[BACK]Return to linear CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari / src / test / 32

Annotation of OpenXM_contrib/pari/src/test/32/linear, Revision 1.1.1.1

1.1       maekawa     1:    realprecision = 38 significant digits
                      2:    echo = 1 (on)
                      3: ? algdep(2*cos(2*Pi/13),6)
                      4: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
                      5: ? algdep(2*cos(2*Pi/13),6,15)
                      6: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
                      7: ? charpoly([1,2;3,4],z)
                      8: z^2 - 5*z - 2
                      9: ? charpoly(Mod(x^2+x+1,x^3+5*x+1),z)
                     10: z^3 + 7*z^2 + 16*z - 19
                     11: ? charpoly([1,2;3,4],z,1)
                     12: z^2 - 5*z - 2
                     13: ? charpoly(Mod(1,8191)*[1,2;3,4],z,2)
                     14: Mod(1, 8191)*z^2 + Mod(8186, 8191)*z + Mod(8189, 8191)
                     15: ? lindep(Mod(1,7)*[2,-1;1,3],-1)
                     16: [Mod(6, 7), Mod(5, 7)]~
                     17: ? lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)])
                     18: [-3, -3, 9, -2, 6]
                     19: ? lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)],14)
                     20: [-3, -3, 9, -2, 6]
                     21: ? matadjoint([1,2;3,4])
                     22:
                     23: [4 -2]
                     24:
                     25: [-3 1]
                     26:
                     27: ? matcompanion(x^5-12*x^3+0.0005)
                     28:
                     29: [0 0 0 0 -0.00049999999999999999999999999999999999999]
                     30:
                     31: [1 0 0 0 0]
                     32:
                     33: [0 1 0 0 0]
                     34:
                     35: [0 0 1 0 12]
                     36:
                     37: [0 0 0 1 0]
                     38:
                     39: ? matdet([1,2,3;1,5,6;9,8,7])
                     40: -30
                     41: ? matdet([1,2,3;1,5,6;9,8,7],1)
                     42: -30
                     43: ? matdetint([1,2,3;4,5,6])
                     44: 3
                     45: ? matdiagonal([2,4,6])
                     46:
                     47: [2 0 0]
                     48:
                     49: [0 4 0]
                     50:
                     51: [0 0 6]
                     52:
                     53: ? mateigen([1,2,3;4,5,6;7,8,9])
                     54:
                     55: [-1.2833494518006402717978106547571267252 1 0.283349451800640271797810654757
                     56: 12672521]
                     57:
                     58: [-0.14167472590032013589890532737856336261 -2 0.6416747259003201358989053273
                     59: 7856336260]
                     60:
                     61: [1 1 1]
                     62:
                     63: ? mathess(mathilbert(7))
                     64:
                     65: [1 90281/58800 -1919947/4344340 4858466341/1095033030 -77651417539/819678732
                     66: 6 3386888964/106615355 1/2]
                     67:
                     68: [1/3 43/48 38789/5585580 268214641/109503303 -581330123627/126464718744 4365
                     69: 450643/274153770 1/4]
                     70:
                     71: [0 217/2880 442223/7447440 53953931/292008808 -32242849453/168619624992 1475
                     72: 457901/1827691800 1/80]
                     73:
                     74: [0 0 1604444/264539275 24208141/149362505292 847880210129/47916076768560 -45
                     75: 44407141/103873817300 -29/40920]
                     76:
                     77: [0 0 0 9773092581/35395807550620 -24363634138919/107305824577186620 72118203
                     78: 606917/60481351061158500 55899/3088554700]
                     79:
                     80: [0 0 0 0 67201501179065/8543442888354179988 -9970556426629/74082861999267660
                     81: 0 -3229/13661312210]
                     82:
                     83: [0 0 0 0 0 -258198800769/9279048099409000 -13183/38381527800]
                     84:
                     85: ? mathilbert(5)
                     86:
                     87: [1 1/2 1/3 1/4 1/5]
                     88:
                     89: [1/2 1/3 1/4 1/5 1/6]
                     90:
                     91: [1/3 1/4 1/5 1/6 1/7]
                     92:
                     93: [1/4 1/5 1/6 1/7 1/8]
                     94:
                     95: [1/5 1/6 1/7 1/8 1/9]
                     96:
                     97: ? amat=1/mathilbert(7)
                     98:
                     99: [49 -1176 8820 -29400 48510 -38808 12012]
                    100:
                    101: [-1176 37632 -317520 1128960 -1940400 1596672 -504504]
                    102:
                    103: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040]
                    104:
                    105: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160]
                    106:
                    107: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800]
                    108:
                    109: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264]
                    110:
                    111: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088]
                    112:
                    113: ? mathnf(amat)
                    114:
                    115: [420 0 0 0 210 168 175]
                    116:
                    117: [0 840 0 0 0 0 504]
                    118:
                    119: [0 0 2520 0 0 0 1260]
                    120:
                    121: [0 0 0 2520 0 0 840]
                    122:
                    123: [0 0 0 0 13860 0 6930]
                    124:
                    125: [0 0 0 0 0 5544 0]
                    126:
                    127: [0 0 0 0 0 0 12012]
                    128:
                    129: ? mathnf(amat,1)
                    130: [[420, 0, 0, 0, 210, 168, 175; 0, 840, 0, 0, 0, 0, 504; 0, 0, 2520, 0, 0, 0,
                    131:  1260; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 13860, 0, 6930; 0, 0, 0, 0, 0,
                    132: 5544, 0; 0, 0, 0, 0, 0, 0, 12012], [420, 420, 840, 630, 2982, 1092, 4159; 21
                    133: 0, 280, 630, 504, 2415, 876, 3395; 140, 210, 504, 420, 2050, 749, 2901; 105,
                    134:  168, 420, 360, 1785, 658, 2542; 84, 140, 360, 315, 1582, 588, 2266; 70, 120
                    135: , 315, 280, 1421, 532, 2046; 60, 105, 280, 252, 1290, 486, 1866]]
                    136: ? mathnf(amat,2)
                    137: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
                    138: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
                    139: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
                    140: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
                    141: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
                    142: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
                    143: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
                    144: ? mathnf(amat,3)
                    145: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
                    146: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
                    147: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
                    148: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
                    149: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
                    150: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
                    151: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
                    152: ? mathnfmod(amat,matdetint(amat))
                    153:
                    154: [420 0 0 0 210 168 175]
                    155:
                    156: [0 840 0 0 0 0 504]
                    157:
                    158: [0 0 2520 0 0 0 1260]
                    159:
                    160: [0 0 0 2520 0 0 840]
                    161:
                    162: [0 0 0 0 13860 0 6930]
                    163:
                    164: [0 0 0 0 0 5544 0]
                    165:
                    166: [0 0 0 0 0 0 12012]
                    167:
                    168: ? mathnfmodid(amat,123456789*10^100)
                    169:
                    170: [60 0 0 0 30 24 35]
                    171:
                    172: [0 120 0 0 0 0 24]
                    173:
                    174: [0 0 360 0 0 0 180]
                    175:
                    176: [0 0 0 360 0 0 240]
                    177:
                    178: [0 0 0 0 180 0 90]
                    179:
                    180: [0 0 0 0 0 72 0]
                    181:
                    182: [0 0 0 0 0 0 12]
                    183:
                    184: ? matid(5)
                    185:
                    186: [1 0 0 0 0]
                    187:
                    188: [0 1 0 0 0]
                    189:
                    190: [0 0 1 0 0]
                    191:
                    192: [0 0 0 1 0]
                    193:
                    194: [0 0 0 0 1]
                    195:
                    196: ? matimage([1,3,5;2,4,6;3,5,7])
                    197:
                    198: [1 3]
                    199:
                    200: [2 4]
                    201:
                    202: [3 5]
                    203:
                    204: ? matimage([1,3,5;2,4,6;3,5,7],1)
                    205:
                    206: [3 5]
                    207:
                    208: [4 6]
                    209:
                    210: [5 7]
                    211:
                    212: ? matimage(Pi*[1,3,5;2,4,6;3,5,7])
                    213:
                    214: [3.1415926535897932384626433832795028841 9.424777960769379715387930149838508
                    215: 6525]
                    216:
                    217: [6.2831853071795864769252867665590057683 12.56637061435917295385057353311801
                    218: 1536]
                    219:
                    220: [9.4247779607693797153879301498385086525 15.70796326794896619231321691639751
                    221: 4420]
                    222:
                    223: ? matimagecompl([1,3,5;2,4,6;3,5,7])
                    224: [3]
                    225: ? matimagecompl(Pi*[1,3,5;2,4,6;3,5,7])
                    226: [3]
                    227: ? matindexrank([1,1,1;1,1,1;1,1,2])
                    228: [[1, 3], [1, 3]]
                    229: ? matintersect([1,2;3,4;5,6],[2,3;7,8;8,9])
                    230:
                    231: [-1]
                    232:
                    233: [-1]
                    234:
                    235: [-1]
                    236:
                    237: ? matinverseimage([1,1;2,3;5,7],[2,2,6]~)
                    238: [4, -2]~
                    239: ? matisdiagonal([1,0,0;0,5,0;0,0,0])
                    240: 1
                    241: ? matker(matrix(4,4,x,y,x/y))
                    242:
                    243: [-1/2 -1/3 -1/4]
                    244:
                    245: [1 0 0]
                    246:
                    247: [0 1 0]
                    248:
                    249: [0 0 1]
                    250:
                    251: ? matker(matrix(4,4,x,y,sin(x+y)))
                    252:
                    253: [1.0000000000000000000000000000000000000 1.080604611736279434801873214885953
                    254: 2074]
                    255:
                    256: [-1.0806046117362794348018732148859532074 -0.1677063269057152260048635409984
                    257: 7562046]
                    258:
                    259: [1 0]
                    260:
                    261: [0 1]
                    262:
                    263: ? matker(matrix(4,4,x,y,x+y),1)
                    264:
                    265: [1 2]
                    266:
                    267: [-2 -3]
                    268:
                    269: [1 0]
                    270:
                    271: [0 1]
                    272:
                    273: ? matkerint(matrix(4,4,x,y,x*y))
                    274:
                    275: [-1 -1 -1]
                    276:
                    277: [-1 0 1]
                    278:
                    279: [1 -1 1]
                    280:
                    281: [0 1 -1]
                    282:
                    283: ? matkerint(matrix(4,4,x,y,x*y),1)
                    284:
                    285: [-1 -1 -1]
                    286:
                    287: [-1 0 1]
                    288:
                    289: [1 -1 1]
                    290:
                    291: [0 1 -1]
                    292:
                    293: ? matkerint(matrix(4,6,x,y,2520/(x+y)),2)
                    294:
                    295: [3 1]
                    296:
                    297: [-30 -15]
                    298:
                    299: [70 70]
                    300:
                    301: [0 -140]
                    302:
                    303: [-126 126]
                    304:
                    305: [84 -42]
                    306:
                    307: ? matmuldiagonal(amat,[1,2,3,4,5,6,7])
                    308:
                    309: [49 -2352 26460 -117600 242550 -232848 84084]
                    310:
                    311: [-1176 75264 -952560 4515840 -9702000 9580032 -3531528]
                    312:
                    313: [8820 -635040 8573040 -42336000 93555000 -94303440 35315280]
                    314:
                    315: [-29400 2257920 -31752000 161280000 -363825000 372556800 -141261120]
                    316:
                    317: [48510 -3880800 56133000 -291060000 667012500 -691558560 264864600]
                    318:
                    319: [-38808 3193344 -47151720 248371200 -576298800 603542016 -233080848]
                    320:
                    321: [12012 -1009008 15135120 -80720640 189189000 -199783584 77693616]
                    322:
                    323: ? matmultodiagonal(amat^-1,%)
                    324:
                    325: [1 0 0 0 0 0 0]
                    326:
                    327: [0 2 0 0 0 0 0]
                    328:
                    329: [0 0 3 0 0 0 0]
                    330:
                    331: [0 0 0 4 0 0 0]
                    332:
                    333: [0 0 0 0 5 0 0]
                    334:
                    335: [0 0 0 0 0 6 0]
                    336:
                    337: [0 0 0 0 0 0 7]
                    338:
                    339: ? matpascal(8)
                    340:
                    341: [1 0 0 0 0 0 0 0 0]
                    342:
                    343: [1 1 0 0 0 0 0 0 0]
                    344:
                    345: [1 2 1 0 0 0 0 0 0]
                    346:
                    347: [1 3 3 1 0 0 0 0 0]
                    348:
                    349: [1 4 6 4 1 0 0 0 0]
                    350:
                    351: [1 5 10 10 5 1 0 0 0]
                    352:
                    353: [1 6 15 20 15 6 1 0 0]
                    354:
                    355: [1 7 21 35 35 21 7 1 0]
                    356:
                    357: [1 8 28 56 70 56 28 8 1]
                    358:
                    359: ? matrank(matrix(5,5,x,y,x+y))
                    360: 2
                    361: ? matrix(5,5,x,y,gcd(x,y))
                    362:
                    363: [1 1 1 1 1]
                    364:
                    365: [1 2 1 2 1]
                    366:
                    367: [1 1 3 1 1]
                    368:
                    369: [1 2 1 4 1]
                    370:
                    371: [1 1 1 1 5]
                    372:
                    373: ? matrixqz([1,3;3,5;5,7],0)
                    374:
                    375: [1 1]
                    376:
                    377: [3 2]
                    378:
                    379: [5 3]
                    380:
                    381: ? matrixqz([1/3,1/4,1/6;1/2,1/4,-1/4;1/3,1,0],-1)
                    382:
                    383: [19 12 2]
                    384:
                    385: [0 1 0]
                    386:
                    387: [0 0 1]
                    388:
                    389: ? matrixqz([1,3;3,5;5,7],-2)
                    390:
                    391: [2 -1]
                    392:
                    393: [1 0]
                    394:
                    395: [0 1]
                    396:
                    397: ? matsize([1,2;3,4;5,6])
                    398: [3, 2]
                    399: ? matsnf(matrix(5,5,j,k,random))
                    400: [741799239614624774584532992, 2147483648, 2147483648, 1, 1]
                    401: ? matsnf(1/mathilbert(6))
                    402: [27720, 2520, 2520, 840, 210, 6]
                    403: ? matsnf(x*matid(5)-matrix(5,5,j,k,1),2)
                    404: [x^2 - 5*x, x, x, x, 1]
                    405: ? matsolve(mathilbert(10),[1,2,3,4,5,6,7,8,9,0]~)
                    406: [9236800, -831303990, 18288515520, -170691240720, 832112321040, -23298940665
                    407: 00, 3883123564320, -3803844432960, 2020775945760, -449057772020]~
                    408: ? matsolvemod([2,3;5,4],[7,11],[1,4]~)
                    409: [-5, -1]~
                    410: ? matsolvemod([2,3;5,4],[7,11],[1,4]~,1)
                    411: [[-5, -1]~, [-77, 723; 0, 1]]
                    412: ? matsupplement([1,3;2,4;3,6])
                    413:
                    414: [1 3 0]
                    415:
                    416: [2 4 0]
                    417:
                    418: [3 6 1]
                    419:
                    420: ? mattranspose(vector(2,x,x))
                    421: [1, 2]~
                    422: ? %*%~
                    423:
                    424: [1 2]
                    425:
                    426: [2 4]
                    427:
                    428: ? norml2(vector(10,x,x))
                    429: 385
                    430: ? qfgaussred(mathilbert(5))
                    431:
                    432: [1 1/2 1/3 1/4 1/5]
                    433:
                    434: [0 1/12 1 9/10 4/5]
                    435:
                    436: [0 0 1/180 3/2 12/7]
                    437:
                    438: [0 0 0 1/2800 2]
                    439:
                    440: [0 0 0 0 1/44100]
                    441:
                    442: ? qfjacobi(mathilbert(6))
                    443: [[1.6188998589243390969705881471257800712, 0.2423608705752095521357284158507
                    444: 0114077, 0.000012570757122625194922982397996498755027, 0.0000001082799484565
                    445: 5497685388772372251711485, 0.016321521319875822124345079564191505890, 0.0006
                    446: 1574835418265769764919938428527140264]~, [0.74871921887909485900280109200517
                    447: 845109, -0.61454482829258676899320019644273870645, 0.01114432093072471053067
                    448: 8340374220998541, -0.0012481940840821751169398163046387834473, 0.24032536934
                    449: 252330399154228873240534568, -0.062226588150197681775152126611810492910; 0.4
                    450: 4071750324351206127160083580231701801, 0.21108248167867048675227675845247769
                    451: 095, -0.17973275724076003758776897803740640964, 0.03560664294428763526612284
                    452: 8131812048466, -0.69765137527737012296208335046678265583, 0.4908392097109243
                    453: 6297498316169060044997; 0.32069686982225190106359024326699463106, 0.36589360
                    454: 730302614149086554211117169622, 0.60421220675295973004426567844103062241, -0
                    455: .24067907958842295837736719558855679285, -0.23138937333290388042251363554209
                    456: 048309, -0.53547692162107486593474491750949545456; 0.25431138634047419251788
                    457: 312792590944672, 0.39470677609501756783094636145991581708, -0.44357471627623
                    458: 954554460416705180105301, 0.62546038654922724457753441039459331059, 0.132863
                    459: 15850933553530333839628101576050, -0.41703769221897886840494514780771076439;
                    460:  0.21153084007896524664213667673977991959, 0.3881904338738864286311144882599
                    461: 2418973, -0.44153664101228966222143649752977203423, -0.689807199293836684198
                    462: 01738006926829419, 0.36271492146487147525299457604461742111, 0.0470340189331
                    463: 15649705614518466541243873; 0.18144297664876947372217005457727093715, 0.3706
                    464: 9590776736280861775501084807394603, 0.45911481681642960284551392793050866602
                    465: , 0.27160545336631286930015536176213647001, 0.502762866757515384892605663686
                    466: 47786272, 0.54068156310385293880022293448123782121]]
                    467: ? m=1/mathilbert(7)
                    468:
                    469: [49 -1176 8820 -29400 48510 -38808 12012]
                    470:
                    471: [-1176 37632 -317520 1128960 -1940400 1596672 -504504]
                    472:
                    473: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040]
                    474:
                    475: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160]
                    476:
                    477: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800]
                    478:
                    479: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264]
                    480:
                    481: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088]
                    482:
                    483: ? mp=concat(m,matid(7))
                    484:
                    485: [49 -1176 8820 -29400 48510 -38808 12012 1 0 0 0 0 0 0]
                    486:
                    487: [-1176 37632 -317520 1128960 -1940400 1596672 -504504 0 1 0 0 0 0 0]
                    488:
                    489: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040 0 0 1 0 0 0 0]
                    490:
                    491: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160 0 0 0 1 0 0
                    492: 0]
                    493:
                    494: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800 0 0 0 0 1 0
                    495:  0]
                    496:
                    497: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264 0 0 0 0 0
                    498: 1 0]
                    499:
                    500: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088 0 0 0 0 0 0 1]
                    501:
                    502: ? qflll(m)
                    503:
                    504: [-420 -420 840 630 -1092 757 2982]
                    505:
                    506: [-210 -280 630 504 -876 700 2415]
                    507:
                    508: [-140 -210 504 420 -749 641 2050]
                    509:
                    510: [-105 -168 420 360 -658 589 1785]
                    511:
                    512: [-84 -140 360 315 -588 544 1582]
                    513:
                    514: [-70 -120 315 280 -532 505 1421]
                    515:
                    516: [-60 -105 280 252 -486 471 1290]
                    517:
                    518: ? qflll(m,7)
                    519:
                    520: [-420 -420 840 630 -1092 757 2982]
                    521:
                    522: [-210 -280 630 504 -876 700 2415]
                    523:
                    524: [-140 -210 504 420 -749 641 2050]
                    525:
                    526: [-105 -168 420 360 -658 589 1785]
                    527:
                    528: [-84 -140 360 315 -588 544 1582]
                    529:
                    530: [-70 -120 315 280 -532 505 1421]
                    531:
                    532: [-60 -105 280 252 -486 471 1290]
                    533:
                    534: ? qflllgram(m)
                    535:
                    536: [1 1 27 -27 69 0 141]
                    537:
                    538: [0 1 4 -22 34 -24 49]
                    539:
                    540: [0 1 3 -21 18 -24 23]
                    541:
                    542: [0 1 3 -20 10 -19 13]
                    543:
                    544: [0 1 3 -19 6 -14 8]
                    545:
                    546: [0 1 3 -18 4 -10 5]
                    547:
                    548: [0 1 3 -17 3 -7 3]
                    549:
                    550: ? qflllgram(m,7)
                    551:
                    552: [1 1 27 -27 69 0 141]
                    553:
                    554: [0 1 4 -22 34 -24 49]
                    555:
                    556: [0 1 3 -21 18 -24 23]
                    557:
                    558: [0 1 3 -20 10 -19 13]
                    559:
                    560: [0 1 3 -19 6 -14 8]
                    561:
                    562: [0 1 3 -18 4 -10 5]
                    563:
                    564: [0 1 3 -17 3 -7 3]
                    565:
                    566: ? qflllgram(m,1)
                    567:
                    568: [1 1 27 -27 69 0 141]
                    569:
                    570: [0 1 4 -23 34 -24 91]
                    571:
                    572: [0 1 3 -22 18 -24 65]
                    573:
                    574: [0 1 3 -21 10 -19 49]
                    575:
                    576: [0 1 3 -20 6 -14 38]
                    577:
                    578: [0 1 3 -19 4 -10 30]
                    579:
                    580: [0 1 3 -18 3 -7 24]
                    581:
                    582: ? qflllgram(mp~*mp,4)
                    583: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
                    584: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
                    585:  169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
                    586:  190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
                    587: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
                    588: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
                    589: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
                    590: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
                    591: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
                    592:  0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
                    593: ? qflll(m,1)
                    594:
                    595: [-420 -420 840 630 -1092 -83 2982]
                    596:
                    597: [-210 -280 630 504 -876 70 2415]
                    598:
                    599: [-140 -210 504 420 -749 137 2050]
                    600:
                    601: [-105 -168 420 360 -658 169 1785]
                    602:
                    603: [-84 -140 360 315 -588 184 1582]
                    604:
                    605: [-70 -120 315 280 -532 190 1421]
                    606:
                    607: [-60 -105 280 252 -486 191 1290]
                    608:
                    609: ? qflll(m,2)
                    610:
                    611: [-420 -420 -630 840 1092 2982 -83]
                    612:
                    613: [-210 -280 -504 630 876 2415 70]
                    614:
                    615: [-140 -210 -420 504 749 2050 137]
                    616:
                    617: [-105 -168 -360 420 658 1785 169]
                    618:
                    619: [-84 -140 -315 360 588 1582 184]
                    620:
                    621: [-70 -120 -280 315 532 1421 190]
                    622:
                    623: [-60 -105 -252 280 486 1290 191]
                    624:
                    625: ? qflll(mp,4)
                    626: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
                    627: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
                    628:  169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
                    629:  190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
                    630: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
                    631: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
                    632: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
                    633: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
                    634: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
                    635:  0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
                    636: ? qflll(m,3)
                    637:
                    638: [-420 -420 840 630 -1092 -83 2982]
                    639:
                    640: [-210 -280 630 504 -876 70 2415]
                    641:
                    642: [-140 -210 504 420 -749 137 2050]
                    643:
                    644: [-105 -168 420 360 -658 169 1785]
                    645:
                    646: [-84 -140 360 315 -588 184 1582]
                    647:
                    648: [-70 -120 315 280 -532 190 1421]
                    649:
                    650: [-60 -105 280 252 -486 191 1290]
                    651:
                    652: ? qfminim([2,1;1,2],4,6)
                    653: [6, 2, [0, -1, 1; 1, 1, 0]]
                    654: ? qfperfection([2,0,1;0,2,1;1,1,2])
                    655: 6
                    656: ? qfsign(mathilbert(5)-0.11*matid(5))
                    657: [2, 3]
                    658: ? aset=Set([5,-2,7,3,5,1])
                    659: ["-2", "1", "3", "5", "7"]
                    660: ? bset=Set([7,5,-5,7,2])
                    661: ["-5", "2", "5", "7"]
                    662: ? setintersect(aset,bset)
                    663: ["5", "7"]
                    664: ? setisset([-3,5,7,7])
                    665: 0
                    666: ? setminus(aset,bset)
                    667: ["-2", "1", "3"]
                    668: ? setsearch(aset,3)
                    669: 3
                    670: ? setsearch(bset,3)
                    671: 0
                    672: ? setunion(aset,bset)
                    673: ["-2", "-5", "1", "2", "3", "5", "7"]
                    674: ? trace(1+I)
                    675: 2
                    676: ? trace(Mod(x+5,x^3+x+1))
                    677: 15
                    678: ? Vec(sin(x))
                    679: [1, 0, -1/6, 0, 1/120, 0, -1/5040, 0, 1/362880, 0, -1/39916800, 0, 1/6227020
                    680: 800, 0, -1/1307674368000]
                    681: ? vecmax([-3,7,-2,11])
                    682: 11
                    683: ? vecmin([-3,7,-2,11])
                    684: -3
                    685: ? concat([1,2],[3,4])
                    686: [1, 2, 3, 4]
                    687: ? concat(Mat(vector(4,x,x)~),vector(4,x,10+x)~)
                    688:
                    689: [1 11]
                    690:
                    691: [2 12]
                    692:
                    693: [3 13]
                    694:
                    695: [4 14]
                    696:
                    697: ? vecextract([1,2,3,4,5,6,7,8,9,10],1000)
                    698: [4, 6, 7, 8, 9, 10]
                    699: ? vecextract(matrix(15,15,x,y,x+y),vector(5,x,3*x),vector(3,y,3*y))
                    700:
                    701: [6 9 12]
                    702:
                    703: [9 12 15]
                    704:
                    705: [12 15 18]
                    706:
                    707: [15 18 21]
                    708:
                    709: [18 21 24]
                    710:
                    711: ? (1.*mathilbert(7))^(-1)
                    712:
                    713: [49.000000000000000000000000000000045975 -1176.00000000000000000000000000000
                    714: 20892 8820.0000000000000000000000000000216289 -29400.00000000000000000000000
                    715: 0000087526 48510.000000000000000000000000000164477 -38808.000000000000000000
                    716: 000000000145051 12012.000000000000000000000000000048237]
                    717:
                    718: [-1176.0000000000000000000000000000007015 37632.0000000000000000000000000000
                    719: 36155 -317520.00000000000000000000000000039285 1128960.000000000000000000000
                    720: 0000016298 -1940400.0000000000000000000000000031060 1596672.0000000000000000
                    721: 000000000027521 -504504.00000000000000000000000000091794]
                    722:
                    723: [8819.9999999999999999999999999999987063 -317520.000000000000000000000000000
                    724: 01369 2857680.0000000000000000000000000004729 -10584000.00000000000000000000
                    725: 0000002587 18711000.000000000000000000000000005552 -15717240.000000000000000
                    726: 000000000005216 5045040.0000000000000000000000000017929]
                    727:
                    728: [-29399.999999999999999999999999999970929 1128959.99999999999999999999999999
                    729: 90570 -10583999.999999999999999999999999992003 40319999.99999999999999999999
                    730: 9999971163 -72764999.999999999999999999999999949359 62092799.999999999999999
                    731: 999999999957242 -20180159.999999999999999999999999986112]
                    732:
                    733: [48509.999999999999999999999999999911823 -1940399.99999999999999999999999999
                    734: 68289 18710999.999999999999999999999999971121 -72764999.99999999999999999999
                    735: 9999890954 133402499.99999999999999999999999980291 -115259759.99999999999999
                    736: 999999999983068 37837799.999999999999999999999999944464]
                    737:
                    738: [-38807.999999999999999999999999999899366 1596671.99999999999999999999999999
                    739: 62508 -15717239.999999999999999999999999965108 62092799.99999999999999999999
                    740: 9999866538 -115259759.99999999999999999999999975693 100590335.99999999999999
                    741: 999999999979026 -33297263.999999999999999999999999931034]
                    742:
                    743: [12011.999999999999999999999999999960320 -504503.999999999999999999999999998
                    744: 49528 5045039.9999999999999999999999999858501 -20180159.99999999999999999999
                    745: 9999945550 37837799.999999999999999999999999900488 -33297263.999999999999999
                    746: 999999999913962 11099087.999999999999999999999999971679]
                    747:
                    748: ? vecsort([8,7,6,5],,1)
                    749: [4, 3, 2, 1]
                    750: ? vecsort([[1,5],[2,4],[1,5,1],[1,4,2]],,2)
                    751: [[1, 4, 2], [1, 5], [1, 5, 1], [2, 4]]
                    752: ? vecsort(vector(17,x,5*x%17))
                    753: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
                    754: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],2)
                    755: [[2, 5, 8], [3, 6, -6], [4, 8, 6], [1, 8, 5]]
                    756: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],[2,1])
                    757: [[2, 5, 8], [3, 6, -6], [1, 8, 5], [4, 8, 6]]
                    758: ? vector(10,x,1/x)
                    759: [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10]
                    760: ? setrand(1);a=matrix(3,5,j,k,vectorv(5,l,random\10^8))
                    761:
                    762: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~ [0, 16, 4, 2, 0]~
                    763:  [17, 19, 17, 1, 14]~]
                    764:
                    765: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~ [6, 1, 8, 17, 21
                    766: ]~ [18, 17, 9, 10, 13]~]
                    767:
                    768: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~ [19, 21, 2, 4,
                    769: 5]~ [14, 16, 6, 20, 14]~]
                    770:
                    771: ? setrand(1);as=matrix(3,3,j,k,vectorv(5,l,random\10^8))
                    772:
                    773: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~]
                    774:
                    775: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~]
                    776:
                    777: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~]
                    778:
                    779: ? getheap
                    780: [111, 12382]
                    781: ? print("Total time spent: ",gettime);
                    782: Total time spent: 304
                    783: ? \q

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>