[BACK]Return to subfield.c CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari / src / modules

Annotation of OpenXM_contrib/pari/src/modules/subfield.c, Revision 1.1.1.1

1.1       maekawa     1: /*******************************************************************/
                      2: /*                                                                 */
                      3: /*               SUBFIELDS OF A NUMBER FIELD                       */
                      4: /*                                                                 */
                      5: /*   J. Klueners and M. Pohst, J. Symb. Comp. (1996), vol. 11      */
                      6: /*                                                                 */
                      7: /*******************************************************************/
                      8: /* $Id: subfield.c,v 1.1.1.1 1999/09/16 13:48:20 karim Exp $ */
                      9: #include "pari.h"
                     10: #ifdef __WIN32
                     11: #  include <io.h> /* for open, read, close */
                     12: #endif
                     13: GEN roots_to_pol(GEN a, long v);
                     14:
                     15: static long TR; /* nombre de changements de polynomes (degre fixe) */
                     16: static GEN FACTORDL; /* factorisation of |disc(L)| */
                     17:
                     18: static GEN print_block_system(long N,GEN Y,long d, GEN vbs);
                     19: static GEN compute_data(GEN nf,GEN ff,GEN p,long m,long nn);
                     20:
                     21: /* Computation of potential block systems of given size d associated to a
                     22:  * rational prime p: give a row vector of row vectors containing the
                     23:  * potential block systems of imprimitivity; a potential block system is a
                     24:  * vector of row vectors (enumeration of the roots).
                     25:  */
                     26: #define BIL 32 /* for 64bit machines also */
                     27: static GEN
                     28: calc_block(long N,GEN Z,long d,GEN Y,GEN vbs)
                     29: {
                     30:   long r,lK,i,j,k,t,tp,T,lpn,u,nn,lnon,lY;
                     31:   GEN K,n,non,pn,pnon,e,Yp,Zp,Zpp;
                     32:
                     33:   if (DEBUGLEVEL>3)
                     34:   {
                     35:     long l = vbs? lg(vbs): 0;
                     36:     fprintferr("avma = %ld, lg(Z) = %ld, lg(Y) = %ld, lg(vbs) = %ld\n",
                     37:                avma,lg(Z),lg(Y),l);
                     38:     if (DEBUGLEVEL > 5)
                     39:     {
                     40:       fprintferr("Z = %Z\n",Z);
                     41:       fprintferr("Y = %Z\n",Y);
                     42:       if (DEBUGLEVEL > 7) fprintferr("vbs = %Z\n",vbs);
                     43:     }
                     44:   }
                     45:   r=lg(Z); lnon = min(BIL, r);
                     46:   e    = new_chunk(BIL);
                     47:   n    = new_chunk(r);
                     48:   non  = new_chunk(lnon);
                     49:   pnon = new_chunk(lnon);
                     50:   pn   = new_chunk(lnon);
                     51:   Zp   = cgetg(lnon,t_VEC);
                     52:   Zpp  = cgetg(lnon,t_VEC);
                     53:   for (i=1; i<r; i++) n[i] = lg(Z[i])-1;
                     54:
                     55:   K=divisors(stoi(n[1])); lK=lg(K);
                     56:   for (i=1; i<lK; i++)
                     57:   {
                     58:     lpn=0; k = itos((GEN)K[i]);
                     59:     for (j=2; j<r; j++)
                     60:       if (n[j]%k == 0)
                     61:       {
                     62:         if (++lpn >= BIL) err(talker,"overflow in calc_block");
                     63:         pn[lpn]=n[j]; pnon[lpn]=j;
                     64:       }
                     65:     if (!lpn)
                     66:     {
                     67:       if (d*k != n[1]) continue;
                     68:       T=1; lpn=1;
                     69:     }
                     70:     else
                     71:       T = 1<<lpn;
                     72:     for (t=0; t<T; t++)
                     73:     {
                     74:       for (nn=n[1],tp=t, u=1; u<=lpn; u++,tp>>=1)
                     75:       {
                     76:         if (tp&1) { nn += pn[u]; e[u]=1; } else e[u]=0;
                     77:       }
                     78:       if (d*k == nn)
                     79:       {
                     80:        long av=avma;
                     81:         int Z_equal_Zp = 1;
                     82:
                     83:         for (j=1; j<lnon; j++) non[j]=0;
                     84:         Zp[1]=Z[1];
                     85:        for (u=2,j=1; j<=lpn; j++)
                     86:          if (e[j])
                     87:           {
                     88:             Zp[u]=Z[pnon[j]]; non[pnon[j]]=1;
                     89:             if (Zp[u] != Z[u]) Z_equal_Zp = 0;
                     90:             u++;
                     91:           }
                     92:         setlg(Zp, u);
                     93:         lY=lg(Y); Yp = cgetg(lY+1,t_VEC);
                     94:         for (j=1; j<lY; j++) Yp[j]=Y[j];
                     95:        Yp[lY]=(long)Zp;
                     96:         if (r == u && Z_equal_Zp)
                     97:          vbs = print_block_system(N,Yp,d,vbs);
                     98:        else
                     99:        {
                    100:          for (u=1,j=2; j<r; j++)
                    101:            if (!non[j]) Zpp[u++] = Z[j];
                    102:           setlg(Zpp, u);
                    103:          vbs = calc_block(N,Zpp,d,Yp,vbs);
                    104:        }
                    105:         avma=av;
                    106:       }
                    107:     }
                    108:   }
                    109:   return vbs;
                    110: }
                    111:
                    112: static GEN
                    113: potential_block_systems(long N, long d,GEN ff,long *n)
                    114: {
                    115:   long av=avma,r,i,j,k;
                    116:   GEN p1,vbs,Z;
                    117:
                    118:   r=lg(ff); Z=cgetg(r,t_VEC);
                    119:   for (k=0,i=1; i<r; i++)
                    120:   {
                    121:     p1=cgetg(n[i]+1,t_VECSMALL); Z[i]=(long)p1;
                    122:     for (j=1; j<=n[i]; j++) p1[j]= ++k;
                    123:   }
                    124:   vbs=calc_block(N,Z,d, cgetg(1,t_VEC), NULL);
                    125:   avma=av; return vbs;
                    126: }
                    127:
                    128: /* product of permutations. Put the result in perm1. */
                    129: static void
                    130: perm_mul(GEN perm1,GEN perm2)
                    131: {
                    132:   long av = avma,i, N = lg(perm1);
                    133:   GEN perm=new_chunk(N);
                    134:   for (i=1; i<N; i++) perm[i]=perm1[perm2[i]];
                    135:   for (i=1; i<N; i++) perm1[i]=perm[i];
                    136:   avma=av;
                    137: }
                    138:
                    139: /* cy is a cycle; compute cy^l as a permutation */
                    140: static GEN
                    141: cycle_power_to_perm(GEN perm,GEN cy,long l)
                    142: {
                    143:   long lp,i,j,b, N = lg(perm), lcy = lg(cy)-1;
                    144:
                    145:   lp = l % lcy;
                    146:   for (i=1; i<N; i++) perm[i] = i;
                    147:   if (lp)
                    148:   {
                    149:     long av = avma;
                    150:     GEN p1 = new_chunk(N);
                    151:     b = cy[1];
                    152:     for (i=1; i<lcy; i++) b = (perm[b] = cy[i+1]);
                    153:     perm[b] = cy[1];
                    154:     for (i=1; i<N; i++) p1[i] = perm[i];
                    155:
                    156:     for (j=2; j<=lp; j++) perm_mul(perm,p1);
                    157:     avma = av;
                    158:   }
                    159:   return perm;
                    160: }
                    161:
                    162: /* image du block system D par la permutation perm */
                    163: static GEN
                    164: im_block_by_perm(GEN D,GEN perm)
                    165: {
                    166:   long i,j,lb,lcy;
                    167:   GEN Dn,cy,p1;
                    168:
                    169:   lb=lg(D); Dn=cgetg(lb,t_VEC);
                    170:   for (i=1; i<lb; i++)
                    171:   {
                    172:     cy=(GEN)D[i]; lcy=lg(cy);
                    173:     Dn[i]=lgetg(lcy,t_VECSMALL); p1=(GEN)Dn[i];
                    174:     for (j=1; j<lcy; j++) p1[j] = perm[cy[j]];
                    175:   }
                    176:   return Dn;
                    177: }
                    178:
                    179: /* cy is a cycle; recturn cy(a) */
                    180: static long
                    181: im_by_cy(long a,GEN cy)
                    182: {
                    183:   long k, l = lg(cy);
                    184:
                    185:   k=1; while (k<l && cy[k] != a) k++;
                    186:   if (k == l) return a;
                    187:   k++; if (k == l) k = 1;
                    188:   return cy[k];
                    189: }
                    190:
                    191: /* renvoie 0 si l'un des coefficients de g[i] est de module > M[i]; 1 sinon */
                    192: static long
                    193: ok_coeffs(GEN g,GEN M)
                    194: {
                    195:   long i, lg = lgef(g)-1; /* g is monic, and cst term is ok */
                    196:   for (i=3; i<lg; i++)
                    197:     if (absi_cmp((GEN)g[i], (GEN)M[i]) > 0) return 0;
                    198:   return 1;
                    199: }
                    200:
                    201: /* vbs[0] = current cardinality+1, vbs[1] = max number of elts */
                    202: static GEN
                    203: append_vbs(GEN vbs, GEN D)
                    204: {
                    205:   long l,maxl,i,j,n, lD = lg(D);
                    206:   GEN Dn, last;
                    207:
                    208:   n = 0; for (i=1; i<lD; i++) n += lg(D[i]);
                    209:   Dn = (GEN)gpmalloc((lD + n) * sizeof(long));
                    210:   last = Dn + lD; Dn[0] = D[0];
                    211:   for (i=1; i<lD; i++)
                    212:   {
                    213:     GEN cy = (GEN)D[i], cn = last;
                    214:     for (j=0; j<lg(cy); j++) cn[j] = cy[j];
                    215:     Dn[i] = (long)cn; last = cn + j;
                    216:   }
                    217:
                    218:   if (!vbs)
                    219:   {
                    220:     maxl = 1024;
                    221:     vbs = (GEN)gpmalloc((2 + maxl)*sizeof(GEN));
                    222:     *vbs = maxl; vbs++; setlg(vbs, 1);
                    223:   }
                    224:   l = lg(vbs); maxl = vbs[-1];
                    225:   if (l == maxl)
                    226:   {
                    227:     vbs = (GEN)gprealloc((void*)(vbs-1), (2 + (maxl<<1))*sizeof(GEN),
                    228:                                          (2 + maxl)*sizeof(GEN));
                    229:     *vbs = maxl<<1; vbs++; setlg(vbs, 1);
                    230:   }
                    231:   if (DEBUGLEVEL>5) fprintferr("appending D = %Z\n",D);
                    232:   vbs[l] = (long)Dn; setlg(vbs, l+1); return vbs;
                    233: }
                    234:
                    235: GEN
                    236: myconcat(GEN D, long a)
                    237: {
                    238:   long i,l = lg(D);
                    239:   GEN x = cgetg(l+1,t_VECSMALL);
                    240:   for (i=1; i<l; i++) x[i]=D[i];
                    241:   x[l] = a; return x;
                    242: }
                    243:
                    244: void
                    245: myconcat2(GEN D, GEN a)
                    246: {
                    247:   long i,l = lg(D), m = lg(a);
                    248:   GEN x = D + (l-1);
                    249:   for (i=1; i<m; i++) x[i]=a[i];
                    250:   setlg(D, l+m-1);
                    251: }
                    252:
                    253: static GEN
                    254: print_block_system(long N,GEN Y,long d, GEN vbs)
                    255: {
                    256:   long a,i,j,l,ll,*k,*n,lp,**e,u,v,*t,ns, r = lg(Y);
                    257:   GEN D,De,Z,cyperm,perm,p1,empty;
                    258:
                    259:   if (DEBUGLEVEL>5) fprintferr("Y = %Z\n",Y);
                    260:   empty = cgetg(1,t_VEC);
                    261:   n = new_chunk(N+1);
                    262:   D = cgetg(N+1, t_VEC); setlg(D,1);
                    263:   t=new_chunk(r+1); k=new_chunk(r+1); Z=cgetg(r+1,t_VEC);
                    264:   for (ns=0,i=1; i<r; i++)
                    265:   {
                    266:     GEN Yi = (GEN)Y[i], cy;
                    267:     long ki = 0, si = lg(Yi)-1;
                    268:
                    269:     for (j=1; j<=si; j++) { n[j]=lg(Yi[j])-1; ki += n[j]; }
                    270:     ki /= d;
                    271:     De=cgetg(ki+1,t_VEC);
                    272:     for (j=1; j<=ki; j++) De[j]=(long)empty;
                    273:     for (j=1; j<=si; j++)
                    274:     {
                    275:       a = mael(Yi,j,1); cy = (GEN)Yi[j];
                    276:       for (l=1,lp=0; l<=n[j]; l++)
                    277:       {
                    278:         lp++; if (lp>ki) lp = 1;
                    279:         a = im_by_cy(a, cy);
                    280:         De[lp] = (long)myconcat((GEN)De[lp], a);
                    281:       }
                    282:     }
                    283:     if (si>1 && ki>1)
                    284:     {
                    285:       ns++; t[ns]=si-1; k[ns]=ki;
                    286:       Z[ns]=lgetg(si,t_VEC); p1=(GEN)Z[ns];
                    287:       for (j=2; j<=si; j++) p1[j-1]=Yi[j];
                    288:     }
                    289:     myconcat2(D,De);
                    290:   }
                    291:   if (DEBUGLEVEL>2) { fprintferr("\nns = %ld\n",ns); flusherr(); }
                    292:   if (!ns) return append_vbs(vbs,D);
                    293:
                    294:   setlg(Z, ns+1);
                    295:   e=(long**)new_chunk(ns+1);
                    296:   for (i=1; i<=ns; i++)
                    297:   {
                    298:     e[i]=new_chunk(t[i]+1);
                    299:     for (j=1; j<=t[i]; j++) e[i][j]=0;
                    300:   }
                    301:   cyperm = cgetg(N+1,t_VEC);
                    302:   perm = cgetg(N+1,t_VEC); i=ns;
                    303:   do
                    304:   {
                    305:     long av = avma;
                    306:     if (DEBUGLEVEL>5)
                    307:     {
                    308:       for (l=1; l<=ns; l++)
                    309:       {
                    310:        for (ll=1; ll<=t[l]; ll++)
                    311:          fprintferr("e[%ld][%ld] = %ld, ",l,ll,e[l][ll]);
                    312:        fprintferr("\n");
                    313:       }
                    314:       fprintferr("\n"); flusherr();
                    315:     }
                    316:     for (u=1; u<=N; u++) perm[u]=u;
                    317:     for (u=1; u<=ns; u++)
                    318:       for (v=1; v<=t[u]; v++)
                    319:        perm_mul(perm, cycle_power_to_perm(cyperm,gmael(Z,u,v),e[u][v]));
                    320:     vbs = append_vbs(vbs, im_block_by_perm(D,perm));
                    321:     avma = av;
                    322:
                    323:     e[ns][t[ns]]++;
                    324:     if (e[ns][t[ns]] >= k[ns])
                    325:     {
                    326:       j=t[ns]-1;
                    327:       while (j>=1 && e[ns][j] == k[ns]-1) j--;
                    328:       if (j>=1) { e[ns][j]++; for (l=j+1; l<=t[ns]; l++) e[ns][l]=0; }
                    329:       else
                    330:       {
                    331:        i=ns-1;
                    332:        while (i>=1)
                    333:        {
                    334:          j=t[i];
                    335:          while (j>=1 && e[i][j] == k[i]-1) j--;
                    336:          if (j<1) i--;
                    337:           else
                    338:          {
                    339:            e[i][j]++;
                    340:            for (l=j+1; l<=t[i]; l++) e[i][l]=0;
                    341:            for (ll=i+1; ll<=ns; ll++)
                    342:               for (l=1; l<=t[ll]; l++) e[ll][l]=0;
                    343:             break;
                    344:          }
                    345:        }
                    346:       }
                    347:     }
                    348:   }
                    349:   while (i>0);
                    350:   return vbs;
                    351: }
                    352:
                    353: /* rend le numero du cycle (a1,...,an) dans le support duquel se trouve a */
                    354: /* met dans *pt l'indice i tq ai = a */
                    355: static long
                    356: in_what_cycle(long a,GEN cys,long *pt)
                    357: {
                    358:   long i,k,nk, lcys=lg(cys);
                    359:
                    360:   for (k=1; k<lcys; k++)
                    361:   {
                    362:     GEN c = (GEN)cys[k]; nk = lg(c);
                    363:     for (i=1; i<nk; i++)
                    364:       if (a == c[i]) { *pt = i; return k; }
                    365:   }
                    366:   err(talker,"impossible to find %d in in_what_cycle",a);
                    367:   return 0; /* not reached */
                    368: }
                    369:
                    370: /* Return common factors to A and B + s the prime to A part of B */
                    371: static GEN
                    372: commonfactor(GEN A, GEN B)
                    373: {
                    374:   GEN f,p1,p2,s, y = cgetg(3,t_MAT);
                    375:   long lf,i;
                    376:
                    377:   s = absi(B); f=(GEN)A[1]; lf=lg(f);
                    378:   p1=cgetg(lf+1,t_COL); y[1]=(long)p1;
                    379:   p2=cgetg(lf+1,t_COL); y[2]=(long)p2;
                    380:   for (i=1; i<lf; i++)
                    381:   {
                    382:     p1[i] = f[i];
                    383:     p2[i] = lstoi(pvaluation(s,(GEN)f[i], &s));
                    384:   }
                    385:   p1[i] = (long)s;
                    386:   p2[i] = un; return y;
                    387: }
                    388:
                    389: static void
                    390: polsimplify(GEN x)
                    391: {
                    392:   long i,lx = lgef(x);
                    393:   for (i=2; i<lx; i++)
                    394:     if (typ(x[i]) == t_POL) x[i] = signe(x[i])? mael(x,i,2): zero;
                    395: }
                    396:
                    397: /* Renvoie un polynome g definissant un sous-corps potentiel, ou
                    398:  * 0: si le polynome trouve n'est pas separable,
                    399:  * 1: si les coefficients du polynome trouve sont plus grands que la borne M,
                    400:  * 2: si p divise le discriminant de g,
                    401:  * 3: si le discriminant de g est nul,
                    402:  * 4: si la partie s de d(g) premiere avec d(L) n'est pas un carre,
                    403:  * 5: si s est un carre et si un des facteurs premiers communs a d(g) et d(L)
                    404:  *    a un exposant impair dans d(g) et un exposant plus petit que d dans d(L),
                    405:  * 6: si le discriminant du corps defini par g a la puissance d ne divise pas
                    406:  *        le discriminant du corps nf (soit L).
                    407:  */
                    408: static GEN
                    409: cand_for_subfields(GEN A,GEN DATA,GEN *ptdelta,GEN *ptrootsA)
                    410: {
                    411:   long av=avma,N,m,i,j,d,lf;
                    412:   GEN P,pe,p,pol,cys,tabroots,delta,g,dg,unmodpe,tabrA;
                    413:   GEN factcommon,ff1,ff2,p1;
                    414:   GEN *gptr[3];
                    415:
                    416:   pol=(GEN)DATA[1]; N=lgef(pol)-3; m=lg(A)-1; d=N/m;
                    417:   if (N%m) err(talker,"incompatible block system in cand_for_subfields");
                    418:   p = (GEN)DATA[2];
                    419:   cys=(GEN)DATA[5];
                    420:   tabroots=(GEN)DATA[10];
                    421:   pe = gclone((GEN)DATA[9]);
                    422:   unmodpe = cgetg(3,t_INTMOD); unmodpe[1]=(long)pe; unmodpe[2]=un;
                    423:
                    424:   delta = cgetg(m+1,t_VEC);
                    425:   tabrA = cgetg(m+1,t_VEC);
                    426:   for (i=1; i<=m; i++)
                    427:   {
                    428:     GEN Ai=(GEN)A[i], col = cgetg(d+1,t_VEC);
                    429:     long l,k;
                    430:
                    431:     tabrA[i]=(long)col; p1 = unmodpe;
                    432:     for (j=1; j<=d; j++)
                    433:     {
                    434:       l=in_what_cycle(Ai[j],cys,&k);
                    435:       col[j] = mael(tabroots, l, k);
                    436:       p1 = gmul(p1, (GEN)col[j]);
                    437:     }
                    438:     p1 = lift_intern((GEN)p1[2]);
                    439:     for (j=1; j<i; j++)
                    440:       if (gegal(p1,(GEN)delta[j])) { avma=av; return gzero; }
                    441:     if (DEBUGLEVEL>2) fprintferr("delta[%ld] = %Z\n",i,p1);
                    442:     delta[i] = (long)p1;
                    443:   }
                    444:   P = gmael3(tabroots,1,1,1);
                    445:   for (i=1; i<=m; i++)
                    446:   {
                    447:     p1 = cgetg(3,t_POLMOD); p1[1]=(long)P; p1[2]=delta[i];
                    448:     delta[i] = (long)p1;
                    449:   }
                    450:   g = roots_to_pol(gmul(unmodpe,delta),0);
                    451:   g=centerlift(lift_intern(g)); polsimplify(g);
                    452:   if (DEBUGLEVEL>2) fprintferr("pol. found = %Z\n",g);
                    453:   if (!ok_coeffs(g,(GEN)DATA[8])) return gun;
                    454:   dg=discsr(g);
                    455:   if (!signe(dg)) return stoi(3);
                    456:   if (!signe(resii(dg,p))) return gdeux;
                    457:   factcommon=commonfactor(FACTORDL,dg);
                    458:   ff1=(GEN)factcommon[1]; lf=lg(ff1)-1;
                    459:   if (!carreparfait((GEN)ff1[lf])) return stoi(4);
                    460:   ff2=(GEN)factcommon[2];
                    461:   for (i=1; i<lf; i++)
                    462:     if (mod2((GEN)ff2[i]) && itos(gmael(FACTORDL,2,i)) < d) return stoi(5);
                    463:   gunclone(pe);
                    464:
                    465:   *ptdelta=delta; *ptrootsA=tabrA;
                    466:   gptr[0]=&g; gptr[1]=ptdelta; gptr[2]=ptrootsA;
                    467:   gerepilemany(av,gptr,3); return g;
                    468: }
                    469:
                    470: /* a partir d'un polynome h(x) dont les coefficients sont definis mod p^k,
                    471:  * on construit un polynome a coefficients dans Q dont les coefficients ont
                    472:  * pour approximation p-adique les coefficients de h */
                    473: static GEN
                    474: retrieve_p_adique_polynomial_in_Q(GEN ind,GEN h)
                    475: {
                    476:   return gdiv(centerlift(gmul(h,ind)), ind);
                    477: }
                    478:
                    479: /* interpolation polynomial P(x) s.t P(T[j][i]) = delta[i] mod p */
                    480: static GEN
                    481: interpolation_polynomial(GEN T, GEN delta)
                    482: {
                    483:   long i,j,i1,j1, m = lg(T), d = lg(T[1]);
                    484:   GEN P = NULL, x0 = gneg(polx[0]);
                    485:
                    486:   for (j=1; j<m; j++)
                    487:   {
                    488:     GEN p3 = NULL;
                    489:     for (i=1; i<d; i++)
                    490:     {
                    491:       GEN p1=gun, p2=gun, a = gneg(gmael(T,j,i));
                    492:       for (j1=1; j1<m; j1++)
                    493:         for (i1=1; i1<d; i1++)
                    494:           if (i1 != i || j1 != j)
                    495:           {
                    496:             p1 = gmul(p1,gadd(gmael(T,j1,i1), x0));
                    497:             p2 = gmul(p2,gadd(gmael(T,j1,i1), a));
                    498:           }
                    499:       p1 = gdiv(p1,p2);
                    500:       p3 = p3? gadd(p3, p1): p1;
                    501:     }
                    502:     p3 = gmul((GEN)delta[j],p3);
                    503:     P = P? gadd(P,p3): p3;
                    504:   }
                    505:   return P;
                    506: }
                    507:
                    508: /* nf est le corps de nombres, g un polynome de Z[x] candidat
                    509:  * pour definir un sous-corps, p le nombre premier ayant servi a definir le
                    510:  * potential block system rootsA donne par les racines avec une approximation
                    511:  * convenable, e est la precision p-adique des elements de rootsA et delta la
                    512:  * liste des racines de g dans une extension convenable en precision p^e.
                    513:  * Renvoie un polynome h de Q[x] tel que f divise g o h et donc tel que le
                    514:  * couple (g,h) definisse un sous-corps, ou bien gzero si rootsA n'est pas un
                    515:  * block system
                    516:  */
                    517: static GEN
                    518: embedding_of_potential_subfields(GEN nf,GEN g,GEN DATA,GEN rootsA,GEN delta)
                    519: {
                    520:   GEN w0_inQ,w0,w1,h0,gp,p2,f,unmodp,p,ind, maxp;
                    521:   long av = avma, av1;
                    522:
                    523:   f=(GEN)nf[1]; ind=(GEN)nf[4]; p=(GEN)DATA[2];
                    524:   maxp=mulii((GEN)DATA[11],ind);
                    525:   gp=deriv(g,varn(g)); unmodp=gmodulsg(1,p);
                    526:   av1 = avma;
                    527:   w0 = interpolation_polynomial(gmul(rootsA,unmodp), delta);
                    528:   w0 = lift_intern(w0); /* in Fp[x] */
                    529:   polsimplify(w0);
                    530:   w0_inQ = retrieve_p_adique_polynomial_in_Q(ind,w0);
                    531:   (void)gbezout(poleval(gp,w0), gmul(unmodp,f), &h0, &p2);
                    532:   w0 = lift_intern(w0); /* in Z[x] */
                    533:   h0 = lift_intern(lift_intern(h0));
                    534:   for(;;)
                    535:   {
                    536:     GEN p1;
                    537:    /* Given g in Z[x], gp its derivative, p a prime, [w0,h0] in Z[x] s.t.
                    538:     * h0(x).gp(w0(x)) = 1 and g(w0(x))  = 0 (mod f,mod p), return
                    539:     * [w1,h1]  satisfying the same condition mod p^2. Moreover,
                    540:     * [w1,h1] = [w0,h0] (mod p)
                    541:     * (cf. Dixon: J. Austral. Math. Soc., Series A, vol.49, 1990, p.445) */
                    542:     if (DEBUGLEVEL>2)
                    543:     {
                    544:       fprintferr("w = "); outerr(w0);
                    545:       fprintferr("h = "); outerr(h0);
                    546:     }
                    547:     p = sqri(p); unmodp[1] = (long)p;
                    548:     p1 = gneg(gmul(h0, poleval(g,w0)));
                    549:     w1 = gres(gmul(unmodp,gadd(w0,p1)), f);
                    550:     p2 = retrieve_p_adique_polynomial_in_Q(ind,w1);
                    551:     if ((gegal(p2, w0_inQ) || cmpii(p,maxp)) && gdivise(poleval(g,p2), f))
                    552:       return gerepileupto(av, poleval(p2, gadd(polx[0],stoi(TR))));
                    553:     if (DEBUGLEVEL>2)
                    554:     {
                    555:       fprintferr("Old Q-polynomial: "); outerr(w0_inQ);
                    556:       fprintferr("New Q-polynomial: "); outerr(p2);
                    557:     }
                    558:     if (cmpii(p, maxp) > 0)
                    559:     {
                    560:       if (DEBUGLEVEL) fprintferr("coeff too big for embedding\n");
                    561:       avma=av; return gzero;
                    562:     }
                    563:
                    564:     w1 = lift_intern(w1);
                    565:     p1 = gneg(gmul(h0, poleval(gp,w1)));
                    566:     p1 = gmul(h0, gadd(gdeux,p1));
                    567:     h0 = lift_intern(gres(gmul(unmodp,p1), f));
                    568:     w0 = w1; w0_inQ = p2;
                    569:     {
                    570:       GEN *gptr[4]; gptr[0]=&w0; gptr[1]=&h0; gptr[2]=&w0_inQ; gptr[3]=&p;
                    571:       gerepilemany(av1,gptr,4);
                    572:     }
                    573:   }
                    574: }
                    575:
                    576: static long
                    577: choose_prime(GEN pol,GEN dpol,long d,GEN *ptff,GEN *ptlistpotbl, long *ptnn)
                    578: {
                    579:   long j,k,oldllist,llist,r,nn,oldnn,*n,N,pp;
                    580:   GEN p,listpotbl,oldlistpotbl,ff,oldff,p3;
                    581:   byteptr di=diffptr;
                    582:
                    583:   if (DEBUGLEVEL) timer2();
                    584:   di++; p = stoi(2); N = lgef(pol)-3;
                    585:   while (p[2]<=N) p[2] += *di++;
                    586:   oldllist = oldnn = BIGINT;
                    587:   n = new_chunk(N+1);
                    588:   for(k=1; k<11 || oldnn == BIGINT; k++,p[2]+= *di++)
                    589:   {
                    590:     long av=avma;
                    591:     while (!smodis(dpol,p[2])) p[2] += *di++;
                    592:     ff=(GEN)factmod(pol,p)[1]; r=lg(ff)-1;
                    593:     if (r>1 && r<N)
                    594:     {
                    595:       for (j=1; j<=r; j++) n[j]=lgef(ff[j])-3;
                    596:       p3 = stoi(n[1]);
                    597:       for (j=2; j<=r; j++) p3 = glcm(p3,stoi(n[j]));
                    598:       nn=itos(p3);
                    599:       if (nn > oldnn)
                    600:       {
                    601:         if (DEBUGLEVEL)
                    602:         {
                    603:           fprintferr("p = %ld,\tr = %ld,\tnn = %ld,\t#pbs = skipped\n",
                    604:                       p[2],r,nn);
                    605:         }
                    606:         continue;
                    607:       }
                    608:       listpotbl=potential_block_systems(N,d,ff,n);
                    609:       if (!listpotbl) { oldlistpotbl = NULL; pp = p[2]; break; }
                    610:       llist=lg(listpotbl)-1;
                    611:       if (DEBUGLEVEL)
                    612:       {
                    613:        fprintferr("Time: %ldms,\tp = %ld,\tr = %ld,\tnn = %ld,\t#pbs = %ld\n",
                    614:                     timer2(),p[2],r,nn,llist);
                    615:        flusherr();
                    616:       }
                    617:       if (nn<oldnn || llist<oldllist)
                    618:       {
                    619:        oldllist=llist; oldlistpotbl=listpotbl;
                    620:        pp=p[2]; oldff=ff; oldnn=nn; continue;
                    621:       }
                    622:       for (j=1; j<llist; j++) free((void*)listpotbl[j]);
                    623:       free((void*)(listpotbl-1));
                    624:     }
                    625:     avma = av;
                    626:   }
                    627:   if (DEBUGLEVEL)
                    628:   {
                    629:     fprintferr("Chosen prime: p = %ld\n",pp);
                    630:     if (DEBUGLEVEL>2)
                    631:       fprintferr("List of potential block systems of size %ld: %Z\n",
                    632:                   d,oldlistpotbl);
                    633:     flusherr();
                    634:   }
                    635:   *ptlistpotbl=oldlistpotbl; *ptff=oldff; *ptnn=oldnn; return pp;
                    636: }
                    637:
                    638: static GEN
                    639: change_pol(GEN nf, GEN ff)
                    640: {
                    641:   long i,l;
                    642:   GEN pol = (GEN)nf[1], p1 = gsub(polx[0],gun);
                    643:
                    644:   TR++; pol=poleval(pol, p1);
                    645:   nf = dummycopy(nf);
                    646:   nf[6] = (long)dummycopy((GEN)nf[6]);
                    647:   l=lg(ff);
                    648:   for (i=1; i<l; i++) ff[i]=(long)poleval((GEN)ff[i], p1);
                    649:   l=lg(nf[6]); p1=(GEN)nf[6];
                    650:   for (i=1; i<l; i++) p1[i]=ladd(gun,(GEN)p1[i]);
                    651:   nf[1]=(long)pol; return nf;
                    652: }
                    653:
                    654: static GEN
                    655: bound_for_coeff(long m,GEN rr,long r1, GEN *maxroot)
                    656: {
                    657:   long i, lrr=lg(rr);
                    658:   GEN p1,b1,b2,B,M, C = matpascal(m-1);
                    659:
                    660:   rr = gabs(rr,DEFAULTPREC); *maxroot = vecmax(rr);
                    661:   for (i=1; i<lrr; i++)
                    662:     if (gcmp((GEN)rr[i], gun) < 0) rr[i] = un;
                    663:   for (b1=gun,i=1; i<=r1; i++) b1 = gmul(b1, (GEN)rr[i]);
                    664:   for (b2=gun    ; i<lrr; i++) b2 = gmul(b2, (GEN)rr[i]);
                    665:   B = gmul(b1, gsqr(b2));
                    666:   M = cgetg(m+2, t_VEC); M[1]=M[2]=zero; /* unused */
                    667:   for (i=1; i<m; i++)
                    668:   {
                    669:     p1 = gadd(gmul(gcoeff(C, m, i), B),
                    670:               gcoeff(C, m, i+1));
                    671:     M[i+2] = lceil(p1);
                    672:   }
                    673:   return M;
                    674: }
                    675:
                    676: /* liste des sous corps de degre d du corps de nombres nf */
                    677: static GEN
                    678: subfields_of_given_degree(GEN nf,GEN dpol,long d)
                    679: {
                    680:   long av,av1,av2,tetpil,pp,llist,i,nn,N;
                    681:   GEN listpotbl,ff,A,delta,rootsA,CSF,ESF,p1,p2,LSB;
                    682:   GEN DATA, pol = (GEN)nf[1];
                    683:
                    684:   av=avma;
                    685:   N = lgef(pol)-3;
                    686:   pp=choose_prime(pol,dpol,N/d,&ff,&listpotbl,&nn);
                    687:   if (!listpotbl) { avma=av; return cgetg(1,t_VEC); }
                    688:   llist=lg(listpotbl);
                    689: LAB0:
                    690:   av1=avma; LSB=cgetg(1,t_VEC);
                    691:   DATA=compute_data(nf,ff,stoi(pp),d,nn);
                    692:   for (i=1; i<llist; i++)
                    693:   {
                    694:     av2=avma; A=(GEN)listpotbl[i];
                    695:     if (DEBUGLEVEL > 1)
                    696:       fprintferr("\n* Potential block # %ld: %Z\n",i,A);
                    697:     CSF=cand_for_subfields(A,DATA,&delta,&rootsA);
                    698:     if (typ(CSF)==t_INT)
                    699:     {
                    700:       if (DEBUGLEVEL > 1) switch(itos(CSF))
                    701:       {
                    702:         case 0: fprintferr("changing f(x): non separable g(x)\n"); break;
                    703:         case 1: fprintferr("coeff too big for pol g(x)\n"); break;
                    704:         case 2: fprintferr("changing f(x): p divides disc(g(x))\n"); break;
                    705:         case 3: fprintferr("non irreducible polynomial g(x)\n"); break;
                    706:         case 4: fprintferr("prime to d(L) part of d(g) not a square\n"); break;
                    707:         case 5: fprintferr("too small exponent of a prime factor in d(L)\n"); break;
                    708:         case 6: fprintferr("the d-th power of d(K) does not divide d(L)\n");
                    709:       }
                    710:       switch(itos(CSF))
                    711:       {
                    712:         case 0: case 2:
                    713:           avma=av1; nf = change_pol(nf,ff); pol = (GEN)nf[1];
                    714:           if (DEBUGLEVEL) fprintferr("new f = %Z\n",pol);
                    715:           goto LAB0;
                    716:       }
                    717:       avma=av2;
                    718:     }
                    719:     else
                    720:     {
                    721:       if (DEBUGLEVEL) fprintferr("candidate = %Z\n",CSF);
                    722:       ESF=embedding_of_potential_subfields(nf,CSF,DATA,rootsA,delta);
                    723:       if (ESF == gzero) avma=av2;
                    724:       else
                    725:       {
                    726:         if (DEBUGLEVEL) fprintferr("embedding = %Z\n",ESF);
                    727:        p1=cgetg(3,t_VEC); p2=cgetg(2,t_VEC); p2[1]=(long)p1;
                    728:         p1[1]=(long)CSF;
                    729:         p1[2]=(long)ESF; tetpil=avma;
                    730:         LSB=gerepile(av2,tetpil, concat(LSB,p2));
                    731:       }
                    732:     }
                    733:   }
                    734:   for (i=1; i<llist; i++) free((void*)listpotbl[i]);
                    735:   free((void*)(listpotbl-1)); tetpil=avma;
                    736:   return gerepile(av,tetpil,gcopy(LSB));
                    737: }
                    738:
                    739: GEN
                    740: subfields(GEN nf,GEN d)
                    741: {
                    742:   long av=avma,di,N,v0,lp1,i;
                    743:   GEN dpol,p1,LSB,p2,pol;
                    744:
                    745:   nf=checknf(nf); pol = (GEN)nf[1];
                    746:   v0=varn(pol); N=lgef(pol)-3; di=itos(d);
                    747:   if (di==N)
                    748:   {
                    749:     LSB=cgetg(2,t_VEC); p1=cgetg(3,t_VEC); LSB[1]=(long)p1;
                    750:     p1[1]=lcopy(pol); p1[2]=lpolx[v0]; return LSB;
                    751:   }
                    752:   if (di==1)
                    753:   {
                    754:     LSB=cgetg(2,t_VEC); p1=cgetg(3,t_VEC); LSB[1]=(long)p1;
                    755:     p1[1]=lpolx[v0]; p1[2]=lcopy(pol); return LSB;
                    756:   }
                    757:   if (di<=0 || di>N || N%di) return cgetg(1,t_VEC);
                    758:
                    759:   TR=0; dpol=mulii((GEN)nf[3],sqri((GEN)nf[4]));
                    760:   if (v0) nf=gsubst(nf,v0,polx[0]);
                    761:   FACTORDL=factor(absi((GEN)nf[3]));
                    762:   p1=subfields_of_given_degree(nf,dpol,di); lp1=lg(p1)-1;
                    763:   if (v0)
                    764:     for (i=1; i<=lp1; i++)
                    765:       { p2=(GEN)p1[i]; setvarn(p2[1],v0); setvarn(p2[2],v0); }
                    766:   return gerepileupto(av,p1);
                    767: }
                    768:
                    769: static GEN
                    770: subfieldsall(GEN nf)
                    771: {
                    772:   long av=avma,av1,N,ld,d,i,j,lNLSB,v0,lp1;
                    773:   GEN pol,dpol,dg,LSB,NLSB,p1,p2;
                    774:
                    775:   nf=checknf(nf); pol = (GEN)nf[1];
                    776:   v0=varn(pol); N=lgef(pol)-3;
                    777:   if (isprime(stoi(N)))
                    778:   {
                    779:     avma=av; LSB=cgetg(3,t_VEC);
                    780:     LSB[1]=lgetg(3,t_VEC); LSB[2]=lgetg(3,t_VEC);
                    781:     p1=(GEN)LSB[1]; p1[1]=lcopy(pol); p1[2]=lpolx[v0];
                    782:     p2=(GEN)LSB[2]; p2[1]=p1[2]; p2[2]=p1[1];
                    783:     return LSB;
                    784:   }
                    785:   FACTORDL=factor(absi((GEN)nf[3])); dg=divisors(stoi(N));
                    786:   dpol=mulii(sqri((GEN)nf[4]),(GEN)nf[3]);
                    787:   if (DEBUGLEVEL>0)
                    788:   {
                    789:     fprintferr("\n***** Entering subfields\n\n");
                    790:     fprintferr("pol = "); outerr(pol);
                    791:     fprintferr("dpol = "); outerr(dpol);
                    792:     fprintferr("divisors = "); outerr(dg);
                    793:   }
                    794:   ld=lg(dg)-1; LSB=cgetg(2,t_VEC); LSB[1]=lgetg(3,t_VEC);
                    795:   p1=(GEN)LSB[1]; p1[1]=(long)pol; p1[2]=(long)polx[0];
                    796:   if (v0) nf=gsubst(nf,v0,polx[0]);
                    797:   for (i=2; i<ld; i++)
                    798:   {
                    799:     TR=0; av1=avma; d=itos((GEN)dg[i]);
                    800:     if (DEBUGLEVEL>0)
                    801:     {
                    802:       fprintferr("\n*** Looking for subfields of degree %ld\n\n",N/d);
                    803:       flusherr();
                    804:     }
                    805:     NLSB=subfields_of_given_degree(nf,dpol,N/d);
                    806:     if (DEBUGLEVEL)
                    807:     {
                    808:       fprintferr("\nSubfields of degree %ld:\n",N/d);
                    809:       lNLSB=lg(NLSB)-1; for (j=1; j<=lNLSB; j++) outerr((GEN)NLSB[j]);
                    810:     }
                    811:     if (lg(NLSB)>1) LSB = concatsp(LSB,NLSB); else avma=av1;
                    812:   }
                    813:   p1=cgetg(2,t_VEC); p1[1]=lgetg(3,t_VEC);p2=(GEN)p1[1];
                    814:   p2[1]=(long)polx[0]; p2[2]=(long)pol;
                    815:   LSB=concatsp(LSB,p1); lp1=lg(LSB)-1;
                    816:   LSB = gerepileupto(av, gcopy(LSB));
                    817:   if (v0)
                    818:     for (i=1; i<=lp1; i++)
                    819:       { p2=(GEN)LSB[i]; setvarn(p2[1],v0); setvarn(p2[2],v0); }
                    820:   if (DEBUGLEVEL>0) fprintferr("\n***** Leaving subfields\n\n");
                    821:   return LSB;
                    822: }
                    823:
                    824: GEN
                    825: subfields0(GEN nf,GEN d)
                    826: {
                    827:   return d? subfields(nf,d): subfieldsall(nf);
                    828: }
                    829:
                    830: /* irreducible (unitary) polynomial of degree n over Fp[v] */
                    831: GEN
                    832: ffinit(GEN p,long n,long v)
                    833: {
                    834:   long av,av1,tetpil,i,*a,j,l,pp;
                    835:   GEN pol,fpol;
                    836:
                    837:   if (n<=0) err(talker,"non positive degree in ffinit");
                    838:   if (is_bigint(p)) err(talker,"prime field too big in ffinit");
                    839:   if (v<0) v = 0;
                    840:   av=avma; pp=itos(p); pol = cgetg(n+3,t_POL);
                    841:   pol[1] = evalsigne(1)|evalvarn(v)|evallgef(n+3);
                    842:   a=new_chunk(n+2);
                    843:   a[1]=1; for (i=2; i<=n+1; i++) a[i]=0;
                    844:   pol[n+2]=un; av1=avma;
                    845:   for(;;)
                    846:   {
                    847:     a[n+1]++;
                    848:     if (a[n+1]>=pp)
                    849:     {
                    850:       j=n; while (j>=2 && a[j]==pp-1) j--;
                    851:       if (j>=2) { a[j]++; for (l=j+1; l<=n+1; l++) a[l]=0; }
                    852:     }
                    853:     for (i=2; i<=n+1; i++) pol[i]=lstoi(a[n+3-i]);
                    854:     fpol=simplefactmod(pol,p);
                    855:     if (lg(fpol[1])==2 && gcmp1(gmael(fpol,2,1))) break;
                    856:     avma=av1;
                    857:   }
                    858:   tetpil=avma; return gerepile(av,tetpil,Fp_pol(pol,p));
                    859: }
                    860:
                    861: static GEN
                    862: lift_coeff(GEN x, GEN fq)
                    863: {
                    864:   GEN r;
                    865:   if (typ(x) == t_POLMOD) { r = x; x = (GEN)x[2]; }
                    866:   else r = cgetg(3,t_POLMOD);
                    867:   r[1]=(long)fq; r[2]=(long)lift_intern(x); return r;
                    868: }
                    869:
                    870: /* a is a polynomial whose coeffs are in Fq (= (Z/p)[y] / (fqbar), where
                    871:  * fqbar is the reduction of fq mod p).
                    872:  * Lift _in place_ the coeffs so that they belong to Z[y] / (fq)
                    873:  */
                    874: static GEN
                    875: special_lift(GEN a,GEN fq)
                    876: {
                    877:   long la,i;
                    878:   GEN c;
                    879:
                    880:   if (typ(a)==t_POL)
                    881:   {
                    882:     la=lgef(a); c=cgetg(la,t_POL); c[1]=a[1];
                    883:     for (i=2; i<la; i++) c[i]=(long)lift_coeff((GEN)a[i],fq);
                    884:     return c;
                    885:   }
                    886:   return lift_coeff(a,fq);
                    887: }
                    888:
                    889: /* Hensel lift: fk = vector of factors of pol (unramified) in finite field
                    890:  * Fp / fkk. Lift it to the precision p^e. This is equivalent to working
                    891:  * in precision pi^e in the unramified extension of Qp given by fkk.
                    892:  */
                    893: GEN
                    894: hensel_lift(GEN pol,GEN fk,GEN fkk,GEN p,long e)
                    895: {
                    896:   long av = avma, i, r = lg(fk)-1;
                    897:   GEN p1,A,B,C,R,U,V,fklift,fklift2,fk2;
                    898:   GEN unmodp = gmodulsg(1,p), fq = lift(fkk);
                    899:
                    900:   fk2=cgetg(r+1,t_VEC);
                    901:   fklift=cgetg(r+1,t_VEC);
                    902:   fklift2=cgetg(r+1,t_VEC);
                    903:   fk2[r] = fklift2[r] = un;
                    904:   for (i=r; i>1; i--)
                    905:   {
                    906:     fk2[i-1] = lmul((GEN)fk2[i],(GEN)fk[i]);
                    907:     fklift[i] = (long)special_lift(gcopy((GEN)fk[i]),fq);
                    908:     fklift2[i-1] = lmul((GEN)fklift2[i],(GEN)fklift[i]);
                    909:   }
                    910:   fklift[1] = (long)special_lift(gcopy((GEN)fk[1]),fq);
                    911:   R=cgetg(r+1,t_VEC); C=pol;
                    912:   for (i=1; i<r; i++)
                    913:   { /* treat factors two by two: fk[i] and fk2[i] = product fk[i+1..] */
                    914:     long av1 = avma,tetpil1, ex = 1;
                    915:     GEN pp;
                    916:
                    917:     (void)gbezout((GEN)fk[i],(GEN)fk2[i],&U,&V);
                    918:     A = (GEN)fklift[i];  U = special_lift(U,fq);
                    919:     B = (GEN)fklift2[i]; V = special_lift(V,fq);
                    920:     for (pp=p;; pp=sqri(pp))
                    921:     { /* Algorithm 3.5.[5,6] H. Cohen page 137 (1995) */
                    922:       GEN f,t,A0,B0,U0,V0;
                    923:
                    924:       unmodp[1] = (long)pp;
                    925:       p1 = gneg_i(gmul(A,B));
                    926:       p1=gdiv(gadd(C,p1),pp);
                    927:       f=gmul(p1,unmodp);
                    928:       t=poldivres(gmul(V,f),A, &A0);
                    929:       A0=special_lift(A0,fq);
                    930:       B0=special_lift(gadd(gmul(U,f),gmul(B,t)),fq);
                    931:       A0 = gmul(A0,pp);
                    932:       B0 = gmul(B0,pp); tetpil1 = avma;
                    933:       A = gadd(A, A0);
                    934:       B = gadd(B, B0); ex <<= 1;
                    935:       if (ex>=e)
                    936:       {
                    937:         GEN *gptr[2]; gptr[0]=&A; gptr[1]=&B;
                    938:         gerepilemanysp(av1,tetpil1,gptr,2);
                    939:         C = B; R[i] = (long)A; break;
                    940:       }
                    941:       p1 = gneg_i(gadd(gmul(U,A),gmul(V,B)));
                    942:       p1=gdiv(gadd(gun,p1),pp);
                    943:       f=gmul(p1,unmodp);
                    944:       t=poldivres(gmul(V,f),A, &V0);
                    945:       U0=special_lift(gadd(gmul(U,f),gmul(B,t)),fq);
                    946:       V0=special_lift(V0,fq);
                    947:       U = gadd(U, gmul(U0,pp));
                    948:       V = gadd(V, gmul(V0,pp));
                    949:     }
                    950:   }
                    951:   if (r==1) C = gcopy(C);
                    952:   R[r] = (long)C; return gerepileupto(av,R);
                    953: }
                    954:
                    955: /* etant donne nf et p et la factorisation de nf[1] mod p, et le degre m des
                    956:  * sous corps cherches, cree un vecteur ligne a 13 composantes:
                    957:  * 1 : le polynome nf[1],
                    958:  * 2 : le premier p,
                    959:  * 3 : la factorisation ff,
                    960:  * 4 : la longeur des cycles associes (n_1,...,n_r),
                    961:  * 5 : les cycles associes,
                    962:  * 6 : le corps F_(p^q),
                    963:  * 7 : les racines de f dans F_(p^q) par facteur de ff,
                    964:  * 8 : la borne M pour les sous-corps,
                    965:  * 9 : l'exposant e telle que la precision des lifts soit p^e>2.M,
                    966:  * 10: le lift de Hensel a la precision p^e de la factorisation en facteurs
                    967:  *     lineaires de nf[1] dans F_(p^q),
                    968:  * 11: la borne de Hadamard pour les coefficients de h(x) tel que g o h = 0
                    969:  *     mod nf[1].
                    970:  * ces donnees sont valides pour nf, p et m (d) donnes...
                    971:  */
                    972: static GEN
                    973: compute_data(GEN nf, GEN ff, GEN p, long m, long nn)
                    974: {
                    975:   long i,j,l,r,*n,e,N,pp,d,r1;
                    976:   GEN DATA,p1,p2,cys,fhk,tabroots,MM,fk,dpol,maxroot,maxMM,pol;
                    977:
                    978:   if (DEBUGLEVEL>1) { fprintferr("Entering compute_data()\n\n"); flusherr(); }
                    979:   pol = (GEN)nf[1]; N = lgef(pol)-3;
                    980:   DATA=cgetg(14,t_VEC);
                    981:   DATA[1]=(long)pol;
                    982:   DATA[2]=(long)p; r=lg(ff)-1;
                    983:   DATA[3]=(long)ff;
                    984:   n = cgetg(r+1, t_VECSMALL);
                    985:   DATA[4]= (long)n;
                    986:   for (j=1; j<=r; j++) n[j]=lgef(ff[j])-3;
                    987:   cys=cgetg(r+1,t_VEC); l=0;
                    988:   for (i=1; i<=r; i++)
                    989:   {
                    990:     p1 = cgetg(n[i]+1, t_VECSMALL);
                    991:     cys[i] = (long)p1; for (j=1; j<=n[i]; j++) p1[j]=++l;
                    992:   }
                    993:   DATA[5]=(long)cys;
                    994:   DATA[6]=(long)ffinit(p,nn,MAXVARN);
                    995:   tabroots=cgetg(r+1,t_VEC);
                    996:   for (j=1; j<=r; j++)
                    997:   {
                    998:     p1=(GEN)factmod9((GEN)ff[j],p,(GEN)DATA[6])[1];
                    999:     p2=cgetg(n[j]+1,t_VEC); tabroots[j]=(long)p2;
                   1000:     p2[1]=lneg(gmael(p1,1,2));
                   1001:     for (i=2; i<=n[j]; i++) p2[i]=(long)powgi((GEN)p2[i-1],p);
                   1002:   }
                   1003:   DATA[7]=(long)tabroots;
                   1004:   r1=itos(gmael(nf,2,1));
                   1005:   MM = bound_for_coeff(m, (GEN)nf[6], r1, &maxroot);
                   1006:   MM = gmul2n(MM,1);
                   1007:   DATA[8]=(long)MM;
                   1008:   pp=itos(p); maxMM = vecmax(MM);
                   1009:   for (e=1,p1=p; cmpii(p1, maxMM) < 0; ) { p1 = mulis(p1,pp); e++; }
                   1010:   DATA[9]=lpuigs(p,e); fk=cgetg(N+1,t_VEC);
                   1011:   for (l=1,j=1; j<=r; j++)
                   1012:     for (i=1; i<=n[j]; i++)
                   1013:       fk[l++] = lsub(polx[0],gmael(tabroots,j,i));
                   1014:   fhk = hensel_lift(pol,fk,(GEN)DATA[6],p,e);
                   1015:   tabroots=cgetg(r+1,t_VEC);
                   1016:   for (l=1,j=1; j<=r; j++)
                   1017:   {
                   1018:     p1 = cgetg(n[j]+1,t_VEC); tabroots[j]=(long)p1;
                   1019:     for (i=1; i<=n[j]; i++,l++) p1[i] = lneg(gmael(fhk,l,2));
                   1020:   }
                   1021:   DATA[10]=(long)tabroots;
                   1022:
                   1023:   d=N/m; p1=gmul(stoi(N), gsqrt(gpuigs(stoi(N-1),N-1),DEFAULTPREC));
                   1024:   p2 = gpuigs(maxroot, d + N*(N-1)/2);
                   1025:   dpol=mulii(sqri((GEN)nf[4]),(GEN)nf[3]);
                   1026:   p1 = gdiv(gmul(p1,p2), gsqrt(absi(dpol),DEFAULTPREC));
                   1027:   p1 = grndtoi(p1, &e);
                   1028:   if (e>=0) p1 = addii(p1, shifti(gun, e));
                   1029:   p1 = shifti(p1, 1);
                   1030:   DATA[11]=(long)p1;
                   1031:
                   1032:   if (DEBUGLEVEL>1)
                   1033:   {
                   1034:     fprintferr("DATA =\n");
                   1035:     fprintferr("f = "); outerr((GEN)DATA[1]);
                   1036:     fprintferr("p = "); outerr((GEN)DATA[2]);
                   1037:     fprintferr("ff = "); outerr((GEN)DATA[3]);
                   1038:     fprintferr("lcy = "); outerr((GEN)DATA[4]);
                   1039:     fprintferr("cys = "); outerr((GEN)DATA[5]);
                   1040:     fprintferr("bigfq = "); outerr((GEN)DATA[6]);
                   1041:     fprintferr("roots = "); outerr((GEN)DATA[7]);
                   1042:     fprintferr("2 * M = "); outerr((GEN)DATA[8]);
                   1043:     fprintferr("p^e = "); outerr((GEN)DATA[9]);
                   1044:     fprintferr("lifted roots = "); outerr((GEN)DATA[10]);
                   1045:     fprintferr("2 * Hadamard bound = "); outerr((GEN)DATA[11]);
                   1046:   }
                   1047:   return DATA;
                   1048: }
                   1049:
                   1050: /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
                   1051: /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
                   1052: /*                                                                 */
                   1053: /*               AUTOMORPHISMS OF AN ABELIAN NUMBER FIELD          */
                   1054: /*                                                                 */
                   1055: /*               V. Acciaro and J. Klueners (1996)                 */
                   1056: /*                                                                 */
                   1057: /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
                   1058: /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
                   1059:
                   1060: /* calcul du frobenius en p pour le corps abelien defini par le polynome pol,
                   1061:  * par relevement de hensel du frobenius frobp de l'extension des corps
                   1062:  * residuels (frobp est un polynome mod pol a coefficients dans F_p)
                   1063:  */
                   1064: static GEN
                   1065: frobenius(GEN pol,GEN frobp,GEN p,GEN B,GEN d)
                   1066: {
                   1067:   long av=avma,v0,deg,i,depas;
                   1068:   GEN b0,b1,pold,polp,poldp,w0,w1,g0,g1,unmodp,polpp,v,pp,unmodpp,poldpp,bl0,bl1;
                   1069:
                   1070:   v0=varn(pol); unmodp=gmodulsg(1,p); pold=deriv(pol,v0);
                   1071:   b0=frobp; polp=gmul(unmodp,pol);
                   1072:   poldp=gsubst(deriv(polp,v0),v0,frobp);
                   1073:   w0=ginv(poldp);
                   1074:   bl0=lift(b0); deg=lgef(bl0)-3;
                   1075:   v=cgetg(deg+2,t_VEC);
                   1076:   for (i=1; i<=deg+1; i++)
                   1077:     v[i]=ldiv(centerlift(gmul(d,compo(bl0,deg+2-i))),d);
                   1078:   g0=gtopoly(v,v0);
                   1079:   if (DEBUGLEVEL>2)
                   1080:   {
                   1081:     fprintferr("val. initiales:\n");
                   1082:     fprintferr("b0 = "); outerr(b0);
                   1083:     fprintferr("w0 = "); outerr(w0);
                   1084:     fprintferr("g0 = "); outerr(g0);
                   1085:   }
                   1086:   depas=1; pp=gsqr(p);
                   1087:   for(;;)
                   1088:   {
                   1089:     if (gcmp(pp,B)>0) depas=0;
                   1090:     unmodpp=gmodulsg(1,pp);
                   1091:     polpp=gmul(unmodpp,pol); poldpp=gmul(unmodpp,pold);
                   1092:     b0=gmodulcp(gmul(unmodpp,lift_intern(lift_intern(b0))),polpp);
                   1093:     w0=gmodulcp(gmul(unmodpp,lift_intern(lift_intern(w0))),polpp);
                   1094:     b1=gsub(b0,gmul(w0,gsubst(polpp,v0,b0)));
                   1095:     w1=gmul(w0,gsub(gdeux,gmul(w0,gsubst(poldpp,v0,b1))));
                   1096:     bl1=lift(b1); deg=lgef(bl1)-3;
                   1097:     v=cgetg(deg+2,t_VEC);
                   1098:     for (i=1; i<=deg+1; i++)
                   1099:       v[i]=ldiv(centerlift(gmul(d,compo(bl1,deg+2-i))),d);
                   1100:     g1=gtopoly(v,v0);
                   1101:     if (DEBUGLEVEL>2)
                   1102:     {
                   1103:       fprintferr("pp = "); outerr(pp);
                   1104:       fprintferr("b1 = "); outerr(b1);
                   1105:       fprintferr("w1 = "); outerr(w1);
                   1106:       fprintferr("g1 = "); outerr(g1);
                   1107:     }
                   1108:     if (gegal(g0,g1)) return gerepileupto(av,g1);
                   1109:     pp=gsqr(pp); b0=b1; w0=w1; g0=g1;
                   1110:     if (!depas) err(talker,"the number field is not an Abelian number field");
                   1111:   }
                   1112: }
                   1113:
                   1114: static GEN
                   1115: compute_denom(GEN dpol)
                   1116: {
                   1117:   long av=avma,lf,i,a;
                   1118:   GEN d,f1,f2, f = decomp(dpol);
                   1119:
                   1120:   f1=(GEN)f[1];
                   1121:   f2=(GEN)f[2]; lf=lg(f1);
                   1122:   for (d=gun,i=1; i<lf; i++)
                   1123:   {
                   1124:     a = itos((GEN)f2[i]) >> 1;
                   1125:     d = mulii(d, gpuigs((GEN)f1[i],a));
                   1126:   }
                   1127:   return gerepileupto(av,d);
                   1128: }
                   1129:
                   1130: static GEN
                   1131: compute_bound_for_lift(GEN pol,GEN dpol,GEN d)
                   1132: {
                   1133:   long av=avma,n,i;
                   1134:   GEN p1,p2,p3;
                   1135:
                   1136:   n=lgef(pol)-3;
                   1137:   p1=gdiv(gmul(stoi(n),gpui(stoi(n-1),gdivgs(stoi(n-1),2),DEFAULTPREC)),
                   1138:           gsqrt(dpol,DEFAULTPREC));
                   1139:   p2=gzero;
                   1140:   for (i=2; i<=n+2; i++) p2=gadd(p2,gsqr((GEN)pol[i]));
                   1141:   p2=gpuigs(gsqrt(p2,DEFAULTPREC),n-1);
                   1142:   p1=gmul(p1,p2); p2=gzero;
                   1143:   for (i=2; i<=n+2; i++)
                   1144:   {
                   1145:     p3 = gabs((GEN)pol[i],DEFAULTPREC);
                   1146:     if (gcmp(p3,p2)>0) p2 = p3;
                   1147:   }
                   1148:   p2=gmul(d,gadd(gun,p2));
                   1149:   return gerepileupto(av, gmul2n(gsqr(gmul(p1,p2)),1));
                   1150:
                   1151: /* Borne heuristique de P. S. Wang, Math. Comp. 30, 1976, p. 332
                   1152:   p2=gzero; for (i=2; i<=n+2; i++) p2=gadd(p2,gsqr((GEN)pol[i]));
                   1153:   p1=gzero;
                   1154:   for (i=2; i<=n+2; i++){ if (gcmp(gabs((GEN)pol[i],4),p1)>0) p1=gabs((GEN)pol[i],4); }
                   1155:   if (gcmp(p2,p1)>0) p1=p2;
                   1156:   p2=gmul(gdiv(mpfactr(n,4),gsqr(mpfactr(n/2,4))),d);
                   1157:   B=gmul(p1,p2);
                   1158:   tetpil=avma; return gerepile(av,tetpil,gcopy(B));
                   1159: */
                   1160: }
                   1161:
                   1162: static long
                   1163: isinlist(GEN T,long longT,GEN x)
                   1164: {
                   1165:   long i;
                   1166:   for (i=1; i<=longT; i++)
                   1167:     if (gegal(x,(GEN)T[i])) return i;
                   1168:   return 0;
                   1169: }
                   1170:
                   1171: /* renvoie 0 si frobp n'est pas dans la liste T; sinon le no de frobp dans T */
                   1172: static long
                   1173: isinlistmodp(GEN T,long longT,GEN frobp,GEN p)
                   1174: {
                   1175:   long av=avma,i;
                   1176:   GEN p1,p2,unmodp;
                   1177:
                   1178:   p1=lift_intern(lift_intern(frobp)); unmodp=gmodulsg(1,p);
                   1179:   for (i=1; i<=longT; i++)
                   1180:   {
                   1181:     p2=lift_intern(gmul(unmodp,(GEN)T[i]));
                   1182:     if (gegal(p2,p1)) { avma=av; return i; }
                   1183:   }
                   1184:   avma=av; return 0;
                   1185: }
                   1186:
                   1187: /* renvoie le plus petit f tel que frobp^f est dans la liste T */
                   1188: static long
                   1189: minimalexponent(GEN T,long longT,GEN frobp,GEN p,long N)
                   1190: {
                   1191:   long av=avma,i;
                   1192:   GEN p1 = frobp;
                   1193:   for (i=1; i<=N; i++)
                   1194:   {
                   1195:     if (isinlistmodp(T,longT,p1,p)) {avma=av; return i;}
                   1196:     p1 = gpui(p1,p,DEFAULTPREC);
                   1197:   }
                   1198:   err(talker,"missing frobenius (field not abelian ?)");
                   1199:   return 0; /* not reached */
                   1200: }
                   1201:
                   1202:
                   1203: /* Computation of all the automorphisms of the abelian number field
                   1204:    defined by the monic irreducible polynomial pol with integral coefficients */
                   1205: GEN
                   1206: conjugates(GEN pol)
                   1207: {
                   1208:   long av,tetpil,N,i,j,pp,bound_primes,nbprimes,longT,v0,flL,f,longTnew,*tab,nop,flnf;
                   1209:   GEN T,S,p1,p2,p,dpol,modunp,polp,xbar,frobp,frob,d,B,nf;
                   1210:   byteptr di;
                   1211:
                   1212:   if (DEBUGLEVEL>2){ fprintferr("** Entree dans conjugates\n"); flusherr(); }
                   1213:   flnf=0; if (typ(pol)!=t_POL){ nf=checknf(pol); flnf=1; pol=(GEN)nf[1]; }
                   1214:   av=avma; N=lgef(pol)-3; v0=varn(pol);
                   1215:   if (N==1) { S=cgetg(2,t_VEC); S[1]=(long)polx[v0]; return S; }
                   1216:   if (N==2)
                   1217:   {
                   1218:     S=cgetg(3,t_VEC); S[1]=(long)polx[v0];
                   1219:     S[2]=lsub(gneg(polx[v0]),(GEN)pol[3]);
                   1220:     tetpil=avma; return gerepile(av,tetpil,gcopy(S));
                   1221:   }
                   1222:   dpol=absi(discsr(pol));
                   1223:   if (DEBUGLEVEL>2)
                   1224:     { fprintferr("discriminant du polynome: "); outerr(dpol); }
                   1225:   d = flnf? (GEN)nf[4]: compute_denom(dpol);
                   1226:   if (DEBUGLEVEL>2)
                   1227:     { fprintferr("facteur carre du discriminant: "); outerr(d); }
                   1228:   B=compute_bound_for_lift(pol,dpol,d);
                   1229:   if (DEBUGLEVEL>2) { fprintferr("borne pour les lifts: "); outerr(B); }
                   1230:   /* sous GRH il faut en fait 3.47*log(dpol) */
                   1231:   p1=gfloor(glog(dpol,DEFAULTPREC));
                   1232:   bound_primes=itos(p1);
                   1233:   if (DEBUGLEVEL>2)
                   1234:   { fprintferr("borne pour les premiers: %ld\n",bound_primes); flusherr(); }
                   1235:   nbprimes=itos(gfloor(gmul(dbltor(1.25506),
                   1236:                             gdiv(p1,glog(p1,DEFAULTPREC)))));
                   1237:   if (DEBUGLEVEL>2)
                   1238:   { fprintferr("borne pour le nombre de premiers: %ld\n",nbprimes); flusherr(); }
                   1239:   S=cgetg(nbprimes+1,t_VEC);
                   1240:   di=diffptr; pp=*di; i=0;
                   1241:   while (pp<=bound_primes)
                   1242:   {
                   1243:     if (smodis(dpol,pp)) { i++; S[i]=lstoi(pp); }
                   1244:     pp = pp + (*(++di));
                   1245:   }
                   1246:   for (j=i+1; j<=nbprimes; j++) S[j]=zero;
                   1247:   nbprimes=i; tab=new_chunk(nbprimes+1);
                   1248:   for (i=1; i<=nbprimes; i++) tab[i]=0;
                   1249:   if (DEBUGLEVEL>2)
                   1250:   {
                   1251:     fprintferr("nombre de premiers: %ld\n",nbprimes);
                   1252:     fprintferr("table des premiers: "); outerr(S);
                   1253:   }
                   1254:   T=cgetg(N+1,t_VEC); T[1]=(long)polx[v0];
                   1255:   for (i=2; i<=N; i++) T[i]=zero; longT=1;
                   1256:   if (DEBUGLEVEL>2) { fprintferr("table initiale: "); outerr(T); }
                   1257:   for(;;)
                   1258:   {
                   1259:     do
                   1260:     {
                   1261:       do
                   1262:       {
                   1263:         nop = 1+itos(shifti(mulss(mymyrand(),nbprimes),-(BITS_IN_RANDOM-1)));
                   1264:       }
                   1265:       while (tab[nop]);
                   1266:       tab[nop]=1; p=(GEN)S[nop];
                   1267:       if (DEBUGLEVEL>2) { fprintferr("\nnombre premier: "); outerr(p); }
                   1268:       modunp=gmodulsg(1,p);
                   1269:       polp=gmul(modunp,pol);
                   1270:       xbar=gmodulcp(gmul(polx[v0],modunp),polp);
                   1271:       frobp=gpui(xbar,p,4);
                   1272:       if (DEBUGLEVEL>2) { fprintferr("frobenius mod p: "); outerr(frobp); }
                   1273:       flL=isinlistmodp(T,longT,frobp,p);
                   1274:       if (DEBUGLEVEL>2){ fprintferr("flL: %ld\n",flL); flusherr(); }
                   1275:     }
                   1276:     while (flL);
                   1277:     f=minimalexponent(T,longT,frobp,p,N);
                   1278:     if (DEBUGLEVEL>2){ fprintferr("exposant minimum: %ld\n",f); flusherr(); }
                   1279:     frob=frobenius(pol,frobp,p,B,d);
                   1280:     if (DEBUGLEVEL>2) { fprintferr("frobenius: "); outerr(frob); }
                   1281: /* Ce passage n'est vrai que si le corps est abelien !! */
                   1282:     longTnew=longT;
                   1283:     p2=gmodulcp(frob,pol);
                   1284:     for (i=1; i<=longTnew; i++)
                   1285:       for (j=1; j<f; j++)
                   1286:       {
                   1287:        p1=lift(gsubst((GEN)T[i],v0,gpuigs(p2,j)));
                   1288:        if (DEBUGLEVEL>2)
                   1289:        {
                   1290:          fprintferr("test de la puissance (%ld,%ld): ",i,j); outerr(p1);
                   1291:        }
                   1292:        if (!isinlist(T,longTnew,p1))
                   1293:        {
                   1294:          longT++; T[longT]=(long)p1;
                   1295:          if (longT==N)
                   1296:           {
                   1297:             if (DEBUGLEVEL>2)
                   1298:               { fprintferr("** Sortie de conjugates\n"); flusherr(); }
                   1299:             tetpil=avma; return gerepile(av,tetpil,gcopy(T));
                   1300:           }
                   1301:        }
                   1302:       }
                   1303:     if (DEBUGLEVEL>2) { fprintferr("nouvelle table: "); outerr(T); }
                   1304:   }
                   1305: }
                   1306:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>