Annotation of OpenXM_contrib/pari/src/test/32/linear, Revision 1.1.1.1
1.1 maekawa 1: realprecision = 38 significant digits
2: echo = 1 (on)
3: ? algdep(2*cos(2*Pi/13),6)
4: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
5: ? algdep(2*cos(2*Pi/13),6,15)
6: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
7: ? charpoly([1,2;3,4],z)
8: z^2 - 5*z - 2
9: ? charpoly(Mod(x^2+x+1,x^3+5*x+1),z)
10: z^3 + 7*z^2 + 16*z - 19
11: ? charpoly([1,2;3,4],z,1)
12: z^2 - 5*z - 2
13: ? charpoly(Mod(1,8191)*[1,2;3,4],z,2)
14: Mod(1, 8191)*z^2 + Mod(8186, 8191)*z + Mod(8189, 8191)
15: ? lindep(Mod(1,7)*[2,-1;1,3],-1)
16: [Mod(6, 7), Mod(5, 7)]~
17: ? lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)])
18: [-3, -3, 9, -2, 6]
19: ? lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)],14)
20: [-3, -3, 9, -2, 6]
21: ? matadjoint([1,2;3,4])
22:
23: [4 -2]
24:
25: [-3 1]
26:
27: ? matcompanion(x^5-12*x^3+0.0005)
28:
29: [0 0 0 0 -0.00049999999999999999999999999999999999999]
30:
31: [1 0 0 0 0]
32:
33: [0 1 0 0 0]
34:
35: [0 0 1 0 12]
36:
37: [0 0 0 1 0]
38:
39: ? matdet([1,2,3;1,5,6;9,8,7])
40: -30
41: ? matdet([1,2,3;1,5,6;9,8,7],1)
42: -30
43: ? matdetint([1,2,3;4,5,6])
44: 3
45: ? matdiagonal([2,4,6])
46:
47: [2 0 0]
48:
49: [0 4 0]
50:
51: [0 0 6]
52:
53: ? mateigen([1,2,3;4,5,6;7,8,9])
54:
55: [-1.2833494518006402717978106547571267252 1 0.283349451800640271797810654757
56: 12672521]
57:
58: [-0.14167472590032013589890532737856336261 -2 0.6416747259003201358989053273
59: 7856336260]
60:
61: [1 1 1]
62:
63: ? mathess(mathilbert(7))
64:
65: [1 90281/58800 -1919947/4344340 4858466341/1095033030 -77651417539/819678732
66: 6 3386888964/106615355 1/2]
67:
68: [1/3 43/48 38789/5585580 268214641/109503303 -581330123627/126464718744 4365
69: 450643/274153770 1/4]
70:
71: [0 217/2880 442223/7447440 53953931/292008808 -32242849453/168619624992 1475
72: 457901/1827691800 1/80]
73:
74: [0 0 1604444/264539275 24208141/149362505292 847880210129/47916076768560 -45
75: 44407141/103873817300 -29/40920]
76:
77: [0 0 0 9773092581/35395807550620 -24363634138919/107305824577186620 72118203
78: 606917/60481351061158500 55899/3088554700]
79:
80: [0 0 0 0 67201501179065/8543442888354179988 -9970556426629/74082861999267660
81: 0 -3229/13661312210]
82:
83: [0 0 0 0 0 -258198800769/9279048099409000 -13183/38381527800]
84:
85: ? mathilbert(5)
86:
87: [1 1/2 1/3 1/4 1/5]
88:
89: [1/2 1/3 1/4 1/5 1/6]
90:
91: [1/3 1/4 1/5 1/6 1/7]
92:
93: [1/4 1/5 1/6 1/7 1/8]
94:
95: [1/5 1/6 1/7 1/8 1/9]
96:
97: ? amat=1/mathilbert(7)
98:
99: [49 -1176 8820 -29400 48510 -38808 12012]
100:
101: [-1176 37632 -317520 1128960 -1940400 1596672 -504504]
102:
103: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040]
104:
105: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160]
106:
107: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800]
108:
109: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264]
110:
111: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088]
112:
113: ? mathnf(amat)
114:
115: [420 0 0 0 210 168 175]
116:
117: [0 840 0 0 0 0 504]
118:
119: [0 0 2520 0 0 0 1260]
120:
121: [0 0 0 2520 0 0 840]
122:
123: [0 0 0 0 13860 0 6930]
124:
125: [0 0 0 0 0 5544 0]
126:
127: [0 0 0 0 0 0 12012]
128:
129: ? mathnf(amat,1)
130: [[420, 0, 0, 0, 210, 168, 175; 0, 840, 0, 0, 0, 0, 504; 0, 0, 2520, 0, 0, 0,
131: 1260; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 13860, 0, 6930; 0, 0, 0, 0, 0,
132: 5544, 0; 0, 0, 0, 0, 0, 0, 12012], [420, 420, 840, 630, 2982, 1092, 4159; 21
133: 0, 280, 630, 504, 2415, 876, 3395; 140, 210, 504, 420, 2050, 749, 2901; 105,
134: 168, 420, 360, 1785, 658, 2542; 84, 140, 360, 315, 1582, 588, 2266; 70, 120
135: , 315, 280, 1421, 532, 2046; 60, 105, 280, 252, 1290, 486, 1866]]
136: ? mathnf(amat,2)
137: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
138: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
139: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
140: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
141: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
142: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
143: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
144: ? mathnf(amat,3)
145: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
146: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
147: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
148: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
149: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
150: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
151: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
152: ? mathnfmod(amat,matdetint(amat))
153:
154: [420 0 0 0 210 168 175]
155:
156: [0 840 0 0 0 0 504]
157:
158: [0 0 2520 0 0 0 1260]
159:
160: [0 0 0 2520 0 0 840]
161:
162: [0 0 0 0 13860 0 6930]
163:
164: [0 0 0 0 0 5544 0]
165:
166: [0 0 0 0 0 0 12012]
167:
168: ? mathnfmodid(amat,123456789*10^100)
169:
170: [60 0 0 0 30 24 35]
171:
172: [0 120 0 0 0 0 24]
173:
174: [0 0 360 0 0 0 180]
175:
176: [0 0 0 360 0 0 240]
177:
178: [0 0 0 0 180 0 90]
179:
180: [0 0 0 0 0 72 0]
181:
182: [0 0 0 0 0 0 12]
183:
184: ? matid(5)
185:
186: [1 0 0 0 0]
187:
188: [0 1 0 0 0]
189:
190: [0 0 1 0 0]
191:
192: [0 0 0 1 0]
193:
194: [0 0 0 0 1]
195:
196: ? matimage([1,3,5;2,4,6;3,5,7])
197:
198: [1 3]
199:
200: [2 4]
201:
202: [3 5]
203:
204: ? matimage([1,3,5;2,4,6;3,5,7],1)
205:
206: [3 5]
207:
208: [4 6]
209:
210: [5 7]
211:
212: ? matimage(Pi*[1,3,5;2,4,6;3,5,7])
213:
214: [3.1415926535897932384626433832795028841 9.424777960769379715387930149838508
215: 6525]
216:
217: [6.2831853071795864769252867665590057683 12.56637061435917295385057353311801
218: 1536]
219:
220: [9.4247779607693797153879301498385086525 15.70796326794896619231321691639751
221: 4420]
222:
223: ? matimagecompl([1,3,5;2,4,6;3,5,7])
224: [3]
225: ? matimagecompl(Pi*[1,3,5;2,4,6;3,5,7])
226: [3]
227: ? matindexrank([1,1,1;1,1,1;1,1,2])
228: [[1, 3], [1, 3]]
229: ? matintersect([1,2;3,4;5,6],[2,3;7,8;8,9])
230:
231: [-1]
232:
233: [-1]
234:
235: [-1]
236:
237: ? matinverseimage([1,1;2,3;5,7],[2,2,6]~)
238: [4, -2]~
239: ? matisdiagonal([1,0,0;0,5,0;0,0,0])
240: 1
241: ? matker(matrix(4,4,x,y,x/y))
242:
243: [-1/2 -1/3 -1/4]
244:
245: [1 0 0]
246:
247: [0 1 0]
248:
249: [0 0 1]
250:
251: ? matker(matrix(4,4,x,y,sin(x+y)))
252:
253: [1.0000000000000000000000000000000000000 1.080604611736279434801873214885953
254: 2074]
255:
256: [-1.0806046117362794348018732148859532074 -0.1677063269057152260048635409984
257: 7562046]
258:
259: [1 0]
260:
261: [0 1]
262:
263: ? matker(matrix(4,4,x,y,x+y),1)
264:
265: [1 2]
266:
267: [-2 -3]
268:
269: [1 0]
270:
271: [0 1]
272:
273: ? matkerint(matrix(4,4,x,y,x*y))
274:
275: [-1 -1 -1]
276:
277: [-1 0 1]
278:
279: [1 -1 1]
280:
281: [0 1 -1]
282:
283: ? matkerint(matrix(4,4,x,y,x*y),1)
284:
285: [-1 -1 -1]
286:
287: [-1 0 1]
288:
289: [1 -1 1]
290:
291: [0 1 -1]
292:
293: ? matkerint(matrix(4,6,x,y,2520/(x+y)),2)
294:
295: [3 1]
296:
297: [-30 -15]
298:
299: [70 70]
300:
301: [0 -140]
302:
303: [-126 126]
304:
305: [84 -42]
306:
307: ? matmuldiagonal(amat,[1,2,3,4,5,6,7])
308:
309: [49 -2352 26460 -117600 242550 -232848 84084]
310:
311: [-1176 75264 -952560 4515840 -9702000 9580032 -3531528]
312:
313: [8820 -635040 8573040 -42336000 93555000 -94303440 35315280]
314:
315: [-29400 2257920 -31752000 161280000 -363825000 372556800 -141261120]
316:
317: [48510 -3880800 56133000 -291060000 667012500 -691558560 264864600]
318:
319: [-38808 3193344 -47151720 248371200 -576298800 603542016 -233080848]
320:
321: [12012 -1009008 15135120 -80720640 189189000 -199783584 77693616]
322:
323: ? matmultodiagonal(amat^-1,%)
324:
325: [1 0 0 0 0 0 0]
326:
327: [0 2 0 0 0 0 0]
328:
329: [0 0 3 0 0 0 0]
330:
331: [0 0 0 4 0 0 0]
332:
333: [0 0 0 0 5 0 0]
334:
335: [0 0 0 0 0 6 0]
336:
337: [0 0 0 0 0 0 7]
338:
339: ? matpascal(8)
340:
341: [1 0 0 0 0 0 0 0 0]
342:
343: [1 1 0 0 0 0 0 0 0]
344:
345: [1 2 1 0 0 0 0 0 0]
346:
347: [1 3 3 1 0 0 0 0 0]
348:
349: [1 4 6 4 1 0 0 0 0]
350:
351: [1 5 10 10 5 1 0 0 0]
352:
353: [1 6 15 20 15 6 1 0 0]
354:
355: [1 7 21 35 35 21 7 1 0]
356:
357: [1 8 28 56 70 56 28 8 1]
358:
359: ? matrank(matrix(5,5,x,y,x+y))
360: 2
361: ? matrix(5,5,x,y,gcd(x,y))
362:
363: [1 1 1 1 1]
364:
365: [1 2 1 2 1]
366:
367: [1 1 3 1 1]
368:
369: [1 2 1 4 1]
370:
371: [1 1 1 1 5]
372:
373: ? matrixqz([1,3;3,5;5,7],0)
374:
375: [1 1]
376:
377: [3 2]
378:
379: [5 3]
380:
381: ? matrixqz([1/3,1/4,1/6;1/2,1/4,-1/4;1/3,1,0],-1)
382:
383: [19 12 2]
384:
385: [0 1 0]
386:
387: [0 0 1]
388:
389: ? matrixqz([1,3;3,5;5,7],-2)
390:
391: [2 -1]
392:
393: [1 0]
394:
395: [0 1]
396:
397: ? matsize([1,2;3,4;5,6])
398: [3, 2]
399: ? matsnf(matrix(5,5,j,k,random))
400: [741799239614624774584532992, 2147483648, 2147483648, 1, 1]
401: ? matsnf(1/mathilbert(6))
402: [27720, 2520, 2520, 840, 210, 6]
403: ? matsnf(x*matid(5)-matrix(5,5,j,k,1),2)
404: [x^2 - 5*x, x, x, x, 1]
405: ? matsolve(mathilbert(10),[1,2,3,4,5,6,7,8,9,0]~)
406: [9236800, -831303990, 18288515520, -170691240720, 832112321040, -23298940665
407: 00, 3883123564320, -3803844432960, 2020775945760, -449057772020]~
408: ? matsolvemod([2,3;5,4],[7,11],[1,4]~)
409: [-5, -1]~
410: ? matsolvemod([2,3;5,4],[7,11],[1,4]~,1)
411: [[-5, -1]~, [-77, 723; 0, 1]]
412: ? matsupplement([1,3;2,4;3,6])
413:
414: [1 3 0]
415:
416: [2 4 0]
417:
418: [3 6 1]
419:
420: ? mattranspose(vector(2,x,x))
421: [1, 2]~
422: ? %*%~
423:
424: [1 2]
425:
426: [2 4]
427:
428: ? norml2(vector(10,x,x))
429: 385
430: ? qfgaussred(mathilbert(5))
431:
432: [1 1/2 1/3 1/4 1/5]
433:
434: [0 1/12 1 9/10 4/5]
435:
436: [0 0 1/180 3/2 12/7]
437:
438: [0 0 0 1/2800 2]
439:
440: [0 0 0 0 1/44100]
441:
442: ? qfjacobi(mathilbert(6))
443: [[1.6188998589243390969705881471257800712, 0.2423608705752095521357284158507
444: 0114077, 0.000012570757122625194922982397996498755027, 0.0000001082799484565
445: 5497685388772372251711485, 0.016321521319875822124345079564191505890, 0.0006
446: 1574835418265769764919938428527140264]~, [0.74871921887909485900280109200517
447: 845109, -0.61454482829258676899320019644273870645, 0.01114432093072471053067
448: 8340374220998541, -0.0012481940840821751169398163046387834473, 0.24032536934
449: 252330399154228873240534568, -0.062226588150197681775152126611810492910; 0.4
450: 4071750324351206127160083580231701801, 0.21108248167867048675227675845247769
451: 095, -0.17973275724076003758776897803740640964, 0.03560664294428763526612284
452: 8131812048466, -0.69765137527737012296208335046678265583, 0.4908392097109243
453: 6297498316169060044997; 0.32069686982225190106359024326699463106, 0.36589360
454: 730302614149086554211117169622, 0.60421220675295973004426567844103062241, -0
455: .24067907958842295837736719558855679285, -0.23138937333290388042251363554209
456: 048309, -0.53547692162107486593474491750949545456; 0.25431138634047419251788
457: 312792590944672, 0.39470677609501756783094636145991581708, -0.44357471627623
458: 954554460416705180105301, 0.62546038654922724457753441039459331059, 0.132863
459: 15850933553530333839628101576050, -0.41703769221897886840494514780771076439;
460: 0.21153084007896524664213667673977991959, 0.3881904338738864286311144882599
461: 2418973, -0.44153664101228966222143649752977203423, -0.689807199293836684198
462: 01738006926829419, 0.36271492146487147525299457604461742111, 0.0470340189331
463: 15649705614518466541243873; 0.18144297664876947372217005457727093715, 0.3706
464: 9590776736280861775501084807394603, 0.45911481681642960284551392793050866602
465: , 0.27160545336631286930015536176213647001, 0.502762866757515384892605663686
466: 47786272, 0.54068156310385293880022293448123782121]]
467: ? m=1/mathilbert(7)
468:
469: [49 -1176 8820 -29400 48510 -38808 12012]
470:
471: [-1176 37632 -317520 1128960 -1940400 1596672 -504504]
472:
473: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040]
474:
475: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160]
476:
477: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800]
478:
479: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264]
480:
481: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088]
482:
483: ? mp=concat(m,matid(7))
484:
485: [49 -1176 8820 -29400 48510 -38808 12012 1 0 0 0 0 0 0]
486:
487: [-1176 37632 -317520 1128960 -1940400 1596672 -504504 0 1 0 0 0 0 0]
488:
489: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040 0 0 1 0 0 0 0]
490:
491: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160 0 0 0 1 0 0
492: 0]
493:
494: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800 0 0 0 0 1 0
495: 0]
496:
497: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264 0 0 0 0 0
498: 1 0]
499:
500: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088 0 0 0 0 0 0 1]
501:
502: ? qflll(m)
503:
504: [-420 -420 840 630 -1092 757 2982]
505:
506: [-210 -280 630 504 -876 700 2415]
507:
508: [-140 -210 504 420 -749 641 2050]
509:
510: [-105 -168 420 360 -658 589 1785]
511:
512: [-84 -140 360 315 -588 544 1582]
513:
514: [-70 -120 315 280 -532 505 1421]
515:
516: [-60 -105 280 252 -486 471 1290]
517:
518: ? qflll(m,7)
519:
520: [-420 -420 840 630 -1092 757 2982]
521:
522: [-210 -280 630 504 -876 700 2415]
523:
524: [-140 -210 504 420 -749 641 2050]
525:
526: [-105 -168 420 360 -658 589 1785]
527:
528: [-84 -140 360 315 -588 544 1582]
529:
530: [-70 -120 315 280 -532 505 1421]
531:
532: [-60 -105 280 252 -486 471 1290]
533:
534: ? qflllgram(m)
535:
536: [1 1 27 -27 69 0 141]
537:
538: [0 1 4 -22 34 -24 49]
539:
540: [0 1 3 -21 18 -24 23]
541:
542: [0 1 3 -20 10 -19 13]
543:
544: [0 1 3 -19 6 -14 8]
545:
546: [0 1 3 -18 4 -10 5]
547:
548: [0 1 3 -17 3 -7 3]
549:
550: ? qflllgram(m,7)
551:
552: [1 1 27 -27 69 0 141]
553:
554: [0 1 4 -22 34 -24 49]
555:
556: [0 1 3 -21 18 -24 23]
557:
558: [0 1 3 -20 10 -19 13]
559:
560: [0 1 3 -19 6 -14 8]
561:
562: [0 1 3 -18 4 -10 5]
563:
564: [0 1 3 -17 3 -7 3]
565:
566: ? qflllgram(m,1)
567:
568: [1 1 27 -27 69 0 141]
569:
570: [0 1 4 -23 34 -24 91]
571:
572: [0 1 3 -22 18 -24 65]
573:
574: [0 1 3 -21 10 -19 49]
575:
576: [0 1 3 -20 6 -14 38]
577:
578: [0 1 3 -19 4 -10 30]
579:
580: [0 1 3 -18 3 -7 24]
581:
582: ? qflllgram(mp~*mp,4)
583: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
584: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
585: 169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
586: 190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
587: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
588: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
589: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
590: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
591: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
592: 0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
593: ? qflll(m,1)
594:
595: [-420 -420 840 630 -1092 -83 2982]
596:
597: [-210 -280 630 504 -876 70 2415]
598:
599: [-140 -210 504 420 -749 137 2050]
600:
601: [-105 -168 420 360 -658 169 1785]
602:
603: [-84 -140 360 315 -588 184 1582]
604:
605: [-70 -120 315 280 -532 190 1421]
606:
607: [-60 -105 280 252 -486 191 1290]
608:
609: ? qflll(m,2)
610:
611: [-420 -420 -630 840 1092 2982 -83]
612:
613: [-210 -280 -504 630 876 2415 70]
614:
615: [-140 -210 -420 504 749 2050 137]
616:
617: [-105 -168 -360 420 658 1785 169]
618:
619: [-84 -140 -315 360 588 1582 184]
620:
621: [-70 -120 -280 315 532 1421 190]
622:
623: [-60 -105 -252 280 486 1290 191]
624:
625: ? qflll(mp,4)
626: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
627: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
628: 169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
629: 190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
630: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
631: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
632: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
633: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
634: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
635: 0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
636: ? qflll(m,3)
637:
638: [-420 -420 840 630 -1092 -83 2982]
639:
640: [-210 -280 630 504 -876 70 2415]
641:
642: [-140 -210 504 420 -749 137 2050]
643:
644: [-105 -168 420 360 -658 169 1785]
645:
646: [-84 -140 360 315 -588 184 1582]
647:
648: [-70 -120 315 280 -532 190 1421]
649:
650: [-60 -105 280 252 -486 191 1290]
651:
652: ? qfminim([2,1;1,2],4,6)
653: [6, 2, [0, -1, 1; 1, 1, 0]]
654: ? qfperfection([2,0,1;0,2,1;1,1,2])
655: 6
656: ? qfsign(mathilbert(5)-0.11*matid(5))
657: [2, 3]
658: ? aset=Set([5,-2,7,3,5,1])
659: ["-2", "1", "3", "5", "7"]
660: ? bset=Set([7,5,-5,7,2])
661: ["-5", "2", "5", "7"]
662: ? setintersect(aset,bset)
663: ["5", "7"]
664: ? setisset([-3,5,7,7])
665: 0
666: ? setminus(aset,bset)
667: ["-2", "1", "3"]
668: ? setsearch(aset,3)
669: 3
670: ? setsearch(bset,3)
671: 0
672: ? setunion(aset,bset)
673: ["-2", "-5", "1", "2", "3", "5", "7"]
674: ? trace(1+I)
675: 2
676: ? trace(Mod(x+5,x^3+x+1))
677: 15
678: ? Vec(sin(x))
679: [1, 0, -1/6, 0, 1/120, 0, -1/5040, 0, 1/362880, 0, -1/39916800, 0, 1/6227020
680: 800, 0, -1/1307674368000]
681: ? vecmax([-3,7,-2,11])
682: 11
683: ? vecmin([-3,7,-2,11])
684: -3
685: ? concat([1,2],[3,4])
686: [1, 2, 3, 4]
687: ? concat(Mat(vector(4,x,x)~),vector(4,x,10+x)~)
688:
689: [1 11]
690:
691: [2 12]
692:
693: [3 13]
694:
695: [4 14]
696:
697: ? vecextract([1,2,3,4,5,6,7,8,9,10],1000)
698: [4, 6, 7, 8, 9, 10]
699: ? vecextract(matrix(15,15,x,y,x+y),vector(5,x,3*x),vector(3,y,3*y))
700:
701: [6 9 12]
702:
703: [9 12 15]
704:
705: [12 15 18]
706:
707: [15 18 21]
708:
709: [18 21 24]
710:
711: ? (1.*mathilbert(7))^(-1)
712:
713: [49.000000000000000000000000000000045975 -1176.00000000000000000000000000000
714: 20892 8820.0000000000000000000000000000216289 -29400.00000000000000000000000
715: 0000087526 48510.000000000000000000000000000164477 -38808.000000000000000000
716: 000000000145051 12012.000000000000000000000000000048237]
717:
718: [-1176.0000000000000000000000000000007015 37632.0000000000000000000000000000
719: 36155 -317520.00000000000000000000000000039285 1128960.000000000000000000000
720: 0000016298 -1940400.0000000000000000000000000031060 1596672.0000000000000000
721: 000000000027521 -504504.00000000000000000000000000091794]
722:
723: [8819.9999999999999999999999999999987063 -317520.000000000000000000000000000
724: 01369 2857680.0000000000000000000000000004729 -10584000.00000000000000000000
725: 0000002587 18711000.000000000000000000000000005552 -15717240.000000000000000
726: 000000000005216 5045040.0000000000000000000000000017929]
727:
728: [-29399.999999999999999999999999999970929 1128959.99999999999999999999999999
729: 90570 -10583999.999999999999999999999999992003 40319999.99999999999999999999
730: 9999971163 -72764999.999999999999999999999999949359 62092799.999999999999999
731: 999999999957242 -20180159.999999999999999999999999986112]
732:
733: [48509.999999999999999999999999999911823 -1940399.99999999999999999999999999
734: 68289 18710999.999999999999999999999999971121 -72764999.99999999999999999999
735: 9999890954 133402499.99999999999999999999999980291 -115259759.99999999999999
736: 999999999983068 37837799.999999999999999999999999944464]
737:
738: [-38807.999999999999999999999999999899366 1596671.99999999999999999999999999
739: 62508 -15717239.999999999999999999999999965108 62092799.99999999999999999999
740: 9999866538 -115259759.99999999999999999999999975693 100590335.99999999999999
741: 999999999979026 -33297263.999999999999999999999999931034]
742:
743: [12011.999999999999999999999999999960320 -504503.999999999999999999999999998
744: 49528 5045039.9999999999999999999999999858501 -20180159.99999999999999999999
745: 9999945550 37837799.999999999999999999999999900488 -33297263.999999999999999
746: 999999999913962 11099087.999999999999999999999999971679]
747:
748: ? vecsort([8,7,6,5],,1)
749: [4, 3, 2, 1]
750: ? vecsort([[1,5],[2,4],[1,5,1],[1,4,2]],,2)
751: [[1, 4, 2], [1, 5], [1, 5, 1], [2, 4]]
752: ? vecsort(vector(17,x,5*x%17))
753: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
754: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],2)
755: [[2, 5, 8], [3, 6, -6], [4, 8, 6], [1, 8, 5]]
756: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],[2,1])
757: [[2, 5, 8], [3, 6, -6], [1, 8, 5], [4, 8, 6]]
758: ? vector(10,x,1/x)
759: [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10]
760: ? setrand(1);a=matrix(3,5,j,k,vectorv(5,l,random\10^8))
761:
762: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~ [0, 16, 4, 2, 0]~
763: [17, 19, 17, 1, 14]~]
764:
765: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~ [6, 1, 8, 17, 21
766: ]~ [18, 17, 9, 10, 13]~]
767:
768: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~ [19, 21, 2, 4,
769: 5]~ [14, 16, 6, 20, 14]~]
770:
771: ? setrand(1);as=matrix(3,3,j,k,vectorv(5,l,random\10^8))
772:
773: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~]
774:
775: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~]
776:
777: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~]
778:
779: ? getheap
780: [111, 12382]
781: ? print("Total time spent: ",gettime);
782: Total time spent: 304
783: ? \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>