
        !          1137:   return rep? 1: 8;
        !          1138:
        !          1139: IMPODD_8_27:
        !          1140:   rep=isin_G_H(po,r,27,16);
        !          1141:   if (rep) goto IMPODD_8_12; else return 27;
        !          1142:
        !          1143: IMPODD_8_28:
        !          1144:   rep=isin_G_H(po,r,35,26);
        !          1145:   if (rep) goto IMPODD_8_15; else return 35;
        !          1146:
        !          1147: IMPODD_8_29:
        !          1148:   rep=isin_G_H(po,r,15,7);
        !          1149:   if (rep) goto IMPODD_8_19;
        !          1150: /* IMPODD_8_30: */
        !          1151:   rep=isin_G_H(po,r,15,6);
        !          1152:   if (!rep) goto IMPODD_8_32;
        !          1153: /* IMPODD_8_31: */
        !          1154:   rep=isin_G_H(po,r,6,1);
        !          1155:   return rep? 1: 6;
        !          1156:
        !          1157: IMPODD_8_32:
        !          1158:   rep=isin_G_H(po,r,15,8);
        !          1159:   if (rep) goto IMPODD_8_26; else return 15;
        !          1160:
        !          1161: IMPODD_8_33:
        !          1162:   rep=isin_G_H(po,r,28,16);
        !          1163:   if (rep) goto IMPODD_8_12; else return 28;
        !          1164:
        !          1165: IMPODD_8_34:
        !          1166:   rep=isin_G_H(po,r,30,21);
        !          1167:   return rep? 21: 30;
        !          1168: }
        !          1169:
        !          1170: static long
        !          1171: galoisimpeven8(GEN po, GEN *r, long nh)
        !          1172: {
        !          1173:    long rep;
        !          1174: /* IMPEVEN_8_1: */
        !          1175:    if (nh!=45) goto IMPEVEN_8_6;
        !          1176: /* IMPEVEN_8_2: */
        !          1177:    rep=isin_G_H(po,r,45,42);
        !          1178:    if (!rep) goto IMPEVEN_8_5;
        !          1179: /* IMPEVEN_8_4: */
        !          1180:   rep=isin_G_H(po,r,42,34);
        !          1181:   if (rep) goto IMPEVEN_8_7; else goto IMPEVEN_8_8;
        !          1182:
        !          1183: IMPEVEN_8_5:
        !          1184:   rep=isin_G_H(po,r,45,41);
        !          1185:   if (rep) goto IMPEVEN_8_9; else return 45;
        !          1186:
        !          1187: IMPEVEN_8_6:
        !          1188:   rep=isin_G_H(po,r,39,32);
        !          1189:   if (rep) goto IMPEVEN_8_10; else goto IMPEVEN_8_11;
        !          1190:
        !          1191: IMPEVEN_8_7:
        !          1192:   rep=isin_G_H(po,r,34,18);
        !          1193:   if (rep) goto IMPEVEN_8_21; else goto IMPEVEN_8_45;
        !          1194:
        !          1195: IMPEVEN_8_8:
        !          1196:   rep=isin_G_H(po,r,42,33);
        !          1197:   if (rep) goto IMPEVEN_8_14; else return 42;
        !          1198:
        !          1199: IMPEVEN_8_9:
        !          1200:   rep=isin_G_H(po,r,41,34);
        !          1201:   if (rep) goto IMPEVEN_8_7; else goto IMPEVEN_8_15;
        !          1202:
        !          1203: IMPEVEN_8_10:
        !          1204:   rep=isin_G_H(po,r,32,22);
        !          1205:   if (rep) goto IMPEVEN_8_16; else goto IMPEVEN_8_17;
        !          1206:
        !          1207: IMPEVEN_8_11:
        !          1208:   rep=isin_G_H(po,r,39,29);
        !          1209:   if (rep) goto IMPEVEN_8_18; else goto IMPEVEN_8_19;
        !          1210:
        !          1211: IMPEVEN_8_12:
        !          1212:   rep=isin_G_H(po,r,14,4);
        !          1213:   return rep? 4: 14;
        !          1214:
        !          1215: IMPEVEN_8_14:
        !          1216:   rep=isin_G_H(po,r,33,18);
        !          1217:   if (rep) goto IMPEVEN_8_21; else goto IMPEVEN_8_22;
        !          1218:
        !          1219: IMPEVEN_8_15:
        !          1220:   rep=isin_G_H(po,r,41,33);
        !          1221:   if (rep) goto IMPEVEN_8_14; else goto IMPEVEN_8_23;
        !          1222:
        !          1223: IMPEVEN_8_16:
        !          1224:   rep=isin_G_H(po,r,22,11);
        !          1225:   if (rep) goto IMPEVEN_8_24; else goto IMPEVEN_8_25;
        !          1226:
        !          1227: IMPEVEN_8_17:
        !          1228:   rep=isin_G_H(po,r,32,13);
        !          1229:   if (rep) goto IMPEVEN_8_26; else goto IMPEVEN_8_27;
        !          1230:
        !          1231: IMPEVEN_8_18:
        !          1232:   rep=isin_G_H(po,r,29,22);
        !          1233:   if (rep) goto IMPEVEN_8_16; else goto IMPEVEN_8_28;
        !          1234:
        !          1235: IMPEVEN_8_19:
        !          1236:   rep=isin_G_H(po,r,39,24);
        !          1237:   if (rep) goto IMPEVEN_8_29; else return 39;
        !          1238:
        !          1239: IMPEVEN_8_20:
        !          1240:   rep=isin_G_H(po,r,9,4);
        !          1241:   if (rep) return 4; else goto IMPEVEN_8_30;
        !          1242:
        !          1243: IMPEVEN_8_21:
        !          1244:   rep=isin_G_H(po,r,18,10);
        !          1245:   if (rep) goto IMPEVEN_8_31; else goto IMPEVEN_8_32;
        !          1246:
        !          1247: IMPEVEN_8_22:
        !          1248:   rep=isin_G_H(po,r,33,13);
        !          1249:   if (rep) goto IMPEVEN_8_26; else return 33;
        !          1250:
        !          1251: IMPEVEN_8_23:
        !          1252:   rep=isin_G_H(po,r,41,29);
        !          1253:   if (rep) goto IMPEVEN_8_18; else goto IMPEVEN_8_33;
        !          1254:
        !          1255: IMPEVEN_8_24:
        !          1256:   rep=isin_G_H(po,r,11,5);
        !          1257:   if (rep) return 5; else goto IMPEVEN_8_34;
        !          1258:
        !          1259: IMPEVEN_8_25:
        !          1260:   rep=isin_G_H(po,r,22,9);
        !          1261:   if (rep) goto IMPEVEN_8_20; else return 22;
        !          1262:
        !          1263: IMPEVEN_8_26:
        !          1264:   rep=isin_G_H(po,r,13,3);
        !          1265:   return rep? 3: 13;
        !          1266:
        !          1267: IMPEVEN_8_27:
        !          1268:   rep=isin_G_H(po,r,32,12);
        !          1269:   if (rep) goto IMPEVEN_8_35; else return 32;
        !          1270:
        !          1271: IMPEVEN_8_28:
        !          1272:   rep=isin_G_H(po,r,29,20);
        !          1273:   if (rep) goto IMPEVEN_8_36; else goto IMPEVEN_8_37;
        !          1274:
        !          1275: IMPEVEN_8_29:
        !          1276:   rep=isin_G_H(po,r,24,14);
        !          1277:   if (rep) goto IMPEVEN_8_12; else goto IMPEVEN_8_38;
        !          1278:
        !          1279: IMPEVEN_8_30:
        !          1280:   rep=isin_G_H(po,r,9,3);
        !          1281:   if (rep) return 3; else goto IMPEVEN_8_39;
        !          1282:
        !          1283: IMPEVEN_8_31:
        !          1284:   rep=isin_G_H(po,r,10,2);
        !          1285:   return rep? 2: 10;
        !          1286:
        !          1287: IMPEVEN_8_32:
        !          1288:   rep=isin_G_H(po,r,18,9);
        !          1289:   if (rep) goto IMPEVEN_8_20; else return 18;
        !          1290:
        !          1291: IMPEVEN_8_33:
        !          1292:   rep=isin_G_H(po,r,41,24);
        !          1293:   if (rep) goto IMPEVEN_8_29; else return 41;
        !          1294:
        !          1295: IMPEVEN_8_34:
        !          1296:   rep=isin_G_H(po,r,11,4);
        !          1297:   if (rep) return 4; else goto IMPEVEN_8_44;
        !          1298:
        !          1299: IMPEVEN_8_35:
        !          1300:   rep=isin_G_H(po,r,12,5);
        !          1301:   return rep? 5: 12;
        !          1302:
        !          1303: IMPEVEN_8_36:
        !          1304:   rep=isin_G_H(po,r,20,10);
        !          1305:   if (rep) goto IMPEVEN_8_31; else return 20;
        !          1306:
        !          1307: IMPEVEN_8_37:
        !          1308:   rep=isin_G_H(po,r,29,19);
        !          1309:   if (rep) goto IMPEVEN_8_40; else goto IMPEVEN_8_41;
        !          1310:
        !          1311: IMPEVEN_8_38:
        !          1312:   rep=isin_G_H(po,r,24,13);
        !          1313:   if (rep) goto IMPEVEN_8_26; else goto IMPEVEN_8_42;
        !          1314:
        !          1315: IMPEVEN_8_39:
        !          1316:   rep=isin_G_H(po,r,9,2);
        !          1317:   return rep? 2: 9;
        !          1318:
        !          1319: IMPEVEN_8_40:
        !          1320:   rep=isin_G_H(po,r,19,10);
        !          1321:   if (rep) goto IMPEVEN_8_31; else goto IMPEVEN_8_43;
        !          1322:
        !          1323: IMPEVEN_8_41:
        !          1324:   rep=isin_G_H(po,r,29,18);
        !          1325:   if (rep) goto IMPEVEN_8_21; else return 29;
        !          1326:
        !          1327: IMPEVEN_8_42:
        !          1328:   rep=isin_G_H(po,r,24,9);
        !          1329:   if (rep) goto IMPEVEN_8_20; else return 24;
        !          1330:
        !          1331: IMPEVEN_8_43:
        !          1332:   rep=isin_G_H(po,r,19,9);
        !          1333:   if (rep) goto IMPEVEN_8_20; else return 19;
        !          1334:
        !          1335: IMPEVEN_8_44:
        !          1336:   rep=isin_G_H(po,r,11,2);
        !          1337:   return rep? 2: 11;
        !          1338:
        !          1339: IMPEVEN_8_45:
        !          1340:   rep=isin_G_H(po,r,34,14);
        !          1341:   if (rep) goto IMPEVEN_8_12; else return 34;
        !          1342: }
        !          1343:
        !          1344: static long
        !          1345: closure8(GEN po)
        !          1346: {
        !          1347:   long nbrac,rep;
        !          1348:   GEN r[NMAX];
        !          1349:
        !          1350:   r[0]=myroots(po,PRMAX); nbrac=lg(r[0])-1;
        !          1351:   if (nbrac!=N) err(talker,"incompatible number of roots in closure8()");
        !          1352:   preci(r,PREC);
        !          1353:   if (!CAR)
        !          1354:   {
        !          1355:   /* CLOS_8_1: */
        !          1356:     rep=isin_G_H(po,r,50,47);
        !          1357:     if (rep) return galoisimpodd8(po,r,47);
        !          1358:   /* CLOS_8_2: */
        !          1359:     rep=isin_G_H(po,r,50,44);
        !          1360:     if (rep) return galoisimpodd8(po,r,44);
        !          1361:   }
        !          1362:   else
        !          1363:   {
        !          1364:   /* CLOS_8_3: */
        !          1365:     rep=isin_G_H(po,r,49,45);
        !          1366:     if (rep) return galoisimpeven8(po,r,45);
        !          1367:   /* CLOS_8_4: */
        !          1368:     rep=isin_G_H(po,r,49,39);
        !          1369:     if (rep) return galoisimpeven8(po,r,39);
        !          1370:   }
        !          1371:   return galoisprim8(po,r);
        !          1372: }
        !          1373:
        !          1374: static GROUP
        !          1375: initgroup(long n, long nbgr)
        !          1376: {
        !          1377:   GROUP t = allocgroup(n,nbgr);
        !          1378:   t[1] = SID; return t;
        !          1379: }
        !          1380:
        !          1381: static PERM
        !          1382: data8(long n1, long n2, GROUP *t)
        !          1383: {
        !          1384:   switch(n1)
        !          1385:   {
        !          1386:     case 7: if (n2!=1) break;
        !          1387:       *t=initgroup(N,2);
        !          1388:       _aff((*t)[2], 1, 2, 3, 4, 6, 5, 8, 7);
        !          1389:       return SID;
        !          1390:     case 9: if (n2!=4) break;
        !          1391:       *t=initgroup(N,2);
        !          1392:       _aff((*t)[2], 1, 2, 4, 3, 5, 6, 8, 7);
        !          1393:       return SID;
        !          1394:     case 10: if (n2!=2) break;
        !          1395:       *t=initgroup(N,2);
        !          1396:       _aff((*t)[2], 1, 2, 3, 4, 6, 5, 8, 7);
        !          1397:       return SID;
        !          1398:     case 11:
        !          1399:       switch(n2)
        !          1400:       {
        !          1401:         case 2:
        !          1402:           *t=initgroup(N,2);
        !          1403:           _aff((*t)[2], 1, 2, 5, 6, 3, 4, 8, 7);
        !          1404:           return _cr(1, 3, 5, 8, 2, 4, 6, 7);
        !          1405:         case 4:
        !          1406:           *t=initgroup(N,1);
        !          1407:           return _cr(1, 3, 7, 5, 2, 4, 8, 6);
        !          1408:       }break;
        !          1409:     case 14: if (n2!=4) break;
        !          1410:       *t=initgroup(N,1);
        !          1411:       return _cr(1, 2, 4, 3, 5, 6, 8, 7);
        !          1412:     case 15: if (n2!=6 && n2!=8) break;
        !          1413:       *t=initgroup(N,2);
        !          1414:       _aff((*t)[2], 1, 2, 3, 4, 6, 5, 8, 7);
        !          1415:       return SID;
        !          1416:     case 16: if (n2!=7) break;
        !          1417:       *t=initgroup(N,2);
        !          1418:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 7);
        !          1419:       return SID;
        !          1420:     case 18:
        !          1421:       switch(n2)
        !          1422:       {
        !          1423:         case 9: *t=initgroup(N,3);
        !          1424:           _aff((*t)[2], 1, 5, 3, 7, 2, 6, 4, 8);
        !          1425:           _aff((*t)[3], 1, 2, 3, 4, 6, 5, 8, 7);
        !          1426:           return SID;
        !          1427:         case 10: *t=initgroup(N,3);
        !          1428:           _aff((*t)[2], 1, 6, 3, 8, 2, 5, 4, 7);
        !          1429:           _aff((*t)[3], 1, 5, 3, 7, 2, 6, 4, 8);
        !          1430:           return SID;
        !          1431:       }break;
        !          1432:     case 19: if (n2!=9) break;
        !          1433:       *t=initgroup(N,1);
        !          1434:       return _cr(1, 5, 3, 8, 2, 6, 4, 7);
        !          1435:     case 20: if (n2!=10) break;
        !          1436:       *t=initgroup(N,2);
        !          1437:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 7);
        !          1438:       return SID;
        !          1439:     case 22:
        !          1440:       switch(n2)
        !          1441:       {
        !          1442:         case 9: *t=initgroup(N,6);
        !          1443:           _aff((*t)[2], 1, 2, 7, 8, 3, 4, 6, 5);
        !          1444:           _aff((*t)[3], 1, 2, 7, 8, 3, 4, 5, 6);
        !          1445:           _aff((*t)[4], 1, 2, 5, 6, 3, 4, 8, 7);
        !          1446:           _aff((*t)[5], 1, 2, 5, 6, 3, 4, 7, 8);
        !          1447:           _aff((*t)[6], 1, 2, 3, 4, 5, 6, 8, 7);
        !          1448:           return _cr(1, 3, 5, 7, 2, 4, 6, 8);
        !          1449:         case 11: *t=initgroup(N,6);
        !          1450:           _aff((*t)[2], 1, 2, 5, 6, 7, 8, 4, 3);
        !          1451:           _aff((*t)[3], 1, 2, 5, 6, 7, 8, 3, 4);
        !          1452:           _aff((*t)[4], 1, 2, 3, 4, 7, 8, 6, 5);
        !          1453:           _aff((*t)[5], 1, 2, 3, 4, 7, 8, 5, 6);
        !          1454:           _aff((*t)[6], 1, 2, 3, 4, 5, 6, 8, 7);
        !          1455:           return SID;
        !          1456:       }break;
        !          1457:     case 23: if (n2!=8) break;
        !          1458:       *t=initgroup(N,1);
        !          1459:       return _cr(1, 2, 3, 4, 6, 5, 8, 7);
        !          1460:     case 26: if (n2!=15 && n2!=17) break;
        !          1461:       *t=initgroup(N,2);
        !          1462:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 7);
        !          1463:       return SID;
        !          1464:     case 28: if (n2!=21) break;
        !          1465:       *t=initgroup(N,1);
        !          1466:       return _cr(1, 2, 3, 4, 7, 8, 5, 6);
        !          1467:     case 29: if (n2!=18 && n2!=19) break;
        !          1468:       *t=initgroup(N,2);
        !          1469:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 7);
        !          1470:       return SID;
        !          1471:     case 30: if (n2!=21) break;
        !          1472:       *t=initgroup(N,1);
        !          1473:       return _cr(1, 2, 3, 4, 7, 8, 5, 6);
        !          1474:     case 31: if (n2!=21) break;
        !          1475:       *t=initgroup(N,3);
        !          1476:       _aff((*t)[2], 1, 2, 3, 4, 7, 8, 5, 6);
        !          1477:       _aff((*t)[3], 1, 2, 5, 6, 7, 8, 3, 4);
        !          1478:       return SID;
        !          1479:     case 32: if (n2!=12 && n2!=13) break;
        !          1480:       *t=initgroup(N,2);
        !          1481:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 7);
        !          1482:       return SID;
        !          1483:     case 33:
        !          1484:       switch(n2)
        !          1485:       {
        !          1486:         case 13: *t=initgroup(N,1);
        !          1487:           return _cr(1, 5, 2, 6, 3, 7, 4, 8);
        !          1488:         case 18: *t=initgroup(N,1);
        !          1489:           return _cr(1, 2, 5, 6, 3, 4, 7, 8);
        !          1490:       }break;
        !          1491:     case 34:
        !          1492:       switch(n2)
        !          1493:       {
        !          1494:         case 14: *t=initgroup(N,3);
        !          1495:           _aff((*t)[2], 1, 2, 3, 4, 5, 8, 6, 7);
        !          1496:           _aff((*t)[3], 1, 2, 3, 4, 5, 7, 8, 6);
        !          1497:           return _cr(1, 5, 2, 6, 3, 7, 4, 8);
        !          1498:         case 18: *t=initgroup(N,1);
        !          1499:           return _cr(1, 2, 5, 6, 3, 4, 8, 7);
        !          1500:       }break;
        !          1501:     case 39: if (n2!=24) break;
        !          1502:       *t=initgroup(N,2);
        !          1503:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 7);
        !          1504:       return SID;
        !          1505:     case 40: if (n2!=23) break;
        !          1506:       *t=initgroup(N,2);
        !          1507:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 7);
        !          1508:       return SID;
        !          1509:     case 41:
        !          1510:       switch(n2)
        !          1511:       {
        !          1512:         case 24: *t=initgroup(N,1);
        !          1513:           return _cr(1, 5, 2, 6, 3, 7, 4, 8);
        !          1514:         case 29: *t=initgroup(N,1);
        !          1515:           return _cr(1, 2, 5, 6, 3, 4, 7, 8);
        !          1516:       }break;
        !          1517:     case 42: if (n2!=34) break;
        !          1518:       *t=initgroup(N,1);
        !          1519:       return _cr(1, 2, 3, 4, 5, 6, 8, 7);
        !          1520:     case 45: if (n2!=41 && n2!=42) break;
        !          1521:       *t=initgroup(N,2);
        !          1522:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 7);
        !          1523:       return SID;
        !          1524:     case 46: if (n2!=28) break;
        !          1525:       *t=initgroup(N,1);
        !          1526:       return _cr(1, 2, 5, 6, 3, 4, 7, 8);
        !          1527:     case 47: if (n2!=35) break;
        !          1528:       *t=initgroup(N,1);
        !          1529:       return _cr(1, 2, 5, 6, 3, 4, 7, 8);
        !          1530:     case 49: if (n2!=48) break;
        !          1531:       *t=initgroup(N,2);
        !          1532:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 7);
        !          1533:       return SID;
        !          1534:   }
        !          1535:   *t=initgroup(N,1); return SID;
        !          1536: }
        !          1537:
        !          1538: static long
        !          1539: galoismodulo8(GEN pol, GEN dpol)
        !          1540: {
        !          1541:   long av = avma, res, gr[51];
        !          1542:   long **TYP = partitions(8), **GR = (long**)cgeti(49);
        !          1543:
        !          1544: /* List of possible types in group j: GR[j][0] = #GR[j] if
        !          1545:  * the group is odd, - #GR[j] if even */
        !          1546:   GR[ 1]= _gr(  4, 1,5,15,22);
        !          1547:   GR[ 2]= _gr( -3, 1,5,15);
        !          1548:   GR[ 3]= _gr( -2, 1,5);
        !          1549:   GR[ 4]= _gr( -3, 1,5,15);
        !          1550:   GR[ 5]= _gr( -3, 1,5,15);
        !          1551:   GR[ 6]= _gr(  5, 1,4,5,15,22);
        !          1552:   GR[ 7]= _gr(  5, 1,3,5,15,22);
        !          1553:   GR[ 8]= _gr(  5, 1,4,5,15,22);
        !          1554:   GR[ 9]= _gr( -4, 1,3,5,15);
        !          1555:   GR[10]= _gr( -4, 1,3,5,15);
        !          1556:   GR[11]= _gr( -4, 1,3,5,15);
        !          1557:   GR[12]= _gr( -5, 1,5,9,15,20);
        !          1558:   GR[13]= _gr( -4, 1,5,9,20);
        !          1559:   GR[14]= _gr( -4, 1,5,9,15);
        !          1560:   GR[15]= _gr(  6, 1,3,4,5,15,22);
        !          1561:   GR[16]= _gr(  5, 1,3,5,15,22);
        !          1562:   GR[17]= _gr(  7, 1,3,5,11,13,15,22);
        !          1563:   GR[18]= _gr( -4, 1,3,5,15);
        !          1564:   GR[19]= _gr( -5, 1,3,5,12,15);
        !          1565:   GR[20]= _gr( -4, 1,3,5,15);
        !          1566:   GR[21]= _gr(  5, 1,3,5,13,15);
        !          1567:   GR[22]= _gr( -4, 1,3,5,15);
        !          1568:   GR[23]= _gr(  7, 1,4,5,9,15,20,22);
        !          1569:   GR[24]= _gr( -6, 1,3,5,9,15,20);
        !          1570:   GR[25]= _gr( -3, 1,5,21);
        !          1571:   GR[26]= _gr(  8, 1,3,4,5,11,13,15,22);
        !          1572:   GR[27]= _gr(  8, 1,2,3,4,5,13,15,22);
        !          1573:   GR[28]= _gr(  7, 1,3,5,12,13,15,22);
        !          1574:   GR[29]= _gr( -5, 1,3,5,12,15);
        !          1575:   GR[30]= _gr(  7, 1,3,4,5,11,13,15);
        !          1576:   GR[31]= _gr(  7, 1,2,3,4,5,13,15);
        !          1577:   GR[32]= _gr( -6, 1,3,5,9,15,20);
        !          1578:   GR[33]= _gr( -6, 1,3,5,9,15,20);
        !          1579:   GR[34]= _gr( -5, 1,3,5,9,15);
        !          1580:   GR[35]= _gr( 10, 1,2,3,4,5,11,12,13,15,22);
        !          1581:   GR[36]= _gr( -5, 1,5,9,20,21);
        !          1582:   GR[37]= _gr( -5, 1,5,9,15,21);
        !          1583:   GR[38]= _gr( 11, 1,2,3,4,5,9,10,13,15,19,20);
        !          1584:   GR[39]= _gr( -7, 1,3,5,9,12,15,20);
        !          1585:   GR[40]= _gr( 10, 1,3,4,5,9,11,13,15,20,22);
        !          1586:   GR[41]= _gr( -7, 1,3,5,9,12,15,20);
        !          1587:   GR[42]= _gr( -8, 1,3,5,6,8,9,15,20);
        !          1588:   GR[43]= _gr(  8, 1,4,5,9,15,19,21,22);
        !          1589:   GR[44]= _gr( 14, 1,2,3,4,5,9,10,11,12,13,15,19,20,22);
        !          1590:   GR[45]= _gr( -9, 1,3,5,6,8,9,12,15,20);
        !          1591:   GR[46]= _gr( 10, 1,3,5,6,8,9,12,13,15,22);
        !          1592:   GR[47]= _gr( 16, 1,2,3,4,5,6,7,8,9,11,12,13,14,15,20,22);
        !          1593:   GR[48]= _gr( -8, 1,3,5,9,12,15,20,21);
        !          1594:
        !          1595:   gr[0]=51; res = galmodp(pol,dpol,TYP,gr,GR);
        !          1596:   avma=av; if (!res) return 0;
        !          1597:   return CAR? 49: 50;
        !          1598: }
        !          1599:
        !          1600: /* BIBLIOTHEQUE POUR LE DEGRE 9 */
        !          1601: static long
        !          1602: galoisprim9(GEN po, GEN *r)
        !          1603: {
        !          1604:   long rep;
        !          1605:
        !          1606:   if (!CAR)
        !          1607:   {
        !          1608:   /* PRIM_9_1: */
        !          1609:     rep=isin_G_H(po,r,34,26);
        !          1610:     if (!rep) return 34;
        !          1611:   /* PRIM_9_2: */
        !          1612:     rep=isin_G_H(po,r,26,19);
        !          1613:     if (!rep) return 26;
        !          1614:   /* PRIM_9_3: */
        !          1615:     rep=isin_G_H(po,r,19,16);
        !          1616:     if (rep) return 16;
        !          1617:   /* PRIM_9_4: */
        !          1618:     rep=isin_G_H(po,r,19,15);
        !          1619:     return rep? 15: 19;
        !          1620:   }
        !          1621: /* PRIM_9_5: */
        !          1622:   rep=isin_G_H(po,r,33,32);
        !          1623:   if (!rep) goto PRIM_9_7;
        !          1624: /* PRIM_9_6: */
        !          1625:   rep=isin_G_H(po,r,32,27);
        !          1626:   return rep? 27: 32;
        !          1627:
        !          1628: PRIM_9_7:
        !          1629:   rep=isin_G_H(po,r,33,23);
        !          1630:   if (!rep) return 33;
        !          1631: /* PRIM_9_8: */
        !          1632:   rep=isin_G_H(po,r,23,14);
        !          1633:   if (!rep) return 23;
        !          1634: /* PRIM_9_9: */
        !          1635:   rep=isin_G_H(po,r,14,9);
        !          1636:   return rep? 9: 14;
        !          1637: }
        !          1638:
        !          1639: static long
        !          1640: galoisimpodd9(GEN po, GEN *r)
        !          1641: {
        !          1642:   long rep;
        !          1643:
        !          1644: /* IMPODD_9_1: */
        !          1645:   rep=isin_G_H(po,r,31,29);
        !          1646:   if (!rep) goto IMPODD_9_5;
        !          1647: /* IMPODD_9_2: */
        !          1648:   rep=isin_G_H(po,r,29,20);
        !          1649:   if (!rep) return 29;
        !          1650: IMPODD_9_3:
        !          1651:   rep=isin_G_H(po,r,20,12);
        !          1652:   if (!rep) return 20;
        !          1653: IMPODD_9_4:
        !          1654:   rep=isin_G_H(po,r,12,4);
        !          1655:   return rep? 4: 12;
        !          1656:
        !          1657: IMPODD_9_5:
        !          1658:   rep=isin_G_H(po,r,31,28);
        !          1659:   if (!rep) goto IMPODD_9_9;
        !          1660: /* IMPODD_9_6: */
        !          1661:   rep=isin_G_H(po,r,28,22);
        !          1662:   if (!rep) return 28;
        !          1663: IMPODD_9_7:
        !          1664:   rep=isin_G_H(po,r,22,13);
        !          1665:   if (!rep) return 22;
        !          1666: IMPODD_9_8:
        !          1667:   rep=isin_G_H(po,r,13,4);
        !          1668:   return rep? 4: 13;
        !          1669:
        !          1670: IMPODD_9_9:
        !          1671:   rep=isin_G_H(po,r,31,24);
        !          1672:   if (!rep) return 31;
        !          1673: /* IMPODD_9_10: */
        !          1674:   rep=isin_G_H(po,r,24,22);
        !          1675:   if (rep) goto IMPODD_9_7;
        !          1676: /* IMPODD_9_11: */
        !          1677:   rep=isin_G_H(po,r,24,20);
        !          1678:   if (rep) goto IMPODD_9_3;
        !          1679: /* IMPODD_9_12: */
        !          1680:   rep=isin_G_H(po,r,24,18);
        !          1681:   if (!rep) return 24;
        !          1682: /* IMPODD_9_13: */
        !          1683:   rep=isin_G_H(po,r,18,13);
        !          1684:   if (rep) goto IMPODD_9_8;
        !          1685: /* IMPODD_9_14: */
        !          1686:   rep=isin_G_H(po,r,18,12);
        !          1687:   if (rep) goto IMPODD_9_4;
        !          1688: /* IMPODD_9_15: */
        !          1689:   rep=isin_G_H(po,r,18,8);
        !          1690:   if (!rep) return 18;
        !          1691: /* IMPODD_9_16: */
        !          1692:   rep=isin_G_H(po,r,8,4);
        !          1693:   return rep? 4: 8;
        !          1694: }
        !          1695:
        !          1696: static long
        !          1697: galoisimpeven9(GEN po, GEN *r)
        !          1698: {
        !          1699:   long rep;
        !          1700:
        !          1701: /* IMPEVEN_9_1: */
        !          1702:   rep=isin_G_H(po,r,30,25);
        !          1703:   if (!rep) goto IMPEVEN_9_7;
        !          1704: /* IMPEVEN_9_2: */
        !          1705:   rep=isin_G_H(po,r,25,17);
        !          1706:   if (!rep) return 25;
        !          1707: IMPEVEN_9_3:
        !          1708:   rep=isin_G_H(po,r,17,7);
        !          1709:   if (!rep) goto IMPEVEN_9_5;
        !          1710: IMPEVEN_9_4:
        !          1711:   rep=isin_G_H(po,r,7,2);
        !          1712:   return rep? 2: 7;
        !          1713:
        !          1714: IMPEVEN_9_5:
        !          1715:   rep=isin_G_H(po,r,17,6);
        !          1716:   if (!rep) return 17;
        !          1717: IMPEVEN_9_6:
        !          1718:   rep=isin_G_H(po,r,6,1);
        !          1719:   return rep? 1: 6;
        !          1720:
        !          1721: IMPEVEN_9_7:
        !          1722:   rep=isin_G_H(po,r,30,21);
        !          1723:   if (!rep) return 30;
        !          1724: /* IMPEVEN_9_8: */
        !          1725:   rep=isin_G_H(po,r,21,17);
        !          1726:   if (rep) goto IMPEVEN_9_3;
        !          1727: /* IMPEVEN_9_9: */
        !          1728:   rep=isin_G_H(po,r,21,11);
        !          1729:   if (!rep) goto IMPEVEN_9_13;
        !          1730: /* IMPEVEN_9_10: */
        !          1731:   rep=isin_G_H(po,r,11,7);
        !          1732:   if (rep) goto IMPEVEN_9_4;
        !          1733: /* IMPEVEN_9_11: */
        !          1734:   rep=isin_G_H(po,r,11,5);
        !          1735:   if (!rep) return 11;
        !          1736: /* IMPEVEN_9_12: */
        !          1737:   rep=isin_G_H(po,r,5,2);
        !          1738:   return rep? 2: 5;
        !          1739:
        !          1740: IMPEVEN_9_13:
        !          1741:   rep=isin_G_H(po,r,21,10);
        !          1742:   if (!rep) return 21;
        !          1743: /* IMPEVEN_9_14: */
        !          1744:   rep=isin_G_H(po,r,10,6);
        !          1745:   if (rep) goto IMPEVEN_9_6;
        !          1746: /* IMPEVEN_9_15: */
        !          1747:   rep=isin_G_H(po,r,10,3);
        !          1748:   if (!rep) return 10;
        !          1749: /* IMPEVEN_9_16: */
        !          1750:   rep=isin_G_H(po,r,3,1);
        !          1751:   return rep? 1: 3;
        !          1752: }
        !          1753:
        !          1754: static long
        !          1755: closure9(GEN po)
        !          1756: {
        !          1757:   long nbrac,rep;
        !          1758:   GEN r[NMAX];
        !          1759:
        !          1760:   r[0]=myroots(po,PRMAX); nbrac=lg(r[0])-1;
        !          1761:   if (nbrac!=N) err(talker,"incompatible number of roots in closure9()");
        !          1762:   preci(r,PREC);
        !          1763:   if (!CAR)
        !          1764:   {
        !          1765:   /* CLOS_9_1: */
        !          1766:     rep=isin_G_H(po,r,34,31);
        !          1767:     if (rep) return galoisimpodd9(po,r);
        !          1768:   }
        !          1769:   else
        !          1770:   {
        !          1771:   /* CLOS_9_2: */
        !          1772:     rep=isin_G_H(po,r,33,30);
        !          1773:     if (rep) return galoisimpeven9(po,r);
        !          1774:   }
        !          1775:   return galoisprim9(po,r);
        !          1776: }
        !          1777:
        !          1778: static PERM
        !          1779: data9(long n1, long n2, GROUP *t)
        !          1780: {
        !          1781:   switch(n1)
        !          1782:   {
        !          1783:     case 6: if (n2!=1) break;
        !          1784:       *t=initgroup(N,3);
        !          1785:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 9, 7);
        !          1786:       _aff((*t)[3], 1, 2, 3, 4, 5, 6, 9, 7, 8);
        !          1787:       return SID;
        !          1788:     case 7: if (n2!=2) break;
        !          1789:       *t=initgroup(N,3);
        !          1790:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 9, 7);
        !          1791:       _aff((*t)[3], 1, 2, 3, 4, 5, 6, 9, 7, 8);
        !          1792:       return SID;
        !          1793:     case 8: if (n2!=4) break;
        !          1794:       *t=initgroup(N,2);
        !          1795:       _aff((*t)[2], 1, 4, 7, 2, 5, 8, 3, 6, 9);
        !          1796:       return SID;
        !          1797:     case 12: if (n2!=4) break;
        !          1798:       *t=initgroup(N,3);
        !          1799:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 9, 7);
        !          1800:       _aff((*t)[3], 1, 2, 3, 4, 5, 6, 9, 7, 8);
        !          1801:       return SID;
        !          1802:     case 13: if (n2!=4) break;
        !          1803:       *t=initgroup(N,1);
        !          1804:       return _cr(1, 4, 7, 2, 5, 8, 3, 6, 9);
        !          1805:     case 14: if (n2!=9) break;
        !          1806:       *t=initgroup(N,3);
        !          1807:       _aff((*t)[2], 1, 2, 3, 5, 6, 4, 9, 7, 8);
        !          1808:       _aff((*t)[3], 1, 2, 3, 6, 4, 5, 8, 9, 7);
        !          1809:       return SID;
        !          1810:     case 17: if (n2!=6) break;
        !          1811:       *t=initgroup(N,2);
        !          1812:       _aff((*t)[2], 1, 2, 3, 7, 8, 9, 4, 5, 6);
        !          1813:       return SID;
        !          1814:     case 21: if (n2!=10) break;
        !          1815:       *t=initgroup(N,2);
        !          1816:       _aff((*t)[2], 1, 2, 3, 7, 8, 9, 4, 5, 6);
        !          1817:       return SID;
        !          1818:     case 33: if (n2!=32) break;
        !          1819:       *t=initgroup(N,2);
        !          1820:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 7, 9, 8);
        !          1821:       return SID;
        !          1822:   }
        !          1823:   *t=initgroup(N,1); return SID;
        !          1824: }
        !          1825:
        !          1826: static long
        !          1827: galoismodulo9(GEN pol, GEN dpol)
        !          1828: {
        !          1829:   long av = avma, res, gr[35];
        !          1830:   long **TYP = partitions(9), **GR = (long**) cgeti(33);
        !          1831:
        !          1832:   /* 42 TYPES ORDONNES CROISSANT (T[1],...,T[30])*/
        !          1833:
        !          1834:   GR[ 1]= _gr( -3, 1,12,30);
        !          1835:   GR[ 2]= _gr( -2, 1,12);
        !          1836:   GR[ 3]= _gr( -4, 1,5,12,30);
        !          1837:   GR[ 4]= _gr(  4, 1,4,12,26);
        !          1838:   GR[ 5]= _gr( -3, 1,5,12);
        !          1839:   GR[ 6]= _gr( -4, 1,10,12,30);
        !          1840:   GR[ 7]= _gr( -3, 1,10,12);
        !          1841:   GR[ 8]= _gr(  5, 1,4,5,12,26);
        !          1842:   GR[ 9]= _gr( -4, 1,5,12,18);
        !          1843:   GR[10]= _gr( -6, 1,5,10,12,25,30);
        !          1844:   GR[11]= _gr( -5, 1,5,10,12,25);
        !          1845:   GR[12]= _gr(  5, 1,4,10,12,26);
        !          1846:   GR[13]= _gr(  5, 1,4,10,12,26);
        !          1847:   GR[14]= _gr( -4, 1,5,12,18);
        !          1848:   GR[15]= _gr(  5, 1,5,12,18,29);
        !          1849:   GR[16]= _gr(  6, 1,4,5,12,18,26);
        !          1850:   GR[17]= _gr( -5, 1,6,10,12,30);
        !          1851:   GR[18]= _gr(  7, 1,4,5,10,12,25,26);
        !          1852:   GR[19]= _gr(  7, 1,4,5,12,18,26,29);
        !          1853:   GR[20]= _gr(  9, 1,4,6,9,10,12,24,26,30);
        !          1854:   GR[21]= _gr( -7, 1,5,6,10,12,25,30);
        !          1855:   GR[22]= _gr(  7, 1,4,6,10,12,26,30);
        !          1856:   GR[23]= _gr( -6, 1,5,10,12,18,25);
        !          1857:   GR[24]= _gr( 11, 1,4,5,6,9,10,12,24,25,26,30);
        !          1858:   GR[25]= _gr( -7, 1,3,6,8,10,12,30);
        !          1859:   GR[26]= _gr(  9, 1,4,5,10,12,18,25,26,29);
        !          1860:   GR[27]= _gr( -5, 1,5,12,27,30);
        !          1861:   GR[28]= _gr( 12, 1,2,3,4,6,7,8,10,11,12,26,30);
        !          1862:   GR[29]= _gr( 12, 1,3,4,6,8,9,10,12,15,24,26,30);
        !          1863:   GR[30]= _gr(-11, 1,3,5,6,8,10,12,14,17,25,30);
        !          1864:   GR[31]= _gr( 19, 1,2,3,4,5,6,7,8,9,10,11,12,14,15,17,24,25,26,30);
        !          1865:   GR[32]= _gr( -7, 1,5,10,12,25,27,30);
        !          1866:
        !          1867:   gr[0]=35; res = galmodp(pol,dpol,TYP,gr,GR);
        !          1868:   avma=av; if (!res) return 0;
        !          1869:   return CAR? 33: 34;
        !          1870: }
        !          1871:
        !          1872: /* BIBLIOTHEQUE POUR LE DEGRE 10 */
        !          1873: static long
        !          1874: galoisprim10(GEN po, GEN *r)
        !          1875: {
        !          1876:   long rep;
        !          1877:   if (CAR)
        !          1878:   {
        !          1879:   /* PRIM_10_1: */
        !          1880:     rep=isin_G_H(po,r,44,31);
        !          1881:     if (!rep) return 44;
        !          1882:   /* PRIM_10_2: */
        !          1883:     rep=isin_G_H(po,r,31,26);
        !          1884:     if (!rep) return 31;
        !          1885:   /* PRIM_10_3: */
        !          1886:     rep=isin_G_H(po,r,26,7);
        !          1887:     return rep? 7: 26;
        !          1888:   }
        !          1889:   else
        !          1890:   {
        !          1891:   /* PRIM_10_4: */
        !          1892:     rep=isin_G_H(po,r,45,35);
        !          1893:     if (!rep) return 45;
        !          1894:   /* PRIM_10_5: */
        !          1895:     rep=isin_G_H(po,r,35,32);
        !          1896:     if (!rep) goto PRIM_10_7;
        !          1897:   /* PRIM_10_6: */
        !          1898:     rep=isin_G_H(po,r,32,13);
        !          1899:     return rep? 13: 32;
        !          1900:
        !          1901:    PRIM_10_7:
        !          1902:     rep=isin_G_H(po,r,35,30);
        !          1903:     return rep? 30: 35;
        !          1904:   }
        !          1905: }
        !          1906:
        !          1907: static long
        !          1908: galoisimpeven10(GEN po, GEN *r, long nogr)
        !          1909: {
        !          1910:   long rep;
        !          1911:   if (nogr==42)
        !          1912:   {
        !          1913:  /* IMPEVEN_10_1: */
        !          1914:     rep=isin_G_H(po,r,42,28);
        !          1915:     if (!rep) return 42;
        !          1916:  /* IMPEVEN_10_2: */
        !          1917:     rep=isin_G_H(po,r,28,18);
        !          1918:     return rep? 18: 28;
        !          1919:   }
        !          1920:   else
        !          1921:   {
        !          1922:  /* IMPEVEN_10_3: */
        !          1923:     rep=isin_G_H(po,r,37,34);
        !          1924:     if (!rep) goto IMPEVEN_10_5;
        !          1925:  /* IMPEVEN_10_4: */
        !          1926:     rep=isin_G_H(po,r,34,15);
        !          1927:     if (rep) goto IMPEVEN_10_7; else return 34;
        !          1928:
        !          1929:   IMPEVEN_10_5:
        !          1930:     rep=isin_G_H(po,r,37,24);
        !          1931:     if (!rep) return 37;
        !          1932:  /* IMPEVEN_10_6: */
        !          1933:     rep=isin_G_H(po,r,24,15);
        !          1934:     if (!rep) return 24;
        !          1935:   IMPEVEN_10_7:
        !          1936:     rep=isin_G_H(po,r,15,8);
        !          1937:     return rep? 8: 15;
        !          1938:   }
        !          1939: }
        !          1940:
        !          1941: static long
        !          1942: galoisimpodd10(GEN po, GEN *r, long nogr)
        !          1943: {
        !          1944:   long rep;
        !          1945:   if (nogr==43)
        !          1946:   {
        !          1947:  /*  IMPODD_10_1: */
        !          1948:     rep=isin_G_H(po,r,43,41);
        !          1949:     if (!rep) goto IMPODD_10_3;
        !          1950:  /* IMPODD_10_2: */
        !          1951:     rep=isin_G_H(po,r,41,40);
        !          1952:     if (rep) goto IMPODD_10_4; else goto IMPODD_10_5;
        !          1953:
        !          1954:    IMPODD_10_3:
        !          1955:     rep=isin_G_H(po,r,43,33);
        !          1956:     if (rep) goto IMPODD_10_6; else return 43;
        !          1957:
        !          1958:    IMPODD_10_4:
        !          1959:     rep=isin_G_H(po,r,40,21);
        !          1960:     if (rep) goto IMPODD_10_7; else goto IMPODD_10_8;
        !          1961:
        !          1962:    IMPODD_10_5:
        !          1963:     rep=isin_G_H(po,r,41,27);
        !          1964:     if (rep) goto IMPODD_10_9; else goto IMPODD_10_10;
        !          1965:
        !          1966:    IMPODD_10_6:
        !          1967:     rep=isin_G_H(po,r,33,27);
        !          1968:     if (rep) goto IMPODD_10_9; else return 33;
        !          1969:
        !          1970:    IMPODD_10_7:
        !          1971:     rep=isin_G_H(po,r,21,10);
        !          1972:     if (rep) goto IMPODD_10_12; else goto IMPODD_10_13;
        !          1973:
        !          1974:    IMPODD_10_8:
        !          1975:     rep=isin_G_H(po,r,40,12);
        !          1976:     if (rep) goto IMPODD_10_14; else goto IMPODD_10_15;
        !          1977:
        !          1978:    IMPODD_10_9:
        !          1979:     rep=isin_G_H(po,r,27,21);
        !          1980:     if (rep) goto IMPODD_10_7; else goto IMPODD_10_16;
        !          1981:
        !          1982:    IMPODD_10_10:
        !          1983:     rep=isin_G_H(po,r,41,22);
        !          1984:     if (!rep) return 41;
        !          1985:  /* IMPODD_10_11: */
        !          1986:     rep=isin_G_H(po,r,22,12);
        !          1987:     if (rep) goto IMPODD_10_14; else goto IMPODD_10_18;
        !          1988:
        !          1989:    IMPODD_10_12:
        !          1990:     rep=isin_G_H(po,r,10,4);
        !          1991:     return rep? 4: 10;
        !          1992:
        !          1993:    IMPODD_10_13:
        !          1994:     rep=isin_G_H(po,r,21,9);
        !          1995:     if (rep) goto IMPODD_10_19; else return 21;
        !          1996:    IMPODD_10_14:
        !          1997:     rep=isin_G_H(po,r,12,4);
        !          1998:     return rep? 4: 12;
        !          1999:
        !          2000:    IMPODD_10_15:
        !          2001:     rep=isin_G_H(po,r,40,11);
        !          2002:     if (rep) goto IMPODD_10_20; else return 40;
        !          2003:    IMPODD_10_16:
        !          2004:     rep=isin_G_H(po,r,27,20);
        !          2005:     if (!rep) goto IMPODD_10_21;
        !          2006:  /* IMPODD_10_17: */
        !          2007:     rep=isin_G_H(po,r,20,10);
        !          2008:     if (rep) goto IMPODD_10_12; return 20;
        !          2009:
        !          2010:    IMPODD_10_18:
        !          2011:     rep=isin_G_H(po,r,22,11);
        !          2012:     if (rep) goto IMPODD_10_20; else goto IMPODD_10_23;
        !          2013:
        !          2014:    IMPODD_10_19:
        !          2015:     rep=isin_G_H(po,r,9,6);
        !          2016:     if (rep) goto IMPODD_10_24; else goto IMPODD_10_25;
        !          2017:
        !          2018:    IMPODD_10_20:
        !          2019:     rep=isin_G_H(po,r,11,3);
        !          2020:     if (rep) goto IMPODD_10_26; else return 11;
        !          2021:
        !          2022:    IMPODD_10_21:
        !          2023:     rep=isin_G_H(po,r,27,19);
        !          2024:     if (rep) goto IMPODD_10_27;
        !          2025:  /* IMPODD_10_22: */
        !          2026:     rep=isin_G_H(po,r,27,17);
        !          2027:     if (rep) goto IMPODD_10_28; else return 27;
        !          2028:
        !          2029:    IMPODD_10_23:
        !          2030:     rep=isin_G_H(po,r,22,5);
        !          2031:     if (rep) goto IMPODD_10_29; else return 22;
        !          2032:
        !          2033:    IMPODD_10_24:
        !          2034:     rep=isin_G_H(po,r,6,2);
        !          2035:     if (rep) return 2; else goto IMPODD_10_30;
        !          2036:
        !          2037:    IMPODD_10_25:
        !          2038:     rep=isin_G_H(po,r,9,3);
        !          2039:     if (!rep) return 9;
        !          2040:    IMPODD_10_26:
        !          2041:     rep=isin_G_H(po,r,3,2);
        !          2042:     if (rep) return 2; else goto IMPODD_10_31;
        !          2043:
        !          2044:    IMPODD_10_27:
        !          2045:     rep=isin_G_H(po,r,19,9);
        !          2046:     if (rep) goto IMPODD_10_19; else return 19;
        !          2047:
        !          2048:    IMPODD_10_28:
        !          2049:     rep=isin_G_H(po,r,17,10);
        !          2050:     if (rep) goto IMPODD_10_12; else goto IMPODD_10_32;
        !          2051:
        !          2052:    IMPODD_10_29:
        !          2053:     rep=isin_G_H(po,r,5,4);
        !          2054:     if (rep) return 4; else goto IMPODD_10_33;
        !          2055:
        !          2056:    IMPODD_10_30:
        !          2057:     rep=isin_G_H(po,r,6,1);
        !          2058:     return rep? 1: 6;
        !          2059:
        !          2060:    IMPODD_10_31:
        !          2061:     rep=isin_G_H(po,r,3,1);
        !          2062:     return rep? 1: 3;
        !          2063:
        !          2064:    IMPODD_10_32:
        !          2065:     rep=isin_G_H(po,r,17,9);
        !          2066:     if (rep) goto IMPODD_10_19; else goto IMPODD_10_60;
        !          2067:
        !          2068:    IMPODD_10_33:
        !          2069:     rep=isin_G_H(po,r,5,3);
        !          2070:     if (rep) goto IMPODD_10_26; else return 5;
        !          2071:
        !          2072:    IMPODD_10_60:
        !          2073:     rep=isin_G_H(po,r,17,5);
        !          2074:     if (rep) goto IMPODD_10_29; else return 17;
        !          2075:   }
        !          2076:   else
        !          2077:   {
        !          2078:   /* IMPODD_10_34: */
        !          2079:     rep=isin_G_H(po,r,39,38);
        !          2080:     if (!rep) goto IMPODD_10_36;
        !          2081:   /* IMPODD_10_35: */
        !          2082:     rep=isin_G_H(po,r,38,25);
        !          2083:     if (rep) goto IMPODD_10_37; else goto IMPODD_10_38;
        !          2084:
        !          2085:    IMPODD_10_36:
        !          2086:     rep=isin_G_H(po,r,39,36);
        !          2087:     if (rep) goto IMPODD_10_39; else goto IMPODD_10_40;
        !          2088:
        !          2089:    IMPODD_10_37:
        !          2090:     rep=isin_G_H(po,r,25,4);
        !          2091:     return rep? 4: 25;
        !          2092:
        !          2093:    IMPODD_10_38:
        !          2094:     rep=isin_G_H(po,r,38,12);
        !          2095:     if (rep) goto IMPODD_10_41; else return 38;
        !          2096:
        !          2097:    IMPODD_10_39:
        !          2098:     rep=isin_G_H(po,r,36,23);
        !          2099:     if (rep) goto IMPODD_10_42; else goto IMPODD_10_43;
        !          2100:
        !          2101:    IMPODD_10_40:
        !          2102:     rep=isin_G_H(po,r,39,29);
        !          2103:     if (rep) goto IMPODD_10_44; else goto IMPODD_10_45;
        !          2104:
        !          2105:    IMPODD_10_41:
        !          2106:     rep=isin_G_H(po,r,12,4);
        !          2107:     return rep? 4: 12;
        !          2108:
        !          2109:    IMPODD_10_42:
        !          2110:     rep=isin_G_H(po,r,23,16);
        !          2111:     if (rep) goto IMPODD_10_46; else goto IMPODD_10_47;
        !          2112:
        !          2113:    IMPODD_10_43:
        !          2114:     rep=isin_G_H(po,r,36,11);
        !          2115:     if (rep) goto IMPODD_10_48; else return 36;
        !          2116:
        !          2117:    IMPODD_10_44:
        !          2118:     rep=isin_G_H(po,r,29,25);
        !          2119:     if (rep) goto IMPODD_10_37; else goto IMPODD_10_49;
        !          2120:
        !          2121:    IMPODD_10_45:
        !          2122:     rep=isin_G_H(po,r,39,22);
        !          2123:     if (rep) goto IMPODD_10_50; else return 39;
        !          2124:
        !          2125:    IMPODD_10_46:
        !          2126:     rep=isin_G_H(po,r,16,2);
        !          2127:     return rep? 2: 16;
        !          2128:
        !          2129:    IMPODD_10_47:
        !          2130:     rep=isin_G_H(po,r,23,14);
        !          2131:     if (rep) goto IMPODD_10_51; else goto IMPODD_10_52;
        !          2132:
        !          2133:    IMPODD_10_48:
        !          2134:     rep=isin_G_H(po,r,11,3);
        !          2135:     if (rep) goto IMPODD_10_53; else return 11;
        !          2136:
        !          2137:    IMPODD_10_49:
        !          2138:     rep=isin_G_H(po,r,29,23);
        !          2139:     if (rep) goto IMPODD_10_42; else goto IMPODD_10_54;
        !          2140:
        !          2141:    IMPODD_10_50:
        !          2142:     rep=isin_G_H(po,r,22,12);
        !          2143:     if (rep) goto IMPODD_10_41; else goto IMPODD_10_55;
        !          2144:
        !          2145:    IMPODD_10_51:
        !          2146:     rep=isin_G_H(po,r,14,1);
        !          2147:     return rep? 1: 14;
        !          2148:
        !          2149:    IMPODD_10_52:
        !          2150:     rep=isin_G_H(po,r,23,3);
        !          2151:     if (!rep) return 23;
        !          2152:    IMPODD_10_53:
        !          2153:     rep=isin_G_H(po,r,3,2);
        !          2154:     if (rep) return 2; else goto IMPODD_10_57;
        !          2155:
        !          2156:    IMPODD_10_54:
        !          2157:     rep=isin_G_H(po,r,29,5);
        !          2158:     if (rep) goto IMPODD_10_58; else return 29;
        !          2159:
        !          2160:    IMPODD_10_55:
        !          2161:     rep=isin_G_H(po,r,22,11);
        !          2162:     if (rep) goto IMPODD_10_48;
        !          2163:  /* IMPODD_10_56: */
        !          2164:     rep=isin_G_H(po,r,22,5);
        !          2165:     if (rep) goto IMPODD_10_58; else return 22;
        !          2166:
        !          2167:    IMPODD_10_57:
        !          2168:     rep=isin_G_H(po,r,3,1);
        !          2169:     return rep? 1: 3;
        !          2170:
        !          2171:    IMPODD_10_58:
        !          2172:     rep=isin_G_H(po,r,5,4);
        !          2173:     if (rep) return 4;
        !          2174:  /* IMPODD_10_59: */
        !          2175:     rep=isin_G_H(po,r,5,3);
        !          2176:     if (rep) goto IMPODD_10_53; else return 5;
        !          2177:   }
        !          2178: }
        !          2179:
        !          2180: static long
        !          2181: closure10(GEN po)
        !          2182: {
        !          2183:   long nbrac,rep;
        !          2184:   GEN r[NMAX];
        !          2185:
        !          2186:   r[0]=myroots(po,PRMAX); nbrac=lg(r[0])-1;
        !          2187:   if (nbrac!=N) err(talker,"incompatible number of roots in closure10()");
        !          2188:
        !          2189:   preci(r,PREC);
        !          2190:   if (CAR)
        !          2191:   {
        !          2192:   /* CLOS_10_1: */
        !          2193:     rep=isin_G_H(po,r,44,42);
        !          2194:     if (rep) return galoisimpeven10(po,r,42);
        !          2195:   /* CLOS_10_2: */
        !          2196:     rep=isin_G_H(po,r,44,37);
        !          2197:     if (rep) return galoisimpeven10(po,r,37);
        !          2198:   }
        !          2199:   else
        !          2200:   {
        !          2201:   /* CLOS_10_3: */
        !          2202:     rep=isin_G_H(po,r,45,43);
        !          2203:     if (rep) return galoisimpodd10(po,r,43);
        !          2204:   /* CLOS_10_4: */
        !          2205:     rep=isin_G_H(po,r,45,39);
        !          2206:     if (rep) return galoisimpodd10(po,r,39);
        !          2207:   }
        !          2208:   return galoisprim10(po,r);
        !          2209: }
        !          2210:
        !          2211: static PERM
        !          2212: data10(long n1,long n2,GROUP *t)
        !          2213: {
        !          2214:   switch(n1)
        !          2215:   {
        !          2216:     case 6: if (n2!=2) break;
        !          2217:       *t=initgroup(N,1);
        !          2218:       return _cr(1, 2, 3, 4, 5, 6, 10, 9, 8, 7);
        !          2219:     case 9: if (n2!=3 && n2!=6) break;
        !          2220:       *t=initgroup(N,2);
        !          2221:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 10, 9, 8, 7);
        !          2222:       return SID;
        !          2223:     case 10: *t=initgroup(N,2);
        !          2224:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 10, 9, 8, 7);
        !          2225:       return SID;
        !          2226:     case 14: case 16:*t=initgroup(N,1);
        !          2227:       return _cr(1, 3, 5, 7, 9, 2, 4, 6, 8, 10);
        !          2228:     case 17: if (n2!=5) break;
        !          2229:       *t=initgroup(N,2);
        !          2230:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 10, 9, 8, 7);
        !          2231:       return SID;
        !          2232:     case 19: case 20: *t=initgroup(N,2);
        !          2233:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 10, 7, 9);
        !          2234:       return SID;
        !          2235:     case 21: if (n2!=10) break;
        !          2236:       *t=initgroup(N,1);
        !          2237:       return _cr(1, 2, 3, 4, 5, 6, 8, 10, 7, 9);
        !          2238:     case 23: if (n2!=3) break;
        !          2239:       *t=initgroup(N,1);
        !          2240:       return _cr(1, 3, 5, 7, 9, 2, 4, 6, 8, 10);
        !          2241:     case 25: *t=initgroup(N,1);
        !          2242:       return _cr(1, 3, 5, 7, 9, 2, 4, 6, 8, 10);
        !          2243:     case 26: *t=initgroup(N,2);
        !          2244:       _aff((*t)[2], 1, 2, 4, 9, 6, 8, 10, 3, 7, 5);
        !          2245:       return _cr(1, 2, 3, 10, 6, 5, 7, 4, 8, 9);
        !          2246:     case 27: if (n2!=17 && n2!=21) break;
        !          2247:       *t=initgroup(N,2);
        !          2248:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 10, 7, 9);
        !          2249:       return SID;
        !          2250:     case 28: *t=initgroup(N,2);
        !          2251:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 8, 10, 7, 9);
        !          2252:       return SID;
        !          2253:     case 29: if (n2!=5) break;
        !          2254:       *t=initgroup(N,1);
        !          2255:       return _cr(1, 3, 5, 7, 9, 2, 4, 6, 8, 10);
        !          2256:     case 32: *t=initgroup(N,2);
        !          2257:       _aff((*t)[2], 1, 2, 4, 9, 6, 8, 10, 3, 7, 5);
        !          2258:       return _cr(1, 2, 3, 10, 6, 5, 7, 4, 8, 9);
        !          2259:     case 36: if (n2!=11) break;
        !          2260:       *t=initgroup(N,1);
        !          2261:       return _cr(1, 3, 5, 7, 9, 2, 4, 6, 8, 10);
        !          2262:     case 38: if (n2!=12) break;
        !          2263:       *t=initgroup(N,1);
        !          2264:       return _cr(1, 3, 5, 7, 9, 2, 4, 6, 8, 10);
        !          2265:     case 39: if (n2!=22) break;
        !          2266:       *t=initgroup(N,1);
        !          2267:       return _cr(1, 3, 5, 7, 9, 2, 4, 6, 8, 10);
        !          2268:     case 40: if (n2!=12) break;
        !          2269:       *t=initgroup(N,1);
        !          2270:       return _cr(1, 2, 3, 4, 5, 6, 7, 8, 10, 9);
        !          2271:     case 41: if (n2!=22 && n2!=40) break;
        !          2272:       *t=initgroup(N,2);
        !          2273:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 7, 8, 10, 9);
        !          2274:       return SID;
        !          2275:   }
        !          2276:   *t=initgroup(N,1); return SID;
        !          2277: }
        !          2278:
        !          2279: static long
        !          2280: galoismodulo10(GEN pol, GEN dpol)
        !          2281: {
        !          2282:   long av = avma, res, gr[46];
        !          2283:   long **TYP = partitions(10), **GR = (long**) cgeti(45);
        !          2284:
        !          2285:   GR[ 1]= _gr(  4, 1,6,30,42);
        !          2286:   GR[ 2]= _gr(  3, 1,6,30);
        !          2287:   GR[ 3]= _gr(  5, 1,5,6,30,42);
        !          2288:   GR[ 4]= _gr(  4, 1,5,23,30);
        !          2289:   GR[ 5]= _gr(  7, 1,5,6,22,23,30,42);
        !          2290:   GR[ 6]= _gr(  5, 1,6,24,30,42);
        !          2291:   GR[ 7]= _gr( -4, 1,5,14,30);
        !          2292:   GR[ 8]= _gr( -4, 1,3,5,30);
        !          2293:   GR[ 9]= _gr(  6, 1,5,6,24,30,42);
        !          2294:   GR[10]= _gr(  5, 1,5,23,24,30);
        !          2295:   GR[11]= _gr(  7, 1,5,6,11,30,33,42);
        !          2296:   GR[12]= _gr(  7, 1,5,6,11,23,30,33);
        !          2297:   GR[13]= _gr(  7, 1,4,5,14,23,30,34);
        !          2298:   GR[14]= _gr(  8, 1,2,3,4,5,6,30,42);
        !          2299:   GR[15]= _gr( -6, 1,3,5,18,22,30);
        !          2300:   GR[16]= _gr(  7, 1,3,5,6,17,23,30);
        !          2301:   GR[17]= _gr(  8, 1,5,6,22,23,24,30,42);
        !          2302:   GR[18]= _gr( -6, 1,5,22,24,30,40);
        !          2303:   GR[19]= _gr(  7, 1,5,6,22,24,30,42);
        !          2304:   GR[20]= _gr(  6, 1,5,22,23,24,30);
        !          2305:   GR[21]= _gr(  9, 1,3,5,6,23,24,26,30,42);
        !          2306:   GR[22]= _gr( 11, 1,3,5,6,11,13,22,23,30,33,42);
        !          2307:   GR[23]= _gr( 12, 1,2,3,4,5,6,17,18,22,23,30,42);
        !          2308:   GR[24]= _gr( -7, 1,3,5,18,22,30,40);
        !          2309:   GR[25]= _gr(  8, 1,3,5,18,22,23,30,39);
        !          2310:   GR[26]= _gr( -5, 1,5,14,22,30);
        !          2311:   GR[27]= _gr( 10, 1,3,5,6,22,23,24,26,30,42);
        !          2312:   GR[28]= _gr( -8, 1,3,5,22,24,26,30,40);
        !          2313:   GR[29]= _gr( 14, 1,2,3,4,5,6,17,18,22,23,30,39,40,42);
        !          2314:   GR[30]= _gr(  8, 1,5,6,14,22,30,39,42);
        !          2315:   GR[31]= _gr( -6, 1,5,14,22,30,40);
        !          2316:   GR[32]= _gr(  8, 1,4,5,14,22,23,30,34);
        !          2317:   GR[33]= _gr( 14, 1,3,5,6,15,17,22,23,24,26,29,30,40,42);
        !          2318:   GR[34]= _gr( -9, 1,3,5,11,13,18,22,30,32);
        !          2319:   GR[35]= _gr( 12, 1,4,5,6,14,22,23,30,34,39,40,42);
        !          2320:   GR[36]= _gr( 18, 1,2,3,4,5,6,11,12,13,17,18,22,23,30,31,32,33,42);
        !          2321:   GR[37]= _gr(-12, 1,3,5,11,13,16,18,22,30,32,35,40);
        !          2322:   GR[38]= _gr( 18, 1,3,4,5,6,11,13,15,17,18,21,22,23,30,32,33,35,39);
        !          2323:   GR[39]= _gr( 24, 1,2,3,4,5,6,11,12,13,15,16,17,18,21,22,23,30,31,32,33,35,39,40,42);
        !          2324:   GR[40]= _gr( 14, 1,3,5,6,7,9,11,23,24,26,27,30,33,42);
        !          2325:   GR[41]= _gr( 18, 1,3,5,6,7,9,11,13,16,20,22,23,24,26,27,30,33,42);
        !          2326:   GR[42]= _gr(-17, 1,3,5,7,9,11,13,16,18,20,22,24,26,27,30,35,40);
        !          2327:   GR[43]= _gr( 32, 1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,33,35,40,42);
        !          2328:   GR[44]= _gr(-22, 1,3,5,7,9,11,13,14,16,18,20,22,24,26,27,30,32,35,36,38,40,41);
        !          2329:
        !          2330:   gr[0]=46; res = galmodp(pol,dpol,TYP,gr,GR);
        !          2331:   avma=av; if (!res) return 0;
        !          2332:   return CAR? 44: 45;
        !          2333: }
        !          2334:
        !          2335: /* BIBLIOTHEQUE POUR LE DEGRE 11 */
        !          2336:
        !          2337: static long
        !          2338: closure11(GEN po)
        !          2339: {
        !          2340:   long nbrac,rep;
        !          2341:   GEN r[NMAX];
        !          2342:
        !          2343:   r[0]=myroots(po,PRMAX); nbrac=lg(r[0])-1;
        !          2344:   if (nbrac!=N) err(talker,"incompatible number of roots in closure11()");
        !          2345:   preci(r,PREC);
        !          2346:   if (CAR)
        !          2347:   {
        !          2348:   /* EVEN_11_1: */
        !          2349:     rep=isin_G_H(po,r,7,6);
        !          2350:     if (!rep) return 7;
        !          2351:   /* EVEN_11_2: */
        !          2352:     rep=isin_G_H(po,r,6,5);
        !          2353:     if (!rep) return 6;
        !          2354:   /* EVEN_11_3: */
        !          2355:     rep=isin_G_H(po,r,5,3);
        !          2356:     if (!rep) return 5;
        !          2357:   /* EVEN_11_4: */
        !          2358:     rep=isin_G_H(po,r,3,1);
        !          2359:     return rep? 1: 3;
        !          2360:   }
        !          2361:   else
        !          2362:   {
        !          2363:   /* ODD_11_1: */
        !          2364:     rep=isin_G_H(po,r,8,4);
        !          2365:     if (!rep) return 8;
        !          2366:   /* ODD_11_2: */
        !          2367:     rep=isin_G_H(po,r,4,2);
        !          2368:     return rep? 2: 4;
        !          2369:   }
        !          2370: }
        !          2371:
        !          2372: static PERM
        !          2373: data11(long n1, GROUP *t)
        !          2374: {
        !          2375:   switch(n1)
        !          2376:   {
        !          2377:     case 5: *t=initgroup(N,1);
        !          2378:       return _cr(1, 2, 3, 7, 8, 6, 11, 5, 9, 4, 10);
        !          2379:     case 6: *t=initgroup(N,1);
        !          2380:       return _cr(1, 2, 3, 4, 6, 10, 11, 9, 7, 5, 8);
        !          2381:     case 7: *t=initgroup(N,2);
        !          2382:       _aff((*t)[2], 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 10);
        !          2383:       return SID;
        !          2384:   }
        !          2385:   *t=initgroup(N,1); return SID;
        !          2386: }
        !          2387:
        !          2388: static long
        !          2389: galoismodulo11(GEN pol, GEN dpol)
        !          2390: {
        !          2391:   long av = avma, res, gr[6] = {0, 1,1,1,1,1};
        !          2392:   long **TYP = (long**) cgeti(9);
        !          2393:
        !          2394:   TYP[0] = new_chunk(1);
        !          2395:   TYP[1] = _gr(11, 11,0,0,0,0,0,0,0,0,0,0);
        !          2396:   if (CAR)
        !          2397:   {
        !          2398:     TYP[2] = _gr(11, 8,2,1,0,0,0,0,0,0,0,0);
        !          2399:     TYP[3] = _gr(11, 6,3,2,0,0,0,0,0,0,0,0);
        !          2400:     TYP[4] = _gr(11, 5,5,1,0,0,0,0,0,0,0,0);
        !          2401:     TYP[5] = _gr(11, 4,4,1,1,1,0,0,0,0,0,0);
        !          2402:     TYP[6] = _gr(11, 3,3,3,1,1,0,0,0,0,0,0);
        !          2403:     TYP[7] = _gr(11, 2,2,2,2,1,1,1,0,0,0,0);
        !          2404:     TYP[8] = _gr(11, 1,1,1,1,1,1,1,1,1,1,1);
        !          2405:     TYP[0][0] = 8;
        !          2406:   }
        !          2407:   else
        !          2408:   {
        !          2409:     TYP[2] = _gr(11,10,1,0,0,0,0,0,0,0,0,0);
        !          2410:     TYP[3] = _gr(11, 5,5,1,0,0,0,0,0,0,0,0);
        !          2411:     TYP[4] = _gr(11, 2,2,2,2,2,1,0,0,0,0,0);
        !          2412:     TYP[5] = _gr(11, 1,1,1,1,1,1,1,1,1,1,1);
        !          2413:     TYP[0][0] = 5;
        !          2414:   }
        !          2415:   res = galmodp(pol,dpol,TYP,gr,NULL);
        !          2416:   avma=av; if (!res) return 0;
        !          2417:   return CAR? 7: 8;
        !          2418: }
        !          2419:
        !          2420: /* return 1 iff we need to read a resolvent */
        !          2421: static long
        !          2422: init_isin(long n1, long n2, GROUP *tau, GROUP *ss, PERM *s0)
        !          2423: {
        !          2424:   long fl = 1;
        !          2425:   if (DEBUGLEVEL) {
        !          2426:     fprintferr("\n*** Entering isin_%ld_G_H_(%ld,%ld)\n",N,n1,n2); flusherr();
        !          2427:   }
        !          2428:   switch(N)
        !          2429:   {
        !          2430:     case 8:
        !          2431:       if ((n1==47 && n2==46) || (n1==44 && n2==40)) fl=0;
        !          2432:       *s0=data8(n1,n2,tau); break;
        !          2433:     case 9:
        !          2434:       if ((n1==31 && n2==29) || (n1==34 && n2==31) || (n1==33 && n2==30)) fl=0;
        !          2435:       *s0=data9(n1,n2,tau); break;
        !          2436:     case 10:
        !          2437:       if ((n1==45 && (n2==43||n2==39))
        !          2438:        || (n1==44 && (n2==42||n2==37))
        !          2439:        || (n1==43 && (n2==41||n2==33))
        !          2440:        || (n1==42 && n2==28)
        !          2441:        || (n1==41 && (n2==40||n2==27||n2==22))
        !          2442:        || (n1==40 && (n2==21||n2==11))
        !          2443:        || (n1==39 && (n2==38||n2==36||n2==29||n2==22))
        !          2444:        || (n1==38 && (n2==25||n2==12))
        !          2445:        || (n1==37 && (n2==34||n2==24))
        !          2446:        || (n1==36 && (n2==23||n2==11))
        !          2447:        || (n1==34 && n2==15)
        !          2448:        || (n1==33 && n2==27)
        !          2449:        || (n1==29 && (n2==25||n2==23||n2==5))
        !          2450:        || (n1==28 && n2==18)
        !          2451:        || (n1==27 && (n2==20||n2==19||n2==17))
        !          2452:        || (n1==25 && n2==4)
        !          2453:        || (n1==24 && n2==15)
        !          2454:        || (n1==23 && (n2==16||n2==3))
        !          2455:        || (n1==22 && (n2==12||n2==11||n2==5))
        !          2456:        || (n1==21 && (n2==10||n2==9))
        !          2457:        || (n1==17 && n2==5)
        !          2458:        || (n1==16 && n2==2)
        !          2459:        || (n1==14 && n2==1)
        !          2460:        || (n1==12 && n2==4)
        !          2461:        || (n1==11 && n2==3)
        !          2462:        || (n1==10 && n2==4)
        !          2463:        || (n1== 9 && n2==3)
        !          2464:        || (n1== 6 && n2==1)
        !          2465:        || (n1== 5 && n2==3)) fl = 0;
        !          2466:       *s0=data10(n1,n2,tau); break;
        !          2467:     case 11:
        !          2468:       *s0=data11(n1,tau); break;
        !          2469:   }
        !          2470:   *ss = lirecoset(n1,n2,N); return fl;
        !          2471: }
        !          2472:
        !          2473: static long
        !          2474: isin_G_H(GEN po, GEN *r, long n1, long n2)
        !          2475: {
        !          2476:   long nbv,nbm,i,j;
        !          2477:   PERM s0, ww;
        !          2478:   RESOLVANTE a;
        !          2479:   GROUP ss,tau;
        !          2480:
        !          2481:   if (init_isin(n1,n2, &tau, &ss, &s0))
        !          2482:     a = lireresolv(n1,n2,N,&nbv,&nbm);
        !          2483:   else
        !          2484:     { a = NULL; nbm=n1; nbv=n2; }
        !          2485:   ww = check_isin(po,r,nbm,nbv,a,tau,ss,s0);
        !          2486:   if (getpreci(r) != PREC) preci(r,PREC);
        !          2487:   free(ss); free(tau); if (a) free(a);
        !          2488:   if (ww)
        !          2489:   {
        !          2490:     long z[NMAX+1];
        !          2491:
        !          2492:     if (DEBUGLEVEL)
        !          2493:     {
        !          2494:       fprintferr("\n    Output of isin_%ld_G_H(%ld,%ld): %ld",N,n1,n2,n2);
        !          2495:       fprintferr("\n    Reordering of the roots: "); printperm(ww);
        !          2496:       flusherr();
        !          2497:     }
        !          2498:     for (i=0; i<TSCHMAX; i++)
        !          2499:     {
        !          2500:       GEN p1 = r[i];
        !          2501:       for (j=1; j<=N; j++) z[j]=p1[(int)ww[j]];
        !          2502:       for (j=1; j<=N; j++) p1[j]=z[j];
        !          2503:     }
        !          2504:     free(ww); return n2;
        !          2505:   }
        !          2506:   if (DEBUGLEVEL)
        !          2507:   {
        !          2508:     fprintferr("    Output of isin_%ld_G_H(%ld,%ld): not included.\n",N,n1,n2);
        !          2509:     flusherr();
        !          2510:   }
        !          2511:   return 0;
        !          2512: }
        !          2513:
        !          2514: GEN
        !          2515: galoisbig(GEN pol, long prec)
        !          2516: {
        !          2517:   GEN dpol, res = cgetg(4,t_VEC);
        !          2518:   long *tab,t, av = avma;
        !          2519:   long tab8[]={0,
        !          2520:     8,8,8,8,8,16,16,16,16,16, 16,24,24,24,32,32,32,32,32,32,
        !          2521:     32,32,48,48,56,64,64,64,64,64, 64,96,96,96,128,168,168,192,192,192,
        !          2522:     192,288,336,384,576,576,1152,1344,20160,40320};
        !          2523:   long tab9[]={0,
        !          2524:     9,9,18,18,18,27,27,36,36,54, 54,54,54,72,72,72,81,108,144,162,
        !          2525:     162,162,216,324,324,432,504,648,648,648, 1296,1512,181440,362880};
        !          2526:   long tab10[]={0,
        !          2527:     10,10,20,20,40,50,60,80,100,100, 120,120,120,160,160,160,200,200,200,200,
        !          2528:     200,240,320,320,320,360,400,400,640,720, 720,720,800,960,1440,
        !          2529:     1920,1920,1920,3840,7200,14400,14400,28800,1814400,3628800};
        !          2530:   long tab11[]={0, 11,22,55,110,660,7920,19958400,39916800};
        !          2531:
        !          2532:   N = lgef(pol)-3; dpol = discsr(pol); CAR = carreparfait(dpol);
        !          2533:   prec += 2 * (MEDDEFAULTPREC-2);
        !          2534:   PREC = prec;
        !          2535:   if (DEBUGLEVEL)
        !          2536:   {
        !          2537:     fprintferr("Entering galoisbig (prec = %ld)\n",prec);
        !          2538:     fprintferr("Working with reduced polynomial #1 = "); bruterr(pol,'g',-1);
        !          2539:     fprintferr("\ndiscriminant = "); bruterr(dpol,'g',-1);
        !          2540:     fprintferr(CAR? "\nEVEN group\n": "\nODD group\n"); flusherr();
        !          2541:   }
        !          2542:   PRMAX = prec+5; TSCHMAX = 1; SID[0] = N;
        !          2543:   switch(N)
        !          2544:   {
        !          2545:     case 8: t = galoismodulo8(pol,dpol);
        !          2546:       if (!t) t = closure8(pol);
        !          2547:       tab=tab8; break;
        !          2548:
        !          2549:     case 9: t = galoismodulo9(pol,dpol);
        !          2550:       if (!t) t = closure9(pol);
        !          2551:       tab=tab9; break;
        !          2552:
        !          2553:     case 10: t = galoismodulo10(pol,dpol);
        !          2554:       if (!t) t = closure10(pol);
        !          2555:       tab=tab10; break;
        !          2556:
        !          2557:     case 11: t = galoismodulo11(pol,dpol);
        !          2558:       if (!t) t = closure11(pol);
        !          2559:       tab=tab11; break;
        !          2560:
        !          2561:     default: err(impl,"galois in degree > 11");
        !          2562:   }
        !          2563:   avma = av;
        !          2564:   res[1]=lstoi(tab[t]);
        !          2565:   res[2]=lstoi(CAR? 1 : -1);
        !          2566:   res[3]=lstoi(t); return res;
        !          2567: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>