Annotation of OpenXM_contrib/pari/src/test/32/linear, Revision 1.1
1.1 ! maekawa 1: realprecision = 38 significant digits
! 2: echo = 1 (on)
! 3: ? algdep(2*cos(2*Pi/13),6)
! 4: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
! 5: ? algdep(2*cos(2*Pi/13),6,15)
! 6: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
! 7: ? charpoly([1,2;3,4],z)
! 8: z^2 - 5*z - 2
! 9: ? charpoly(Mod(x^2+x+1,x^3+5*x+1),z)
! 10: z^3 + 7*z^2 + 16*z - 19
! 11: ? charpoly([1,2;3,4],z,1)
! 12: z^2 - 5*z - 2
! 13: ? charpoly(Mod(1,8191)*[1,2;3,4],z,2)
! 14: Mod(1, 8191)*z^2 + Mod(8186, 8191)*z + Mod(8189, 8191)
! 15: ? lindep(Mod(1,7)*[2,-1;1,3],-1)
! 16: [Mod(6, 7), Mod(5, 7)]~
! 17: ? lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)])
! 18: [-3, -3, 9, -2, 6]
! 19: ? lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)],14)
! 20: [-3, -3, 9, -2, 6]
! 21: ? matadjoint([1,2;3,4])
! 22:
! 23: [4 -2]
! 24:
! 25: [-3 1]
! 26:
! 27: ? matcompanion(x^5-12*x^3+0.0005)
! 28:
! 29: [0 0 0 0 -0.00049999999999999999999999999999999999999]
! 30:
! 31: [1 0 0 0 0]
! 32:
! 33: [0 1 0 0 0]
! 34:
! 35: [0 0 1 0 12]
! 36:
! 37: [0 0 0 1 0]
! 38:
! 39: ? matdet([1,2,3;1,5,6;9,8,7])
! 40: -30
! 41: ? matdet([1,2,3;1,5,6;9,8,7],1)
! 42: -30
! 43: ? matdetint([1,2,3;4,5,6])
! 44: 3
! 45: ? matdiagonal([2,4,6])
! 46:
! 47: [2 0 0]
! 48:
! 49: [0 4 0]
! 50:
! 51: [0 0 6]
! 52:
! 53: ? mateigen([1,2,3;4,5,6;7,8,9])
! 54:
! 55: [-1.2833494518006402717978106547571267252 1 0.283349451800640271797810654757
! 56: 12672521]
! 57:
! 58: [-0.14167472590032013589890532737856336261 -2 0.6416747259003201358989053273
! 59: 7856336260]
! 60:
! 61: [1 1 1]
! 62:
! 63: ? mathess(mathilbert(7))
! 64:
! 65: [1 90281/58800 -1919947/4344340 4858466341/1095033030 -77651417539/819678732
! 66: 6 3386888964/106615355 1/2]
! 67:
! 68: [1/3 43/48 38789/5585580 268214641/109503303 -581330123627/126464718744 4365
! 69: 450643/274153770 1/4]
! 70:
! 71: [0 217/2880 442223/7447440 53953931/292008808 -32242849453/168619624992 1475
! 72: 457901/1827691800 1/80]
! 73:
! 74: [0 0 1604444/264539275 24208141/149362505292 847880210129/47916076768560 -45
! 75: 44407141/103873817300 -29/40920]
! 76:
! 77: [0 0 0 9773092581/35395807550620 -24363634138919/107305824577186620 72118203
! 78: 606917/60481351061158500 55899/3088554700]
! 79:
! 80: [0 0 0 0 67201501179065/8543442888354179988 -9970556426629/74082861999267660
! 81: 0 -3229/13661312210]
! 82:
! 83: [0 0 0 0 0 -258198800769/9279048099409000 -13183/38381527800]
! 84:
! 85: ? mathilbert(5)
! 86:
! 87: [1 1/2 1/3 1/4 1/5]
! 88:
! 89: [1/2 1/3 1/4 1/5 1/6]
! 90:
! 91: [1/3 1/4 1/5 1/6 1/7]
! 92:
! 93: [1/4 1/5 1/6 1/7 1/8]
! 94:
! 95: [1/5 1/6 1/7 1/8 1/9]
! 96:
! 97: ? amat=1/mathilbert(7)
! 98:
! 99: [49 -1176 8820 -29400 48510 -38808 12012]
! 100:
! 101: [-1176 37632 -317520 1128960 -1940400 1596672 -504504]
! 102:
! 103: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040]
! 104:
! 105: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160]
! 106:
! 107: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800]
! 108:
! 109: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264]
! 110:
! 111: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088]
! 112:
! 113: ? mathnf(amat)
! 114:
! 115: [420 0 0 0 210 168 175]
! 116:
! 117: [0 840 0 0 0 0 504]
! 118:
! 119: [0 0 2520 0 0 0 1260]
! 120:
! 121: [0 0 0 2520 0 0 840]
! 122:
! 123: [0 0 0 0 13860 0 6930]
! 124:
! 125: [0 0 0 0 0 5544 0]
! 126:
! 127: [0 0 0 0 0 0 12012]
! 128:
! 129: ? mathnf(amat,1)
! 130: [[420, 0, 0, 0, 210, 168, 175; 0, 840, 0, 0, 0, 0, 504; 0, 0, 2520, 0, 0, 0,
! 131: 1260; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 13860, 0, 6930; 0, 0, 0, 0, 0,
! 132: 5544, 0; 0, 0, 0, 0, 0, 0, 12012], [420, 420, 840, 630, 2982, 1092, 4159; 21
! 133: 0, 280, 630, 504, 2415, 876, 3395; 140, 210, 504, 420, 2050, 749, 2901; 105,
! 134: 168, 420, 360, 1785, 658, 2542; 84, 140, 360, 315, 1582, 588, 2266; 70, 120
! 135: , 315, 280, 1421, 532, 2046; 60, 105, 280, 252, 1290, 486, 1866]]
! 136: ? mathnf(amat,2)
! 137: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
! 138: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
! 139: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
! 140: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
! 141: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
! 142: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
! 143: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
! 144: ? mathnf(amat,3)
! 145: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
! 146: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
! 147: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
! 148: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
! 149: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
! 150: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
! 151: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
! 152: ? mathnfmod(amat,matdetint(amat))
! 153:
! 154: [420 0 0 0 210 168 175]
! 155:
! 156: [0 840 0 0 0 0 504]
! 157:
! 158: [0 0 2520 0 0 0 1260]
! 159:
! 160: [0 0 0 2520 0 0 840]
! 161:
! 162: [0 0 0 0 13860 0 6930]
! 163:
! 164: [0 0 0 0 0 5544 0]
! 165:
! 166: [0 0 0 0 0 0 12012]
! 167:
! 168: ? mathnfmodid(amat,123456789*10^100)
! 169:
! 170: [60 0 0 0 30 24 35]
! 171:
! 172: [0 120 0 0 0 0 24]
! 173:
! 174: [0 0 360 0 0 0 180]
! 175:
! 176: [0 0 0 360 0 0 240]
! 177:
! 178: [0 0 0 0 180 0 90]
! 179:
! 180: [0 0 0 0 0 72 0]
! 181:
! 182: [0 0 0 0 0 0 12]
! 183:
! 184: ? matid(5)
! 185:
! 186: [1 0 0 0 0]
! 187:
! 188: [0 1 0 0 0]
! 189:
! 190: [0 0 1 0 0]
! 191:
! 192: [0 0 0 1 0]
! 193:
! 194: [0 0 0 0 1]
! 195:
! 196: ? matimage([1,3,5;2,4,6;3,5,7])
! 197:
! 198: [1 3]
! 199:
! 200: [2 4]
! 201:
! 202: [3 5]
! 203:
! 204: ? matimage([1,3,5;2,4,6;3,5,7],1)
! 205:
! 206: [3 5]
! 207:
! 208: [4 6]
! 209:
! 210: [5 7]
! 211:
! 212: ? matimage(Pi*[1,3,5;2,4,6;3,5,7])
! 213:
! 214: [3.1415926535897932384626433832795028841 9.424777960769379715387930149838508
! 215: 6525]
! 216:
! 217: [6.2831853071795864769252867665590057683 12.56637061435917295385057353311801
! 218: 1536]
! 219:
! 220: [9.4247779607693797153879301498385086525 15.70796326794896619231321691639751
! 221: 4420]
! 222:
! 223: ? matimagecompl([1,3,5;2,4,6;3,5,7])
! 224: [3]
! 225: ? matimagecompl(Pi*[1,3,5;2,4,6;3,5,7])
! 226: [3]
! 227: ? matindexrank([1,1,1;1,1,1;1,1,2])
! 228: [[1, 3], [1, 3]]
! 229: ? matintersect([1,2;3,4;5,6],[2,3;7,8;8,9])
! 230:
! 231: [-1]
! 232:
! 233: [-1]
! 234:
! 235: [-1]
! 236:
! 237: ? matinverseimage([1,1;2,3;5,7],[2,2,6]~)
! 238: [4, -2]~
! 239: ? matisdiagonal([1,0,0;0,5,0;0,0,0])
! 240: 1
! 241: ? matker(matrix(4,4,x,y,x/y))
! 242:
! 243: [-1/2 -1/3 -1/4]
! 244:
! 245: [1 0 0]
! 246:
! 247: [0 1 0]
! 248:
! 249: [0 0 1]
! 250:
! 251: ? matker(matrix(4,4,x,y,sin(x+y)))
! 252:
! 253: [1.0000000000000000000000000000000000000 1.080604611736279434801873214885953
! 254: 2074]
! 255:
! 256: [-1.0806046117362794348018732148859532074 -0.1677063269057152260048635409984
! 257: 7562046]
! 258:
! 259: [1 0]
! 260:
! 261: [0 1]
! 262:
! 263: ? matker(matrix(4,4,x,y,x+y),1)
! 264:
! 265: [1 2]
! 266:
! 267: [-2 -3]
! 268:
! 269: [1 0]
! 270:
! 271: [0 1]
! 272:
! 273: ? matkerint(matrix(4,4,x,y,x*y))
! 274:
! 275: [-1 -1 -1]
! 276:
! 277: [-1 0 1]
! 278:
! 279: [1 -1 1]
! 280:
! 281: [0 1 -1]
! 282:
! 283: ? matkerint(matrix(4,4,x,y,x*y),1)
! 284:
! 285: [-1 -1 -1]
! 286:
! 287: [-1 0 1]
! 288:
! 289: [1 -1 1]
! 290:
! 291: [0 1 -1]
! 292:
! 293: ? matkerint(matrix(4,6,x,y,2520/(x+y)),2)
! 294:
! 295: [3 1]
! 296:
! 297: [-30 -15]
! 298:
! 299: [70 70]
! 300:
! 301: [0 -140]
! 302:
! 303: [-126 126]
! 304:
! 305: [84 -42]
! 306:
! 307: ? matmuldiagonal(amat,[1,2,3,4,5,6,7])
! 308:
! 309: [49 -2352 26460 -117600 242550 -232848 84084]
! 310:
! 311: [-1176 75264 -952560 4515840 -9702000 9580032 -3531528]
! 312:
! 313: [8820 -635040 8573040 -42336000 93555000 -94303440 35315280]
! 314:
! 315: [-29400 2257920 -31752000 161280000 -363825000 372556800 -141261120]
! 316:
! 317: [48510 -3880800 56133000 -291060000 667012500 -691558560 264864600]
! 318:
! 319: [-38808 3193344 -47151720 248371200 -576298800 603542016 -233080848]
! 320:
! 321: [12012 -1009008 15135120 -80720640 189189000 -199783584 77693616]
! 322:
! 323: ? matmultodiagonal(amat^-1,%)
! 324:
! 325: [1 0 0 0 0 0 0]
! 326:
! 327: [0 2 0 0 0 0 0]
! 328:
! 329: [0 0 3 0 0 0 0]
! 330:
! 331: [0 0 0 4 0 0 0]
! 332:
! 333: [0 0 0 0 5 0 0]
! 334:
! 335: [0 0 0 0 0 6 0]
! 336:
! 337: [0 0 0 0 0 0 7]
! 338:
! 339: ? matpascal(8)
! 340:
! 341: [1 0 0 0 0 0 0 0 0]
! 342:
! 343: [1 1 0 0 0 0 0 0 0]
! 344:
! 345: [1 2 1 0 0 0 0 0 0]
! 346:
! 347: [1 3 3 1 0 0 0 0 0]
! 348:
! 349: [1 4 6 4 1 0 0 0 0]
! 350:
! 351: [1 5 10 10 5 1 0 0 0]
! 352:
! 353: [1 6 15 20 15 6 1 0 0]
! 354:
! 355: [1 7 21 35 35 21 7 1 0]
! 356:
! 357: [1 8 28 56 70 56 28 8 1]
! 358:
! 359: ? matrank(matrix(5,5,x,y,x+y))
! 360: 2
! 361: ? matrix(5,5,x,y,gcd(x,y))
! 362:
! 363: [1 1 1 1 1]
! 364:
! 365: [1 2 1 2 1]
! 366:
! 367: [1 1 3 1 1]
! 368:
! 369: [1 2 1 4 1]
! 370:
! 371: [1 1 1 1 5]
! 372:
! 373: ? matrixqz([1,3;3,5;5,7],0)
! 374:
! 375: [1 1]
! 376:
! 377: [3 2]
! 378:
! 379: [5 3]
! 380:
! 381: ? matrixqz([1/3,1/4,1/6;1/2,1/4,-1/4;1/3,1,0],-1)
! 382:
! 383: [19 12 2]
! 384:
! 385: [0 1 0]
! 386:
! 387: [0 0 1]
! 388:
! 389: ? matrixqz([1,3;3,5;5,7],-2)
! 390:
! 391: [2 -1]
! 392:
! 393: [1 0]
! 394:
! 395: [0 1]
! 396:
! 397: ? matsize([1,2;3,4;5,6])
! 398: [3, 2]
! 399: ? matsnf(matrix(5,5,j,k,random))
! 400: [741799239614624774584532992, 2147483648, 2147483648, 1, 1]
! 401: ? matsnf(1/mathilbert(6))
! 402: [27720, 2520, 2520, 840, 210, 6]
! 403: ? matsnf(x*matid(5)-matrix(5,5,j,k,1),2)
! 404: [x^2 - 5*x, x, x, x, 1]
! 405: ? matsolve(mathilbert(10),[1,2,3,4,5,6,7,8,9,0]~)
! 406: [9236800, -831303990, 18288515520, -170691240720, 832112321040, -23298940665
! 407: 00, 3883123564320, -3803844432960, 2020775945760, -449057772020]~
! 408: ? matsolvemod([2,3;5,4],[7,11],[1,4]~)
! 409: [-5, -1]~
! 410: ? matsolvemod([2,3;5,4],[7,11],[1,4]~,1)
! 411: [[-5, -1]~, [-77, 723; 0, 1]]
! 412: ? matsupplement([1,3;2,4;3,6])
! 413:
! 414: [1 3 0]
! 415:
! 416: [2 4 0]
! 417:
! 418: [3 6 1]
! 419:
! 420: ? mattranspose(vector(2,x,x))
! 421: [1, 2]~
! 422: ? %*%~
! 423:
! 424: [1 2]
! 425:
! 426: [2 4]
! 427:
! 428: ? norml2(vector(10,x,x))
! 429: 385
! 430: ? qfgaussred(mathilbert(5))
! 431:
! 432: [1 1/2 1/3 1/4 1/5]
! 433:
! 434: [0 1/12 1 9/10 4/5]
! 435:
! 436: [0 0 1/180 3/2 12/7]
! 437:
! 438: [0 0 0 1/2800 2]
! 439:
! 440: [0 0 0 0 1/44100]
! 441:
! 442: ? qfjacobi(mathilbert(6))
! 443: [[1.6188998589243390969705881471257800712, 0.2423608705752095521357284158507
! 444: 0114077, 0.000012570757122625194922982397996498755027, 0.0000001082799484565
! 445: 5497685388772372251711485, 0.016321521319875822124345079564191505890, 0.0006
! 446: 1574835418265769764919938428527140264]~, [0.74871921887909485900280109200517
! 447: 845109, -0.61454482829258676899320019644273870645, 0.01114432093072471053067
! 448: 8340374220998541, -0.0012481940840821751169398163046387834473, 0.24032536934
! 449: 252330399154228873240534568, -0.062226588150197681775152126611810492910; 0.4
! 450: 4071750324351206127160083580231701801, 0.21108248167867048675227675845247769
! 451: 095, -0.17973275724076003758776897803740640964, 0.03560664294428763526612284
! 452: 8131812048466, -0.69765137527737012296208335046678265583, 0.4908392097109243
! 453: 6297498316169060044997; 0.32069686982225190106359024326699463106, 0.36589360
! 454: 730302614149086554211117169622, 0.60421220675295973004426567844103062241, -0
! 455: .24067907958842295837736719558855679285, -0.23138937333290388042251363554209
! 456: 048309, -0.53547692162107486593474491750949545456; 0.25431138634047419251788
! 457: 312792590944672, 0.39470677609501756783094636145991581708, -0.44357471627623
! 458: 954554460416705180105301, 0.62546038654922724457753441039459331059, 0.132863
! 459: 15850933553530333839628101576050, -0.41703769221897886840494514780771076439;
! 460: 0.21153084007896524664213667673977991959, 0.3881904338738864286311144882599
! 461: 2418973, -0.44153664101228966222143649752977203423, -0.689807199293836684198
! 462: 01738006926829419, 0.36271492146487147525299457604461742111, 0.0470340189331
! 463: 15649705614518466541243873; 0.18144297664876947372217005457727093715, 0.3706
! 464: 9590776736280861775501084807394603, 0.45911481681642960284551392793050866602
! 465: , 0.27160545336631286930015536176213647001, 0.502762866757515384892605663686
! 466: 47786272, 0.54068156310385293880022293448123782121]]
! 467: ? m=1/mathilbert(7)
! 468:
! 469: [49 -1176 8820 -29400 48510 -38808 12012]
! 470:
! 471: [-1176 37632 -317520 1128960 -1940400 1596672 -504504]
! 472:
! 473: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040]
! 474:
! 475: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160]
! 476:
! 477: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800]
! 478:
! 479: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264]
! 480:
! 481: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088]
! 482:
! 483: ? mp=concat(m,matid(7))
! 484:
! 485: [49 -1176 8820 -29400 48510 -38808 12012 1 0 0 0 0 0 0]
! 486:
! 487: [-1176 37632 -317520 1128960 -1940400 1596672 -504504 0 1 0 0 0 0 0]
! 488:
! 489: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040 0 0 1 0 0 0 0]
! 490:
! 491: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160 0 0 0 1 0 0
! 492: 0]
! 493:
! 494: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800 0 0 0 0 1 0
! 495: 0]
! 496:
! 497: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264 0 0 0 0 0
! 498: 1 0]
! 499:
! 500: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088 0 0 0 0 0 0 1]
! 501:
! 502: ? qflll(m)
! 503:
! 504: [-420 -420 840 630 -1092 757 2982]
! 505:
! 506: [-210 -280 630 504 -876 700 2415]
! 507:
! 508: [-140 -210 504 420 -749 641 2050]
! 509:
! 510: [-105 -168 420 360 -658 589 1785]
! 511:
! 512: [-84 -140 360 315 -588 544 1582]
! 513:
! 514: [-70 -120 315 280 -532 505 1421]
! 515:
! 516: [-60 -105 280 252 -486 471 1290]
! 517:
! 518: ? qflll(m,7)
! 519:
! 520: [-420 -420 840 630 -1092 757 2982]
! 521:
! 522: [-210 -280 630 504 -876 700 2415]
! 523:
! 524: [-140 -210 504 420 -749 641 2050]
! 525:
! 526: [-105 -168 420 360 -658 589 1785]
! 527:
! 528: [-84 -140 360 315 -588 544 1582]
! 529:
! 530: [-70 -120 315 280 -532 505 1421]
! 531:
! 532: [-60 -105 280 252 -486 471 1290]
! 533:
! 534: ? qflllgram(m)
! 535:
! 536: [1 1 27 -27 69 0 141]
! 537:
! 538: [0 1 4 -22 34 -24 49]
! 539:
! 540: [0 1 3 -21 18 -24 23]
! 541:
! 542: [0 1 3 -20 10 -19 13]
! 543:
! 544: [0 1 3 -19 6 -14 8]
! 545:
! 546: [0 1 3 -18 4 -10 5]
! 547:
! 548: [0 1 3 -17 3 -7 3]
! 549:
! 550: ? qflllgram(m,7)
! 551:
! 552: [1 1 27 -27 69 0 141]
! 553:
! 554: [0 1 4 -22 34 -24 49]
! 555:
! 556: [0 1 3 -21 18 -24 23]
! 557:
! 558: [0 1 3 -20 10 -19 13]
! 559:
! 560: [0 1 3 -19 6 -14 8]
! 561:
! 562: [0 1 3 -18 4 -10 5]
! 563:
! 564: [0 1 3 -17 3 -7 3]
! 565:
! 566: ? qflllgram(m,1)
! 567:
! 568: [1 1 27 -27 69 0 141]
! 569:
! 570: [0 1 4 -23 34 -24 91]
! 571:
! 572: [0 1 3 -22 18 -24 65]
! 573:
! 574: [0 1 3 -21 10 -19 49]
! 575:
! 576: [0 1 3 -20 6 -14 38]
! 577:
! 578: [0 1 3 -19 4 -10 30]
! 579:
! 580: [0 1 3 -18 3 -7 24]
! 581:
! 582: ? qflllgram(mp~*mp,4)
! 583: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
! 584: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
! 585: 169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
! 586: 190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
! 587: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
! 588: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
! 589: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
! 590: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
! 591: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
! 592: 0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
! 593: ? qflll(m,1)
! 594:
! 595: [-420 -420 840 630 -1092 -83 2982]
! 596:
! 597: [-210 -280 630 504 -876 70 2415]
! 598:
! 599: [-140 -210 504 420 -749 137 2050]
! 600:
! 601: [-105 -168 420 360 -658 169 1785]
! 602:
! 603: [-84 -140 360 315 -588 184 1582]
! 604:
! 605: [-70 -120 315 280 -532 190 1421]
! 606:
! 607: [-60 -105 280 252 -486 191 1290]
! 608:
! 609: ? qflll(m,2)
! 610:
! 611: [-420 -420 -630 840 1092 2982 -83]
! 612:
! 613: [-210 -280 -504 630 876 2415 70]
! 614:
! 615: [-140 -210 -420 504 749 2050 137]
! 616:
! 617: [-105 -168 -360 420 658 1785 169]
! 618:
! 619: [-84 -140 -315 360 588 1582 184]
! 620:
! 621: [-70 -120 -280 315 532 1421 190]
! 622:
! 623: [-60 -105 -252 280 486 1290 191]
! 624:
! 625: ? qflll(mp,4)
! 626: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
! 627: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
! 628: 169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
! 629: 190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
! 630: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
! 631: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
! 632: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
! 633: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
! 634: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
! 635: 0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
! 636: ? qflll(m,3)
! 637:
! 638: [-420 -420 840 630 -1092 -83 2982]
! 639:
! 640: [-210 -280 630 504 -876 70 2415]
! 641:
! 642: [-140 -210 504 420 -749 137 2050]
! 643:
! 644: [-105 -168 420 360 -658 169 1785]
! 645:
! 646: [-84 -140 360 315 -588 184 1582]
! 647:
! 648: [-70 -120 315 280 -532 190 1421]
! 649:
! 650: [-60 -105 280 252 -486 191 1290]
! 651:
! 652: ? qfminim([2,1;1,2],4,6)
! 653: [6, 2, [0, -1, 1; 1, 1, 0]]
! 654: ? qfperfection([2,0,1;0,2,1;1,1,2])
! 655: 6
! 656: ? qfsign(mathilbert(5)-0.11*matid(5))
! 657: [2, 3]
! 658: ? aset=Set([5,-2,7,3,5,1])
! 659: ["-2", "1", "3", "5", "7"]
! 660: ? bset=Set([7,5,-5,7,2])
! 661: ["-5", "2", "5", "7"]
! 662: ? setintersect(aset,bset)
! 663: ["5", "7"]
! 664: ? setisset([-3,5,7,7])
! 665: 0
! 666: ? setminus(aset,bset)
! 667: ["-2", "1", "3"]
! 668: ? setsearch(aset,3)
! 669: 3
! 670: ? setsearch(bset,3)
! 671: 0
! 672: ? setunion(aset,bset)
! 673: ["-2", "-5", "1", "2", "3", "5", "7"]
! 674: ? trace(1+I)
! 675: 2
! 676: ? trace(Mod(x+5,x^3+x+1))
! 677: 15
! 678: ? Vec(sin(x))
! 679: [1, 0, -1/6, 0, 1/120, 0, -1/5040, 0, 1/362880, 0, -1/39916800, 0, 1/6227020
! 680: 800, 0, -1/1307674368000]
! 681: ? vecmax([-3,7,-2,11])
! 682: 11
! 683: ? vecmin([-3,7,-2,11])
! 684: -3
! 685: ? concat([1,2],[3,4])
! 686: [1, 2, 3, 4]
! 687: ? concat(Mat(vector(4,x,x)~),vector(4,x,10+x)~)
! 688:
! 689: [1 11]
! 690:
! 691: [2 12]
! 692:
! 693: [3 13]
! 694:
! 695: [4 14]
! 696:
! 697: ? vecextract([1,2,3,4,5,6,7,8,9,10],1000)
! 698: [4, 6, 7, 8, 9, 10]
! 699: ? vecextract(matrix(15,15,x,y,x+y),vector(5,x,3*x),vector(3,y,3*y))
! 700:
! 701: [6 9 12]
! 702:
! 703: [9 12 15]
! 704:
! 705: [12 15 18]
! 706:
! 707: [15 18 21]
! 708:
! 709: [18 21 24]
! 710:
! 711: ? (1.*mathilbert(7))^(-1)
! 712:
! 713: [49.000000000000000000000000000000045975 -1176.00000000000000000000000000000
! 714: 20892 8820.0000000000000000000000000000216289 -29400.00000000000000000000000
! 715: 0000087526 48510.000000000000000000000000000164477 -38808.000000000000000000
! 716: 000000000145051 12012.000000000000000000000000000048237]
! 717:
! 718: [-1176.0000000000000000000000000000007015 37632.0000000000000000000000000000
! 719: 36155 -317520.00000000000000000000000000039285 1128960.000000000000000000000
! 720: 0000016298 -1940400.0000000000000000000000000031060 1596672.0000000000000000
! 721: 000000000027521 -504504.00000000000000000000000000091794]
! 722:
! 723: [8819.9999999999999999999999999999987063 -317520.000000000000000000000000000
! 724: 01369 2857680.0000000000000000000000000004729 -10584000.00000000000000000000
! 725: 0000002587 18711000.000000000000000000000000005552 -15717240.000000000000000
! 726: 000000000005216 5045040.0000000000000000000000000017929]
! 727:
! 728: [-29399.999999999999999999999999999970929 1128959.99999999999999999999999999
! 729: 90570 -10583999.999999999999999999999999992003 40319999.99999999999999999999
! 730: 9999971163 -72764999.999999999999999999999999949359 62092799.999999999999999
! 731: 999999999957242 -20180159.999999999999999999999999986112]
! 732:
! 733: [48509.999999999999999999999999999911823 -1940399.99999999999999999999999999
! 734: 68289 18710999.999999999999999999999999971121 -72764999.99999999999999999999
! 735: 9999890954 133402499.99999999999999999999999980291 -115259759.99999999999999
! 736: 999999999983068 37837799.999999999999999999999999944464]
! 737:
! 738: [-38807.999999999999999999999999999899366 1596671.99999999999999999999999999
! 739: 62508 -15717239.999999999999999999999999965108 62092799.99999999999999999999
! 740: 9999866538 -115259759.99999999999999999999999975693 100590335.99999999999999
! 741: 999999999979026 -33297263.999999999999999999999999931034]
! 742:
! 743: [12011.999999999999999999999999999960320 -504503.999999999999999999999999998
! 744: 49528 5045039.9999999999999999999999999858501 -20180159.99999999999999999999
! 745: 9999945550 37837799.999999999999999999999999900488 -33297263.999999999999999
! 746: 999999999913962 11099087.999999999999999999999999971679]
! 747:
! 748: ? vecsort([8,7,6,5],,1)
! 749: [4, 3, 2, 1]
! 750: ? vecsort([[1,5],[2,4],[1,5,1],[1,4,2]],,2)
! 751: [[1, 4, 2], [1, 5], [1, 5, 1], [2, 4]]
! 752: ? vecsort(vector(17,x,5*x%17))
! 753: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
! 754: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],2)
! 755: [[2, 5, 8], [3, 6, -6], [4, 8, 6], [1, 8, 5]]
! 756: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],[2,1])
! 757: [[2, 5, 8], [3, 6, -6], [1, 8, 5], [4, 8, 6]]
! 758: ? vector(10,x,1/x)
! 759: [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10]
! 760: ? setrand(1);a=matrix(3,5,j,k,vectorv(5,l,random\10^8))
! 761:
! 762: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~ [0, 16, 4, 2, 0]~
! 763: [17, 19, 17, 1, 14]~]
! 764:
! 765: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~ [6, 1, 8, 17, 21
! 766: ]~ [18, 17, 9, 10, 13]~]
! 767:
! 768: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~ [19, 21, 2, 4,
! 769: 5]~ [14, 16, 6, 20, 14]~]
! 770:
! 771: ? setrand(1);as=matrix(3,3,j,k,vectorv(5,l,random\10^8))
! 772:
! 773: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~]
! 774:
! 775: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~]
! 776:
! 777: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~]
! 778:
! 779: ? getheap
! 780: [111, 12382]
! 781: ? print("Total time spent: ",gettime);
! 782: Total time spent: 304
! 783: ? \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>