[BACK]Return to nfields CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari / src / test / 32

Annotation of OpenXM_contrib/pari/src/test/32/nfields, Revision 1.1.1.1

1.1       maekawa     1:    realprecision = 38 significant digits
                      2:    echo = 1 (on)
                      3: ? nfpol=x^5-5*x^3+5*x+25
                      4: x^5 - 5*x^3 + 5*x + 25
                      5: ? qpol=y^3-y-1;un=Mod(1,qpol);w=Mod(y,qpol);p=un*(x^5-5*x+w)
                      6: Mod(1, y^3 - y - 1)*x^5 + Mod(-5, y^3 - y - 1)*x + Mod(y, y^3 - y - 1)
                      7: ? p2=x^5+3021*x^4-786303*x^3-6826636057*x^2-546603588746*x+3853890514072057
                      8: x^5 + 3021*x^4 - 786303*x^3 - 6826636057*x^2 - 546603588746*x + 385389051407
                      9: 2057
                     10: ? fa=[11699,6;2392997,2;4987333019653,2]
                     11:
                     12: [11699 6]
                     13:
                     14: [2392997 2]
                     15:
                     16: [4987333019653 2]
                     17:
                     18: ? setrand(1);a=matrix(3,5,j,k,vectorv(5,l,random\10^8));
                     19: ? setrand(1);as=matrix(3,3,j,k,vectorv(5,l,random\10^8));
                     20: ? nf=nfinit(nfpol)
                     21: [x^5 - 5*x^3 + 5*x + 25, [1, 2], 595125, 45, [[1, -2.42851749071941860689920
                     22: 69565359418364, 5.8976972027301414394898806541072047941, -7.0734526715090929
                     23: 269887668671457811020, 3.8085820570096366144649278594400435257; 1, 1.9647119
                     24: 211288133163138753392090569931 + 0.80971492418897895128294082219556466857*I,
                     25:  3.2044546745713084269203768790545260356 + 3.1817131285400005341145852263331
                     26: 539899*I, -0.16163499313031744537610982231988834519 + 1.88804378620070569319
                     27: 06454476483475283*I, 2.0660709538372480632698971148801090692 + 2.68989675196
                     28: 23140991170523711857387388*I; 1, -0.75045317576910401286427186094108607489 +
                     29:  1.3101462685358123283560773619310445915*I, -1.15330327593637914666531720610
                     30: 81284327 - 1.9664068558894834311780119356739268309*I, 1.19836132888486390887
                     31: 04932558927788962 + 0.64370238076256988899570325671192132449*I, -0.470361982
                     32: 34206637050236104460013083212 + 0.083628266711589186119416762685933385421*I]
                     33: , [1, 2, 2; -2.4285174907194186068992069565359418364, 3.92942384225762663262
                     34: 77506784181139862 - 1.6194298483779579025658816443911293371*I, -1.5009063515
                     35: 382080257285437218821721497 - 2.6202925370716246567121547238620891831*I; 5.8
                     36: 976972027301414394898806541072047941, 6.408909349142616853840753758109052071
                     37: 2 - 6.3634262570800010682291704526663079798*I, -2.30660655187275829333063441
                     38: 22162568654 + 3.9328137117789668623560238713478536619*I; -7.0734526715090929
                     39: 269887668671457811020, -0.32326998626063489075221964463977669038 - 3.7760875
                     40: 724014113863812908952966950567*I, 2.3967226577697278177409865117855577924 -
                     41: 1.2874047615251397779914065134238426489*I; 3.8085820570096366144649278594400
                     42: 435257, 4.1321419076744961265397942297602181385 - 5.379793503924628198234104
                     43: 7423714774776*I, -0.94072396468413274100472208920026166424 - 0.1672565334231
                     44: 7837223883352537186677084*I], [5, 4.0215293653309345240000000000000000000 E-
                     45: 87, 10.000000000000000000000000000000000000, -5.0000000000000000000000000000
                     46: 000000000, 7.0000000000000000000000000000000000000; 4.0215293653309345240000
                     47: 000000000000000 E-87, 19.488486013650707197449403270536023970, 8.04305873066
                     48: 18690490000000000000000000 E-86, 19.488486013650707197449403270536023970, 4.
                     49: 1504592246706085588902013976045703227; 10.0000000000000000000000000000000000
                     50: 00, 8.0430587306618690490000000000000000000 E-86, 85.96021742085184648030513
                     51: 3936577594605, -36.034268291482979838267056239752434596, 53.5761304525111078
                     52: 88183080361946556763; -5.0000000000000000000000000000000000000, 19.488486013
                     53: 650707197449403270536023970, -36.034268291482979838267056239752434596, 60.91
                     54: 6248374441986300937507618575151517, -18.470101750219179344070032346246890434
                     55: ; 7.0000000000000000000000000000000000000, 4.1504592246706085588902013976045
                     56: 703227, 53.576130452511107888183080361946556763, -18.47010175021917934407003
                     57: 2346246890434, 37.970152892842367340897384258599214282], [5, 0, 10, -5, 7; 0
                     58: , 10, 0, 10, -5; 10, 0, 30, -55, 20; -5, 10, -55, 45, -39; 7, -5, 20, -39, 9
                     59: ], [345, 0, 340, 167, 150; 0, 345, 110, 220, 153; 0, 0, 5, 2, 1; 0, 0, 0, 1,
                     60:  0; 0, 0, 0, 0, 1], [132825, -18975, -5175, 27600, 17250; -18975, 34500, 414
                     61: 00, 3450, -43125; -5175, 41400, -41400, -15525, 51750; 27600, 3450, -15525,
                     62: -3450, 0; 17250, -43125, 51750, 0, -86250], [595125, [-120750, 63825, 113850
                     63: , 0, 8625]~, 125439056256992431640625]], [-2.4285174907194186068992069565359
                     64: 418364, 1.9647119211288133163138753392090569931 + 0.809714924188978951282940
                     65: 82219556466857*I, -0.75045317576910401286427186094108607489 + 1.310146268535
                     66: 8123283560773619310445915*I], [1, x, x^2, 1/3*x^3 - 1/3*x^2 - 1/3, 1/15*x^4
                     67: + 1/3*x^2 + 1/3*x + 1/3], [1, 0, 0, 1, -5; 0, 1, 0, 0, -5; 0, 0, 1, 1, -5; 0
                     68: , 0, 0, 3, 0; 0, 0, 0, 0, 15], [1, 0, 0, 0, 0, 0, 0, 1, -2, -1, 0, 1, -5, -5
                     69: , -3, 0, -2, -5, 1, -4, 0, -1, -3, -4, -3; 0, 1, 0, 0, 0, 1, 0, 0, -2, 0, 0,
                     70:  0, -5, 0, -5, 0, -2, 0, -5, 0, 0, 0, -5, 0, -4; 0, 0, 1, 0, 0, 0, 1, 1, -2,
                     71:  1, 1, 1, -5, 3, -3, 0, -2, 3, -5, 1, 0, 1, -3, 1, -2; 0, 0, 0, 1, 0, 0, 0,
                     72: 3, -1, 2, 0, 3, 0, 5, 1, 1, -1, 5, -4, 3, 0, 2, 1, 3, 1; 0, 0, 0, 0, 1, 0, 0
                     73: , 0, 5, 0, 0, 0, 15, -5, 10, 0, 5, -5, 10, -2, 1, 0, 10, -2, 7]]
                     74: ? nf1=nfinit(nfpol,2)
                     75: [x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2, [1, 2], 595125, 4, [[1, -1.089115145
                     76: 7205048250249527946671612684, 1.1861718006377964594796293860483989860, -0.59
                     77: 741050929194782733001765987770358483, 0.158944197453903762065494816710718942
                     78: 89; 1, -0.13838372073406036365047976417441696637 + 0.49181637657768643499753
                     79: 285514741525107*I, -0.22273329410580226599155701611419649154 - 0.13611876021
                     80: 752805221674918029071012580*I, -0.13167445871785818798769651537619416009 + 0
                     81: .13249517760521973840801462296650806543*I, -0.053650958656997725359297528357
                     82: 602608116 + 0.27622636814169107038138284681568361486*I; 1, 1.682941293594312
                     83: 7761629561615079976005 + 2.0500351226010726172974286983598602163*I, -1.37035
                     84: 26062130959637482576769100030014 + 6.9001775222880494773720769629846373016*I
                     85: , -8.0696202866361678983472946546849540475 + 8.87676767859710424508852843013
                     86: 48051602*I, -22.025821140069954155673449879997756863 - 8.4306586896999153544
                     87: 710860185447589664*I], [1, 2, 2; -1.0891151457205048250249527946671612684, -
                     88: 0.27676744146812072730095952834883393274 - 0.9836327531553728699950657102948
                     89: 3050214*I, 3.3658825871886255523259123230159952011 - 4.100070245202145234594
                     90: 8573967197204327*I; 1.1861718006377964594796293860483989860, -0.445466588211
                     91: 60453198311403222839298308 + 0.27223752043505610443349836058142025160*I, -2.
                     92: 7407052124261919274965153538200060029 - 13.800355044576098954744153925969274
                     93: 603*I; -0.59741050929194782733001765987770358483, -0.26334891743571637597539
                     94: 303075238832018 - 0.26499035521043947681602924593301613087*I, -16.1392405732
                     95: 72335796694589309369908095 - 17.753535357194208490177056860269610320*I; 0.15
                     96: 894419745390376206549481671071894289, -0.10730191731399545071859505671520521
                     97: 623 - 0.55245273628338214076276569363136722973*I, -44.0516422801399083113468
                     98: 99759995513726 + 16.861317379399830708942172037089517932*I], [5, 2.000000000
                     99: 0000000000000000000000000000, -2.0000000000000000000000000000000000000, -17.
                    100: 000000000000000000000000000000000000, -44.0000000000000000000000000000000000
                    101: 00; 2.0000000000000000000000000000000000000, 15.7781094086719980448363574712
                    102: 83695361, 22.314643349754061651916553814602769764, 10.0513952578314782754999
                    103: 32716306366248, -108.58917507620841447456569092094763671; -2.000000000000000
                    104: 0000000000000000000000, 22.314643349754061651916553814602769764, 100.5239126
                    105: 2388960975827806174040462368, 143.93295090847353519436673793501057176, -55.8
                    106: 42564718082452641322500190813370023; -17.00000000000000000000000000000000000
                    107: 0, 10.051395257831478275499932716306366248, 143.9329509084735351943667379350
                    108: 1057176, 288.25823756749944693139292174819167135, 205.7984003827766237572018
                    109: 0649465932302; -44.000000000000000000000000000000000000, -108.58917507620841
                    110: 447456569092094763671, -55.842564718082452641322500190813370023, 205.7984003
                    111: 8277662375720180649465932302, 1112.6092277946777707779250962522343036], [5,
                    112: 2, -2, -17, -44; 2, -2, -34, -63, -40; -2, -34, -90, -101, 177; -17, -63, -1
                    113: 01, -27, 505; -44, -40, 177, 505, 828], [345, 0, 160, 252, 156; 0, 345, 215,
                    114:  311, 306; 0, 0, 5, 3, 2; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [163875, -388125, -
                    115: 296700, 234600, -89700; -388125, -1593900, -677925, 595125, -315675; -296700
                    116: , -677925, 17250, 58650, -87975; 234600, 595125, 58650, -100050, 89700; -897
                    117: 00, -315675, -87975, 89700, -55200], [595125, [-167325, -82800, 79350, 1725,
                    118:  0]~, 125439056256992431640625]], [-1.0891151457205048250249527946671612684,
                    119:  -0.13838372073406036365047976417441696637 + 0.49181637657768643499753285514
                    120: 741525107*I, 1.6829412935943127761629561615079976005 + 2.0500351226010726172
                    121: 974286983598602163*I], [1, x, x^2, 1/2*x^3 + 1/2*x^2 + 1/2*x, 1/2*x^4 + 1/2*
                    122: x], [1, 0, 0, 0, 0; 0, 1, 0, -1, -1; 0, 0, 1, -1, 0; 0, 0, 0, 2, 0; 0, 0, 0,
                    123:  0, 2], [1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, -2, 0, 0, -1, -2, -2, 0
                    124: , -1, -2, -2, 5; 0, 1, 0, 0, 0, 1, 0, -1, -1, -1, 0, -1, -1, -2, 2, 0, -1, -
                    125: 2, -1, 7, 0, -1, 2, 7, 14; 0, 0, 1, 0, 0, 0, 1, -1, 0, -2, 1, -1, 0, -3, -3,
                    126:  0, 0, -3, -4, -1, 0, -2, -3, -1, 15; 0, 0, 0, 1, 0, 0, 0, 2, 1, -3, 0, 2, 0
                    127: , -2, -13, 1, 1, -2, -9, -19, 0, -3, -13, -19, 7; 0, 0, 0, 0, 1, 0, 0, 0, 1,
                    128:  2, 0, 0, 2, 3, 1, 0, 1, 3, 4, -4, 1, 2, 1, -4, -21]]
                    129: ? nfinit(nfpol,3)
                    130: [[x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2, [1, 2], 595125, 4, [[1, -1.08911514
                    131: 57205048250249527946671612684, 1.1861718006377964594796293860483989860, -0.5
                    132: 9741050929194782733001765987770358483, 0.15894419745390376206549481671071894
                    133: 289; 1, -0.13838372073406036365047976417441696637 + 0.4918163765776864349975
                    134: 3285514741525107*I, -0.22273329410580226599155701611419649154 - 0.1361187602
                    135: 1752805221674918029071012580*I, -0.13167445871785818798769651537619416009 +
                    136: 0.13249517760521973840801462296650806543*I, -0.05365095865699772535929752835
                    137: 7602608116 + 0.27622636814169107038138284681568361486*I; 1, 1.68294129359431
                    138: 27761629561615079976005 + 2.0500351226010726172974286983598602163*I, -1.3703
                    139: 526062130959637482576769100030014 + 6.9001775222880494773720769629846373016*
                    140: I, -8.0696202866361678983472946546849540475 + 8.8767676785971042450885284301
                    141: 348051602*I, -22.025821140069954155673449879997756863 - 8.430658689699915354
                    142: 4710860185447589664*I], [1, 2, 2; -1.0891151457205048250249527946671612684,
                    143: -0.27676744146812072730095952834883393274 - 0.983632753155372869995065710294
                    144: 83050214*I, 3.3658825871886255523259123230159952011 - 4.10007024520214523459
                    145: 48573967197204327*I; 1.1861718006377964594796293860483989860, -0.44546658821
                    146: 160453198311403222839298308 + 0.27223752043505610443349836058142025160*I, -2
                    147: .7407052124261919274965153538200060029 - 13.80035504457609895474415392596927
                    148: 4603*I; -0.59741050929194782733001765987770358483, -0.2633489174357163759753
                    149: 9303075238832018 - 0.26499035521043947681602924593301613087*I, -16.139240573
                    150: 272335796694589309369908095 - 17.753535357194208490177056860269610320*I; 0.1
                    151: 5894419745390376206549481671071894289, -0.1073019173139954507185950567152052
                    152: 1623 - 0.55245273628338214076276569363136722973*I, -44.051642280139908311346
                    153: 899759995513726 + 16.861317379399830708942172037089517932*I], [5, 2.00000000
                    154: 00000000000000000000000000000, -2.0000000000000000000000000000000000000, -17
                    155: .000000000000000000000000000000000000, -44.000000000000000000000000000000000
                    156: 000; 2.0000000000000000000000000000000000000, 15.778109408671998044836357471
                    157: 283695361, 22.314643349754061651916553814602769764, 10.051395257831478275499
                    158: 932716306366248, -108.58917507620841447456569092094763671; -2.00000000000000
                    159: 00000000000000000000000, 22.314643349754061651916553814602769764, 100.523912
                    160: 62388960975827806174040462368, 143.93295090847353519436673793501057176, -55.
                    161: 842564718082452641322500190813370023; -17.0000000000000000000000000000000000
                    162: 00, 10.051395257831478275499932716306366248, 143.932950908473535194366737935
                    163: 01057176, 288.25823756749944693139292174819167135, 205.798400382776623757201
                    164: 80649465932302; -44.000000000000000000000000000000000000, -108.5891750762084
                    165: 1447456569092094763671, -55.842564718082452641322500190813370023, 205.798400
                    166: 38277662375720180649465932302, 1112.6092277946777707779250962522343036], [5,
                    167:  2, -2, -17, -44; 2, -2, -34, -63, -40; -2, -34, -90, -101, 177; -17, -63, -
                    168: 101, -27, 505; -44, -40, 177, 505, 828], [345, 0, 160, 252, 156; 0, 345, 215
                    169: , 311, 306; 0, 0, 5, 3, 2; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [163875, -388125,
                    170: -296700, 234600, -89700; -388125, -1593900, -677925, 595125, -315675; -29670
                    171: 0, -677925, 17250, 58650, -87975; 234600, 595125, 58650, -100050, 89700; -89
                    172: 700, -315675, -87975, 89700, -55200], [595125, [-167325, -82800, 79350, 1725
                    173: , 0]~, 125439056256992431640625]], [-1.0891151457205048250249527946671612684
                    174: , -0.13838372073406036365047976417441696637 + 0.4918163765776864349975328551
                    175: 4741525107*I, 1.6829412935943127761629561615079976005 + 2.050035122601072617
                    176: 2974286983598602163*I], [1, x, x^2, 1/2*x^3 + 1/2*x^2 + 1/2*x, 1/2*x^4 + 1/2
                    177: *x], [1, 0, 0, 0, 0; 0, 1, 0, -1, -1; 0, 0, 1, -1, 0; 0, 0, 0, 2, 0; 0, 0, 0
                    178: , 0, 2], [1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, -2, 0, 0, -1, -2, -2,
                    179: 0, -1, -2, -2, 5; 0, 1, 0, 0, 0, 1, 0, -1, -1, -1, 0, -1, -1, -2, 2, 0, -1,
                    180: -2, -1, 7, 0, -1, 2, 7, 14; 0, 0, 1, 0, 0, 0, 1, -1, 0, -2, 1, -1, 0, -3, -3
                    181: , 0, 0, -3, -4, -1, 0, -2, -3, -1, 15; 0, 0, 0, 1, 0, 0, 0, 2, 1, -3, 0, 2,
                    182: 0, -2, -13, 1, 1, -2, -9, -19, 0, -3, -13, -19, 7; 0, 0, 0, 0, 1, 0, 0, 0, 1
                    183: , 2, 0, 0, 2, 3, 1, 0, 1, 3, 4, -4, 1, 2, 1, -4, -21]], Mod(-1/2*x^4 + 3/2*x
                    184: ^3 - 5/2*x^2 - 2*x + 1, x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2)]
                    185: ? nfinit(nfpol,4)
                    186: [x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2, [1, 2], 595125, 4, [[1, -1.089115145
                    187: 7205048250249527946671612684, 1.1861718006377964594796293860483989860, -0.59
                    188: 741050929194782733001765987770358483, 0.158944197453903762065494816710718942
                    189: 89; 1, -0.13838372073406036365047976417441696637 + 0.49181637657768643499753
                    190: 285514741525107*I, -0.22273329410580226599155701611419649154 - 0.13611876021
                    191: 752805221674918029071012580*I, -0.13167445871785818798769651537619416009 + 0
                    192: .13249517760521973840801462296650806543*I, -0.053650958656997725359297528357
                    193: 602608116 + 0.27622636814169107038138284681568361486*I; 1, 1.682941293594312
                    194: 7761629561615079976005 + 2.0500351226010726172974286983598602163*I, -1.37035
                    195: 26062130959637482576769100030014 + 6.9001775222880494773720769629846373016*I
                    196: , -8.0696202866361678983472946546849540475 + 8.87676767859710424508852843013
                    197: 48051602*I, -22.025821140069954155673449879997756863 - 8.4306586896999153544
                    198: 710860185447589664*I], [1, 2, 2; -1.0891151457205048250249527946671612684, -
                    199: 0.27676744146812072730095952834883393274 - 0.9836327531553728699950657102948
                    200: 3050214*I, 3.3658825871886255523259123230159952011 - 4.100070245202145234594
                    201: 8573967197204327*I; 1.1861718006377964594796293860483989860, -0.445466588211
                    202: 60453198311403222839298308 + 0.27223752043505610443349836058142025160*I, -2.
                    203: 7407052124261919274965153538200060029 - 13.800355044576098954744153925969274
                    204: 603*I; -0.59741050929194782733001765987770358483, -0.26334891743571637597539
                    205: 303075238832018 - 0.26499035521043947681602924593301613087*I, -16.1392405732
                    206: 72335796694589309369908095 - 17.753535357194208490177056860269610320*I; 0.15
                    207: 894419745390376206549481671071894289, -0.10730191731399545071859505671520521
                    208: 623 - 0.55245273628338214076276569363136722973*I, -44.0516422801399083113468
                    209: 99759995513726 + 16.861317379399830708942172037089517932*I], [5, 2.000000000
                    210: 0000000000000000000000000000, -2.0000000000000000000000000000000000000, -17.
                    211: 000000000000000000000000000000000000, -44.0000000000000000000000000000000000
                    212: 00; 2.0000000000000000000000000000000000000, 15.7781094086719980448363574712
                    213: 83695361, 22.314643349754061651916553814602769764, 10.0513952578314782754999
                    214: 32716306366248, -108.58917507620841447456569092094763671; -2.000000000000000
                    215: 0000000000000000000000, 22.314643349754061651916553814602769764, 100.5239126
                    216: 2388960975827806174040462368, 143.93295090847353519436673793501057176, -55.8
                    217: 42564718082452641322500190813370023; -17.00000000000000000000000000000000000
                    218: 0, 10.051395257831478275499932716306366248, 143.9329509084735351943667379350
                    219: 1057176, 288.25823756749944693139292174819167135, 205.7984003827766237572018
                    220: 0649465932302; -44.000000000000000000000000000000000000, -108.58917507620841
                    221: 447456569092094763671, -55.842564718082452641322500190813370023, 205.7984003
                    222: 8277662375720180649465932302, 1112.6092277946777707779250962522343036], [5,
                    223: 2, -2, -17, -44; 2, -2, -34, -63, -40; -2, -34, -90, -101, 177; -17, -63, -1
                    224: 01, -27, 505; -44, -40, 177, 505, 828], [345, 0, 160, 252, 156; 0, 345, 215,
                    225:  311, 306; 0, 0, 5, 3, 2; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [163875, -388125, -
                    226: 296700, 234600, -89700; -388125, -1593900, -677925, 595125, -315675; -296700
                    227: , -677925, 17250, 58650, -87975; 234600, 595125, 58650, -100050, 89700; -897
                    228: 00, -315675, -87975, 89700, -55200], [595125, [-167325, -82800, 79350, 1725,
                    229:  0]~, 125439056256992431640625]], [-1.0891151457205048250249527946671612684,
                    230:  -0.13838372073406036365047976417441696637 + 0.49181637657768643499753285514
                    231: 741525107*I, 1.6829412935943127761629561615079976005 + 2.0500351226010726172
                    232: 974286983598602163*I], [1, x, x^2, 1/2*x^3 + 1/2*x^2 + 1/2*x, 1/2*x^4 + 1/2*
                    233: x], [1, 0, 0, 0, 0; 0, 1, 0, -1, -1; 0, 0, 1, -1, 0; 0, 0, 0, 2, 0; 0, 0, 0,
                    234:  0, 2], [1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, -2, 0, 0, -1, -2, -2, 0
                    235: , -1, -2, -2, 5; 0, 1, 0, 0, 0, 1, 0, -1, -1, -1, 0, -1, -1, -2, 2, 0, -1, -
                    236: 2, -1, 7, 0, -1, 2, 7, 14; 0, 0, 1, 0, 0, 0, 1, -1, 0, -2, 1, -1, 0, -3, -3,
                    237:  0, 0, -3, -4, -1, 0, -2, -3, -1, 15; 0, 0, 0, 1, 0, 0, 0, 2, 1, -3, 0, 2, 0
                    238: , -2, -13, 1, 1, -2, -9, -19, 0, -3, -13, -19, 7; 0, 0, 0, 0, 1, 0, 0, 0, 1,
                    239:  2, 0, 0, 2, 3, 1, 0, 1, 3, 4, -4, 1, 2, 1, -4, -21]]
                    240: ? nf3=nfinit(x^6+108);
                    241: ? nf4=nfinit(x^3-10*x+8)
                    242: [x^3 - 10*x + 8, [3, 0], 568, 2, [[1, -3.50466435358804770515010852590433205
                    243: 79, 6.1413361156553641347759399165844441383; 1, 0.86464088669540302583112842
                    244: 266613688800, 0.37380193147270638662350044992137561317; 1, 2.640023466892644
                    245: 6793189801032381951699, 3.4848619528719294786005596334941802484], [1, 1, 1;
                    246: -3.5046643535880477051501085259043320579, 0.86464088669540302583112842266613
                    247: 688800, 2.6400234668926446793189801032381951699; 6.1413361156553641347759399
                    248: 165844441383, 0.37380193147270638662350044992137561317, 3.484861952871929478
                    249: 6005596334941802484], [3, -3.4544674213975667950000000000000000000 E-77, 10.
                    250: 000000000000000000000000000000000000; -3.45446742139756679500000000000000000
                    251: 00 E-77, 20.000000000000000000000000000000000000, -12.0000000000000000000000
                    252: 00000000000000; 10.000000000000000000000000000000000000, -12.000000000000000
                    253: 000000000000000000000, 50.000000000000000000000000000000000000], [3, 0, 10;
                    254: 0, 20, -12; 10, -12, 50], [284, 168, 235; 0, 2, 0; 0, 0, 1], [856, -120, -20
                    255: 0; -120, 50, 36; -200, 36, 60], [568, [80, 14, -24]~, 322624]], [-3.50466435
                    256: 35880477051501085259043320579, 0.86464088669540302583112842266613688800, 2.6
                    257: 400234668926446793189801032381951699], [1, x, 1/2*x^2], [1, 0, 0; 0, 1, 0; 0
                    258: , 0, 2], [1, 0, 0, 0, 0, -4, 0, -4, 0; 0, 1, 0, 1, 0, 5, 0, 5, -2; 0, 0, 1,
                    259: 0, 2, 0, 1, 0, 5]]
                    260: ? setrand(1);bnf2=bnfinit(qpol);nf2=bnf2[7];
                    261: ? setrand(1);bnf=bnfinit(x^2-x-57,,[0.2,0.2])
                    262: [Mat(3), Mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.71246530518434397468087951060
                    263: 61300699 + 3.1415926535897932384626433832795028842*I; 2.71246530518434397468
                    264: 08795106061300699 - 6.2831853071795864769252867665590057684*I], [23347.97922
                    265: 3478346319454659159707591731 + 6.2831853071795864769252867665590057684*I, 86
                    266: 6.56619430687100142570357249059499540 + 6.2831853071795864769252867665590057
                    267: 684*I, 2881.3396396084587293295626563644245032 + 3.1415926535897932384626433
                    268: 832795028842*I, 27379.624790530768080428797780058276925 + 1.9281866867095232
                    269: 000000000000000000000 E-42*I, 57933.334567930851067108050790839116749 + 2.69
                    270: 04930509626865380000000000000000000 E-42*I, -34585.5562501515577199980340439
                    271: 18848670 + 9.4247779607693797153879301498385086526*I, 23348.3225111226233465
                    272: 49049047574325150 + 3.1415926535897932384626433832795028842*I, -0.3432876442
                    273: 7702709438988786673341921876 + 3.1415926535897932384626433832795028842*I, -4
                    274: 031.7117453543045067063239888430083582 + 9.424777960769379715387930149838508
                    275: 6526*I, 27379.690968832650826160983148550600089 + 9.424777960769379715387930
                    276: 1498385086526*I; -23347.979223478346319454659159707591731 + 9.42477796076937
                    277: 97153879301498385086526*I, -866.56619430687100142570357249059499540 + 2.1019
                    278: 476959481835360000000000000000000 E-45*I, -2881.3396396084587293295626563644
                    279: 245032 + 9.4247779607693797153879301498385086526*I, -27379.62479053076808042
                    280: 8797780058276925 + 6.2831853071795864769252867665590057684*I, -57933.3345679
                    281: 30851067108050790839116749 + 3.1415926535897932384626433832795028842*I, 3458
                    282: 5.556250151557719998034043918848670 + 6.283185307179586476925286766559005768
                    283: 4*I, -23348.322511122623346549049047574325150 + 9.42477796076937971538793014
                    284: 98385086526*I, 0.34328764427702709438988786673341921876 + 0.E-48*I, 4031.711
                    285: 7453543045067063239888430083582 + 3.1415926535897932384626433832795028842*I,
                    286:  -27379.690968832650826160983148550600089 + 6.283185307179586476925286766559
                    287: 0057684*I], [[3, [-1, 1]~, 1, 1, [0, 1]~], [3, [0, 1]~, 1, 1, [-1, 1]~], [5,
                    288:  [-2, 1]~, 1, 1, [1, 1]~], [5, [1, 1]~, 1, 1, [-2, 1]~], [11, [-2, 1]~, 1, 1
                    289: , [1, 1]~], [11, [1, 1]~, 1, 1, [-2, 1]~], [17, [-3, 1]~, 1, 1, [2, 1]~], [1
                    290: 7, [2, 1]~, 1, 1, [-3, 1]~], [19, [-1, 1]~, 1, 1, [0, 1]~], [19, [0, 1]~, 1,
                    291:  1, [-1, 1]~]]~, [1, 3, 5, 2, 4, 6, 7, 8, 10, 9]~, [x^2 - x - 57, [2, 0], 22
                    292: 9, 1, [[1, -7.0663729752107779635959310246705326058; 1, 8.066372975210777963
                    293: 5959310246705326058], [1, 1; -7.0663729752107779635959310246705326058, 8.066
                    294: 3729752107779635959310246705326058], [2, 1.000000000000000000000000000000000
                    295: 0000; 1.0000000000000000000000000000000000000, 115.0000000000000000000000000
                    296: 0000000000], [2, 1; 1, 115], [229, 114; 0, 1], [115, -1; -1, 2], [229, [114,
                    297:  1]~, 229]], [-7.0663729752107779635959310246705326058, 8.066372975210777963
                    298: 5959310246705326058], [1, x], [1, 0; 0, 1], [1, 0, 0, 57; 0, 1, 1, 1]], [[3,
                    299:  [3], [[3, 2; 0, 1]]], 2.7124653051843439746808795106061300699, 0.8814422512
                    300: 6545793690341704100000000000, [2, -1], [x + 7], 130], [Mat(1), Mat(1), [[[3,
                    301:  2; 0, 1], [0, 0]]]], 0]
                    302: ? setrand(1);bnfinit(x^2-x-100000,1)
                    303: [Mat(5), Mat([3, 2, 1, 2, 0, 3, 2, 3, 0, 0, 1, 4, 3, 2, 2, 3, 3, 2]), [-129.
                    304: 82045011403975460991182396195022419 + 6.283185307179586476925286766559005768
                    305: 4*I; 129.82045011403975460991182396195022419 + 4.907207226380705833000000000
                    306: 0000000000 E-95*I], [2093832.2286247580721598744691800364716 + 9.42477796076
                    307: 93797153879301498385086526*I, 463727.88770776479369558667281813008490 + 6.28
                    308: 31853071795864769252867665590057684*I, 229510.681191741210743599007448730565
                    309: 20 + 3.1415926535897932384626433832795028842*I, -13814064.276184856248286107
                    310: 275967161406 + 6.2831853071795864769252867665590057684*I, 10975229.442376145
                    311: 014058790444262893275 + 9.4247779607693797153879301498385086526*I, 12628868.
                    312: 476868730308574917279106536834 + 6.2831853071795864769252867665590057684*I,
                    313: 2595210.6815750606798700790306370856686 + 3.14159265358979323846264338327950
                    314: 28842*I, 21463208.279603014333968661075393279510 + 6.28318530717958647692528
                    315: 67665590057684*I, 9340416.4917416354701732132629720490406 + 9.42477796076937
                    316: 97153879301498385086526*I, 224801.35127844528675036994618361508061 + 12.5663
                    317: 70614359172953850573533118011536*I, -224801.35127844528675036994618361508061
                    318:  + 2.1125754163178543118626478980000000000 E-90*I, 40271115.6788572427160038
                    319: 79014241558828 + 6.2831853071795864769252867665590057684*I, -10066612.284788
                    320: 886379386747743460630561 + 9.4600667685469491310218392850000000000 E-89*I, 1
                    321: 0267873.880681641662748682261863339788 + 12.56637061435917295385057353311801
                    322: 1536*I, -4435991.6114732228963510067335229085617 + 6.28318530717958647692528
                    323: 67665590057684*I, 8361196.2032957779193404684451855312611 + 9.42477796076937
                    324: 97153879301498385086526*I, -10272584.501589374356405593568879583106 + 9.4247
                    325: 779607693797153879301498385086526*I, 41648172.195327314227598351804544361493
                    326:  + 9.4247779607693797153879301498385086526*I, -2117367.665066341919805155100
                    327: 3369291210 + 1.9897854874556092437572207830000000000 E-89*I; -2093832.228624
                    328: 7580721598744691800364716 + 3.1415926535897932384626433832795028842*I, -4637
                    329: 27.88770776479369558667281813008490 + 9.424777960769379715387930149838508652
                    330: 6*I, -229510.68119174121074359900744873056520 + 12.5663706143591729538505735
                    331: 33118011536*I, 13814064.276184856248286107275967161405 + 5.22154890000820159
                    332: 90000000000000000000 E-90*I, -10975229.442376145014058790444262893275 + 12.5
                    333: 66370614359172953850573533118011536*I, -12628868.476868730308574917279106536
                    334: 834 + 3.1415926535897932384626433832795028842*I, -2595210.681575060679870079
                    335: 0306370856686 + 12.566370614359172953850573533118011536*I, -21463208.2796030
                    336: 14333968661075393279510 + 9.4247779607693797153879301498385086526*I, -934041
                    337: 6.4917416354701732132629720490406 + 6.2831853071795864769252867665590057684*
                    338: I, -224801.35127844528675036994618361508061 + 12.566370614359172953850573533
                    339: 118011536*I, 224801.35127844528675036994618361508061 + 8.4971798285841941830
                    340: 000000000000000000 E-92*I, -40271115.678857242716003879014241558828 + 12.566
                    341: 370614359172953850573533118011536*I, 10066612.284788886379386747743460630561
                    342:  + 3.8050554944202303880000000000000000000 E-90*I, -10267873.880681641662748
                    343: 682261863339788 + 3.1415926535897932384626433832795028842*I, 4435991.6114732
                    344: 228963510067335229085617 + 9.4247779607693797153879301498385086526*I, -83611
                    345: 96.2032957779193404684451855312611 + 12.566370614359172953850573533118011536
                    346: *I, 10272584.501589374356405593568879583106 + 3.8829118423163890830000000000
                    347: 000000000 E-90*I, -41648172.195327314227598351804544361493 + 3.1415926535897
                    348: 932384626433832795028842*I, 2117367.6650663419198051551003369291210 + 8.0033
                    349: 745765686035150000000000000000000 E-91*I], [[2, [1, 1]~, 1, 1, [0, 1]~], [2,
                    350:  [2, 1]~, 1, 1, [1, 1]~], [5, [4, 1]~, 1, 1, [0, 1]~], [5, [5, 1]~, 1, 1, [-
                    351: 1, 1]~], [7, [3, 1]~, 2, 1, [3, 1]~], [13, [-6, 1]~, 1, 1, [5, 1]~], [13, [5
                    352: , 1]~, 1, 1, [-6, 1]~], [17, [14, 1]~, 1, 1, [2, 1]~], [17, [19, 1]~, 1, 1,
                    353: [-3, 1]~], [23, [-7, 1]~, 1, 1, [6, 1]~], [23, [6, 1]~, 1, 1, [-7, 1]~], [29
                    354: , [-14, 1]~, 1, 1, [13, 1]~], [29, [13, 1]~, 1, 1, [-14, 1]~], [31, [23, 1]~
                    355: , 1, 1, [7, 1]~], [31, [38, 1]~, 1, 1, [-8, 1]~], [41, [-7, 1]~, 1, 1, [6, 1
                    356: ]~], [41, [6, 1]~, 1, 1, [-7, 1]~], [43, [-16, 1]~, 1, 1, [15, 1]~], [43, [1
                    357: 5, 1]~, 1, 1, [-16, 1]~]]~, [1, 3, 6, 2, 4, 5, 7, 9, 8, 11, 10, 13, 12, 15,
                    358: 14, 17, 16, 19, 18]~, [x^2 - x - 100000, [2, 0], 400001, 1, [[1, -315.728161
                    359: 30129840161392089489603747004; 1, 316.72816130129840161392089489603747004],
                    360: [1, 1; -315.72816130129840161392089489603747004, 316.72816130129840161392089
                    361: 489603747004], [2, 1.0000000000000000000000000000000000000; 1.00000000000000
                    362: 00000000000000000000000, 200001.00000000000000000000000000000000], [2, 1; 1,
                    363:  200001], [400001, 200000; 0, 1], [200001, -1; -1, 2], [400001, [200000, 1]~
                    364: , 400001]], [-315.72816130129840161392089489603747004, 316.72816130129840161
                    365: 392089489603747004], [1, x], [1, 0; 0, 1], [1, 0, 0, 100000; 0, 1, 1, 1]], [
                    366: [5, [5], [[2, 1; 0, 1]]], 129.82045011403975460991182396195022419, 0.9876536
                    367: 9790690472391212970100000000000, [2, -1], [379554884019013781006303254896369
                    368: 154068336082609238336*x + 11983616564425078999046283595002287166517812761131
                    369: 6131167], 124], [Mat(1), Mat(1), [[[2, 1; 0, 1], [0, 0]]]], 0]
                    370: ? \p19
                    371:    realprecision = 19 significant digits
                    372: ? setrand(1);sbnf=bnfinit(x^3-x^2-14*x-1,3)
                    373: [x^3 - x^2 - 14*x - 1, 3, 10889, [1, x, x^2], [-3.233732695981516673, -0.071
                    374: 82350902743636344, 4.305556205008953036], [10889, 5698, 3794; 0, 1, 0; 0, 0,
                    375:  1], Mat(2), Mat([0, 1, 1, 1, 0, 1, 1, 1]), [9, 15, 16, 17, 10, 33, 69, 39,
                    376: 57], [2, [-1, 0, 0]~], [[0, 1, 0]~, [-4, 2, 1]~], [4, 3, 1, 2, 3, 1, 11, 1,
                    377: -7; -1, 1, -1, 1, 0, 1, 2, 4, -2; 0, 0, 0, 0, 0, 0, -1, 1, 0]]
                    378: ? \p38
                    379:    realprecision = 38 significant digits
                    380: ? bnrinit(bnf,[[5,3;0,1],[1,0]],1)
                    381: [[Mat(3), Mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.7124653051843439746808795106
                    382: 061300699 + 3.1415926535897932384626433832795028842*I; 2.7124653051843439746
                    383: 808795106061300699 - 6.2831853071795864769252867665590057684*I], [23347.9792
                    384: 23478346319454659159707591731 + 6.2831853071795864769252867665590057684*I, 8
                    385: 66.56619430687100142570357249059499540 + 6.283185307179586476925286766559005
                    386: 7684*I, 2881.3396396084587293295626563644245032 + 3.141592653589793238462643
                    387: 3832795028842*I, 27379.624790530768080428797780058276925 + 1.928186686709523
                    388: 2000000000000000000000 E-42*I, 57933.334567930851067108050790839116749 + 2.6
                    389: 904930509626865380000000000000000000 E-42*I, -34585.556250151557719998034043
                    390: 918848670 + 9.4247779607693797153879301498385086526*I, 23348.322511122623346
                    391: 549049047574325150 + 3.1415926535897932384626433832795028842*I, -0.343287644
                    392: 27702709438988786673341921876 + 3.1415926535897932384626433832795028842*I, -
                    393: 4031.7117453543045067063239888430083582 + 9.42477796076937971538793014983850
                    394: 86526*I, 27379.690968832650826160983148550600089 + 9.42477796076937971538793
                    395: 01498385086526*I; -23347.979223478346319454659159707591731 + 9.4247779607693
                    396: 797153879301498385086526*I, -866.56619430687100142570357249059499540 + 2.101
                    397: 9476959481835360000000000000000000 E-45*I, -2881.339639608458729329562656364
                    398: 4245032 + 9.4247779607693797153879301498385086526*I, -27379.6247905307680804
                    399: 28797780058276925 + 6.2831853071795864769252867665590057684*I, -57933.334567
                    400: 930851067108050790839116749 + 3.1415926535897932384626433832795028842*I, 345
                    401: 85.556250151557719998034043918848670 + 6.28318530717958647692528676655900576
                    402: 84*I, -23348.322511122623346549049047574325150 + 9.4247779607693797153879301
                    403: 498385086526*I, 0.34328764427702709438988786673341921876 + 0.E-48*I, 4031.71
                    404: 17453543045067063239888430083582 + 3.1415926535897932384626433832795028842*I
                    405: , -27379.690968832650826160983148550600089 + 6.28318530717958647692528676655
                    406: 90057684*I], [[3, [-1, 1]~, 1, 1, [0, 1]~], [3, [0, 1]~, 1, 1, [-1, 1]~], [5
                    407: , [-2, 1]~, 1, 1, [1, 1]~], [5, [1, 1]~, 1, 1, [-2, 1]~], [11, [-2, 1]~, 1,
                    408: 1, [1, 1]~], [11, [1, 1]~, 1, 1, [-2, 1]~], [17, [-3, 1]~, 1, 1, [2, 1]~], [
                    409: 17, [2, 1]~, 1, 1, [-3, 1]~], [19, [-1, 1]~, 1, 1, [0, 1]~], [19, [0, 1]~, 1
                    410: , 1, [-1, 1]~]]~, [1, 3, 5, 2, 4, 6, 7, 8, 10, 9]~, [x^2 - x - 57, [2, 0], 2
                    411: 29, 1, [[1, -7.0663729752107779635959310246705326058; 1, 8.06637297521077796
                    412: 35959310246705326058], [1, 1; -7.0663729752107779635959310246705326058, 8.06
                    413: 63729752107779635959310246705326058], [2, 1.00000000000000000000000000000000
                    414: 00000; 1.0000000000000000000000000000000000000, 115.000000000000000000000000
                    415: 00000000000], [2, 1; 1, 115], [229, 114; 0, 1], [115, -1; -1, 2], [229, [114
                    416: , 1]~, 229]], [-7.0663729752107779635959310246705326058, 8.06637297521077796
                    417: 35959310246705326058], [1, x], [1, 0; 0, 1], [1, 0, 0, 57; 0, 1, 1, 1]], [[3
                    418: , [3], [[3, 2; 0, 1]]], 2.7124653051843439746808795106061300699, 0.881442251
                    419: 26545793690341704100000000000, [2, -1], [x + 7], 130], [Mat(1), Mat(1), [[[3
                    420: , 2; 0, 1], [0, 0]]]], 0], [[[5, 3; 0, 1], [1, 0]], [8, [4, 2], [[2, 0]~, [-
                    421: 1, 1]~]], Mat([[5, [-2, 1]~, 1, 1, [1, 1]~], 1]), [[[[4], [[2, 0]~], [[2, 0]
                    422: ~], [[Mod(0, 2)]~], 1]], [[2], [[-1, 1]~], Mat(1)]], [1, 0; 0, 1]], [[1, 0]~
                    423: ], [1, -3, -6; 0, 0, 1; 0, 1, 0], [12, [12], [[3, 2; 0, 1]]], [[0, 0; 0, 1],
                    424:  [1, -1; 1, 1]]]
                    425: ? bnr=bnrclass(bnf,[[5,3;0,1],[1,0]],2)
                    426: [[Mat(3), Mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.7124653051843439746808795106
                    427: 061300699 + 3.1415926535897932384626433832795028842*I; 2.7124653051843439746
                    428: 808795106061300699 - 6.2831853071795864769252867665590057684*I], [23347.9792
                    429: 23478346319454659159707591731 + 6.2831853071795864769252867665590057684*I, 8
                    430: 66.56619430687100142570357249059499540 + 6.283185307179586476925286766559005
                    431: 7684*I, 2881.3396396084587293295626563644245032 + 3.141592653589793238462643
                    432: 3832795028842*I, 27379.624790530768080428797780058276925 + 1.928186686709523
                    433: 2000000000000000000000 E-42*I, 57933.334567930851067108050790839116749 + 2.6
                    434: 904930509626865380000000000000000000 E-42*I, -34585.556250151557719998034043
                    435: 918848670 + 9.4247779607693797153879301498385086526*I, 23348.322511122623346
                    436: 549049047574325150 + 3.1415926535897932384626433832795028842*I, -0.343287644
                    437: 27702709438988786673341921876 + 3.1415926535897932384626433832795028842*I, -
                    438: 4031.7117453543045067063239888430083582 + 9.42477796076937971538793014983850
                    439: 86526*I, 27379.690968832650826160983148550600089 + 9.42477796076937971538793
                    440: 01498385086526*I; -23347.979223478346319454659159707591731 + 9.4247779607693
                    441: 797153879301498385086526*I, -866.56619430687100142570357249059499540 + 2.101
                    442: 9476959481835360000000000000000000 E-45*I, -2881.339639608458729329562656364
                    443: 4245032 + 9.4247779607693797153879301498385086526*I, -27379.6247905307680804
                    444: 28797780058276925 + 6.2831853071795864769252867665590057684*I, -57933.334567
                    445: 930851067108050790839116749 + 3.1415926535897932384626433832795028842*I, 345
                    446: 85.556250151557719998034043918848670 + 6.28318530717958647692528676655900576
                    447: 84*I, -23348.322511122623346549049047574325150 + 9.4247779607693797153879301
                    448: 498385086526*I, 0.34328764427702709438988786673341921876 + 0.E-48*I, 4031.71
                    449: 17453543045067063239888430083582 + 3.1415926535897932384626433832795028842*I
                    450: , -27379.690968832650826160983148550600089 + 6.28318530717958647692528676655
                    451: 90057684*I], [[3, [-1, 1]~, 1, 1, [0, 1]~], [3, [0, 1]~, 1, 1, [-1, 1]~], [5
                    452: , [-2, 1]~, 1, 1, [1, 1]~], [5, [1, 1]~, 1, 1, [-2, 1]~], [11, [-2, 1]~, 1,
                    453: 1, [1, 1]~], [11, [1, 1]~, 1, 1, [-2, 1]~], [17, [-3, 1]~, 1, 1, [2, 1]~], [
                    454: 17, [2, 1]~, 1, 1, [-3, 1]~], [19, [-1, 1]~, 1, 1, [0, 1]~], [19, [0, 1]~, 1
                    455: , 1, [-1, 1]~]]~, [1, 3, 5, 2, 4, 6, 7, 8, 10, 9]~, [x^2 - x - 57, [2, 0], 2
                    456: 29, 1, [[1, -7.0663729752107779635959310246705326058; 1, 8.06637297521077796
                    457: 35959310246705326058], [1, 1; -7.0663729752107779635959310246705326058, 8.06
                    458: 63729752107779635959310246705326058], [2, 1.00000000000000000000000000000000
                    459: 00000; 1.0000000000000000000000000000000000000, 115.000000000000000000000000
                    460: 00000000000], [2, 1; 1, 115], [229, 114; 0, 1], [115, -1; -1, 2], [229, [114
                    461: , 1]~, 229]], [-7.0663729752107779635959310246705326058, 8.06637297521077796
                    462: 35959310246705326058], [1, x], [1, 0; 0, 1], [1, 0, 0, 57; 0, 1, 1, 1]], [[3
                    463: , [3], [[3, 2; 0, 1]]], 2.7124653051843439746808795106061300699, 0.881442251
                    464: 26545793690341704100000000000, [2, -1], [x + 7], 130], [Mat(1), Mat(1), [[[3
                    465: , 2; 0, 1], [0, 0]]]], 0], [[[5, 3; 0, 1], [1, 0]], [8, [4, 2], [[2, 0]~, [-
                    466: 1, 1]~]], Mat([[5, [-2, 1]~, 1, 1, [1, 1]~], 1]), [[[[4], [[2, 0]~], [[2, 0]
                    467: ~], [[Mod(0, 2)]~], 1]], [[2], [[-1, 1]~], Mat(1)]], [1, 0; 0, 1]], [[1, 0]~
                    468: ], [1, -3, -6; 0, 0, 1; 0, 1, 0], [12, [12], [[3, 2; 0, 1]]], [[0, 0; 0, 1],
                    469:  [1, -1; 1, 1]]]
                    470: ? rnfinit(nf2,x^5-x-2)
                    471: [x^5 - x - 2, [[1, 2], [0, 5]], [[49744, 0, 0; 0, 49744, 0; 0, 0, 49744], [3
                    472: 109, 0, 0]~], [1, 0, 0; 0, 1, 0; 0, 0, 1], [[[1, 1.2671683045421243172528914
                    473: 279776896412, 1.6057155120361619195949075151301679393, 2.0347118029638523119
                    474: 874445717108994866, 2.5783223055935536544757871909285592749; 1, 0.2609638803
                    475: 8645528500256735072673484811 + 1.1772261533941944394700286585617926513*I, -1
                    476: .3177592693689352747870763902256347904 + 0.614427010164338838041906608641467
                    477: 31824*I, -1.0672071180669977537495893497477340535 - 1.3909574189920019216524
                    478: 673160314582604*I, 1.3589689411882615753626439480614001936 - 1.6193337759893
                    479: 970298359887428575174472*I; 1, -0.89454803265751744362901306471557966872 + 0
                    480: .53414854617473272670874609150394379949*I, 0.5149015133508543149896226326605
                    481: 5082078 - 0.95564306225496055080453352211847466685*I, 0.04985121658507159775
                    482: 5867063892284310224 + 1.1299025160425089918993024639913611785*I, -0.64813009
                    483: 398503840260053754352567983115 - 0.98412411795664774269323431620030610541*I]
                    484: , [1, 1.2671683045421243172528914279776896412 + 0.E-38*I, 1.6057155120361619
                    485: 195949075151301679393 + 0.E-38*I, 2.0347118029638523119874445717108994866 +
                    486: 0.E-37*I, 2.5783223055935536544757871909285592749 + 0.E-37*I; 1, 0.260963880
                    487: 38645528500256735072673484811 - 1.1772261533941944394700286585617926513*I, -
                    488: 1.3177592693689352747870763902256347904 - 0.61442701016433883804190660864146
                    489: 731824*I, -1.0672071180669977537495893497477340535 + 1.390957418992001921652
                    490: 4673160314582604*I, 1.3589689411882615753626439480614001936 + 1.619333775989
                    491: 3970298359887428575174472*I; 1, 0.26096388038645528500256735072673484811 + 1
                    492: .1772261533941944394700286585617926513*I, -1.3177592693689352747870763902256
                    493: 347904 + 0.61442701016433883804190660864146731824*I, -1.06720711806699775374
                    494: 95893497477340535 - 1.3909574189920019216524673160314582604*I, 1.35896894118
                    495: 82615753626439480614001936 - 1.6193337759893970298359887428575174472*I; 1, -
                    496: 0.89454803265751744362901306471557966872 - 0.5341485461747327267087460915039
                    497: 4379949*I, 0.51490151335085431498962263266055082078 + 0.95564306225496055080
                    498: 453352211847466685*I, 0.049851216585071597755867063892284310224 - 1.12990251
                    499: 60425089918993024639913611785*I, -0.64813009398503840260053754352567983115 +
                    500:  0.98412411795664774269323431620030610541*I; 1, -0.8945480326575174436290130
                    501: 6471557966872 + 0.53414854617473272670874609150394379949*I, 0.51490151335085
                    502: 431498962263266055082078 - 0.95564306225496055080453352211847466685*I, 0.049
                    503: 851216585071597755867063892284310224 + 1.12990251604250899189930246399136117
                    504: 85*I, -0.64813009398503840260053754352567983115 - 0.984124117956647742693234
                    505: 31620030610541*I]], [[1, 2, 2; 1.2671683045421243172528914279776896412, 0.52
                    506: 192776077291057000513470145346969622 - 2.35445230678838887894005731712358530
                    507: 26*I, -1.7890960653150348872580261294311593374 - 1.0682970923494654534174921
                    508: 830078875989*I; 1.6057155120361619195949075151301679393, -2.6355185387378705
                    509: 495741527804512695809 - 1.2288540203286776760838132172829346364*I, 1.0298030
                    510: 267017086299792452653211016415 + 1.9112861245099211016090670442369493337*I;
                    511: 2.0347118029638523119874445717108994866, -2.13441423613399550749917869949546
                    512: 81070 + 2.7819148379840038433049346320629165208*I, 0.09970243317014319551173
                    513: 4127784568620449 - 2.2598050320850179837986049279827223571*I; 2.578322305593
                    514: 5536544757871909285592749, 2.7179378823765231507252878961228003872 + 3.23866
                    515: 75519787940596719774857150348944*I, -1.2962601879700768052010750870513596623
                    516:  + 1.9682482359132954853864686324006122108*I], [1, 1, 1, 1, 1; 1.26716830454
                    517: 21243172528914279776896412 + 0.E-38*I, 0.26096388038645528500256735072673484
                    518: 811 + 1.1772261533941944394700286585617926513*I, 0.2609638803864552850025673
                    519: 5072673484811 - 1.1772261533941944394700286585617926513*I, -0.89454803265751
                    520: 744362901306471557966872 + 0.53414854617473272670874609150394379949*I, -0.89
                    521: 454803265751744362901306471557966872 - 0.53414854617473272670874609150394379
                    522: 949*I; 1.6057155120361619195949075151301679393 + 0.E-38*I, -1.31775926936893
                    523: 52747870763902256347904 + 0.61442701016433883804190660864146731824*I, -1.317
                    524: 7592693689352747870763902256347904 - 0.6144270101643388380419066086414673182
                    525: 4*I, 0.51490151335085431498962263266055082078 - 0.95564306225496055080453352
                    526: 211847466685*I, 0.51490151335085431498962263266055082078 + 0.955643062254960
                    527: 55080453352211847466685*I; 2.0347118029638523119874445717108994866 + 0.E-37*
                    528: I, -1.0672071180669977537495893497477340535 - 1.3909574189920019216524673160
                    529: 314582604*I, -1.0672071180669977537495893497477340535 + 1.390957418992001921
                    530: 6524673160314582604*I, 0.049851216585071597755867063892284310224 + 1.1299025
                    531: 160425089918993024639913611785*I, 0.049851216585071597755867063892284310224
                    532: - 1.1299025160425089918993024639913611785*I; 2.57832230559355365447578719092
                    533: 85592749 + 0.E-37*I, 1.3589689411882615753626439480614001936 - 1.61933377598
                    534: 93970298359887428575174472*I, 1.3589689411882615753626439480614001936 + 1.61
                    535: 93337759893970298359887428575174472*I, -0.6481300939850384026005375435256798
                    536: 3115 - 0.98412411795664774269323431620030610541*I, -0.6481300939850384026005
                    537: 3754352567983115 + 0.98412411795664774269323431620030610541*I]], [[5, -5.877
                    538: 4717524647712700000000000000000000 E-39 + 3.42274939913785433235754950013147
                    539: 29016*I, 2.3509887009859085080000000000000000000 E-38 - 0.682432104181243425
                    540: 52525382695401469720*I, -2.3509887009859085080000000000000000000 E-38 - 0.52
                    541: 210980589898585950632970408019416371*I, 3.9999999999999999999999999999999999
                    542: 999 - 5.2069157878920895450584461181156471052*I; -5.877471752464771270000000
                    543: 0000000000000 E-39 - 3.4227493991378543323575495001314729016*I, 6.6847043424
                    544: 634879841147654217963674264 - 5.8774717524647712700000000000000000000 E-39*I
                    545: , 0.85145677340721376574333983502938573598 + 4.58295731809784302915415926006
                    546: 01794652*I, -0.13574266252716976137461193821267520737 - 0.288051085440257723
                    547: 61738936467682050391*I, 0.27203784387468568916539788233281013320 - 1.5917147
                    548: 279942947718965650859986677247*I; 2.3509887009859085080000000000000000000 E-
                    549: 38 + 0.68243210418124342552525382695401469720*I, 0.8514567734072137657433398
                    550: 3502938573598 - 4.5829573180978430291541592600601794652*I, 9.163096853022107
                    551: 7951281598310681467898 + 0.E-38*I, 2.2622987652095629453403849736225691490 +
                    552:  6.2361927913558506765724047063180706869*I, -0.21796409886496632254445901043
                    553: 974770643 + 0.34559368931063215686158939748833975810*I; -2.35098870098590850
                    554: 80000000000000000000 E-38 + 0.52210980589898585950632970408019416371*I, -0.1
                    555: 3574266252716976137461193821267520737 + 0.2880510854402577236173893646768205
                    556: 0392*I, 2.2622987652095629453403849736225691490 - 6.236192791355850676572404
                    557: 7063180706869*I, 12.845768948832335511882696939380696155 + 1.175494350492954
                    558: 2540000000000000000000 E-38*I, 4.5618400502378124720913214622468855074 + 8.6
                    559: 033930051068500425218923146793019614*I; 3.9999999999999999999999999999999999
                    560: 999 + 5.2069157878920895450584461181156471052*I, 0.2720378438746856891653978
                    561: 8233281013320 + 1.5917147279942947718965650859986677247*I, -0.21796409886496
                    562: 632254445901043974770643 - 0.34559368931063215686158939748833975810*I, 4.561
                    563: 8400502378124720913214622468855074 - 8.6033930051068500425218923146793019615
                    564: *I, 18.362968630416114402425299186062892646 + 5.8774717524647712700000000000
                    565: 000000000 E-39*I], [5, -1.1754943504929542540000000000000000000 E-38 + 0.E-3
                    566: 8*I, 2.3509887009859085080000000000000000000 E-38 + 0.E-38*I, -1.76324152620
                    567: 50926680000000000000000000 E-38 + 0.E-38*I, 3.999999999999999999999999999999
                    568: 9999998 + 0.E-38*I; -1.1754943504929542540000000000000000000 E-38 + 0.E-38*I
                    569: , 6.6847043424634879841147654217963674264 - 5.877471752464771270000000000000
                    570: 0000000 E-39*I, 0.85145677340721376574333983502938573597 + 5.877471752464771
                    571: 2700000000000000000000 E-39*I, -0.13574266252716976137461193821267520737 + 5
                    572: .8774717524647712700000000000000000000 E-39*I, 0.272037843874685689165397882
                    573: 33281013314 - 5.8774717524647712700000000000000000000 E-39*I; 2.350988700985
                    574: 9085080000000000000000000 E-38 + 0.E-38*I, 0.8514567734072137657433398350293
                    575: 8573597 + 5.8774717524647712700000000000000000000 E-39*I, 9.1630968530221077
                    576: 951281598310681467898 + 0.E-38*I, 2.2622987652095629453403849736225691490 +
                    577: 2.3509887009859085080000000000000000000 E-38*I, -0.2179640988649663225444590
                    578: 1043974770651 + 0.E-38*I; -1.7632415262050926680000000000000000000 E-38 + 0.
                    579: E-38*I, -0.13574266252716976137461193821267520737 + 5.8774717524647712700000
                    580: 000000000000000 E-39*I, 2.2622987652095629453403849736225691490 + 2.35098870
                    581: 09859085080000000000000000000 E-38*I, 12.84576894883233551188269693938069615
                    582: 5 + 0.E-37*I, 4.5618400502378124720913214622468855073 - 3.526483052410185337
                    583: 0000000000000000000 E-38*I; 3.9999999999999999999999999999999999998 + 0.E-38
                    584: *I, 0.27203784387468568916539788233281013314 - 5.877471752464771270000000000
                    585: 0000000000 E-39*I, -0.21796409886496632254445901043974770651 + 0.E-38*I, 4.5
                    586: 618400502378124720913214622468855073 - 3.52648305241018533700000000000000000
                    587: 00 E-38*I, 18.362968630416114402425299186062892646 + 0.E-37*I]], [Mod(5, y^3
                    588:  - y - 1), 0, 0, 0, Mod(4, y^3 - y - 1); 0, 0, 0, Mod(4, y^3 - y - 1), Mod(1
                    589: 0, y^3 - y - 1); 0, 0, Mod(4, y^3 - y - 1), Mod(10, y^3 - y - 1), 0; 0, Mod(
                    590: 4, y^3 - y - 1), Mod(10, y^3 - y - 1), 0, 0; Mod(4, y^3 - y - 1), Mod(10, y^
                    591: 3 - y - 1), 0, 0, Mod(4, y^3 - y - 1)], [;], [;], [;]], [[1.2671683045421243
                    592: 172528914279776896412, 0.26096388038645528500256735072673484811 + 1.17722615
                    593: 33941944394700286585617926513*I, -0.89454803265751744362901306471557966872 +
                    594:  0.53414854617473272670874609150394379949*I], [1.267168304542124317252891427
                    595: 9776896412 + 0.E-38*I, 0.26096388038645528500256735072673484811 - 1.17722615
                    596: 33941944394700286585617926513*I, 0.26096388038645528500256735072673484811 +
                    597: 1.1772261533941944394700286585617926513*I, -0.894548032657517443629013064715
                    598: 57966872 - 0.53414854617473272670874609150394379949*I, -0.894548032657517443
                    599: 62901306471557966872 + 0.53414854617473272670874609150394379949*I]~], [[Mod(
                    600: 1, y^3 - y - 1), Mod(1, y^3 - y - 1)*x, Mod(1, y^3 - y - 1)*x^2, Mod(1, y^3
                    601: - y - 1)*x^3, Mod(1, y^3 - y - 1)*x^4], [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0,
                    602:  0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0,
                    603:  1], [1, 0, 0; 0, 1, 0; 0, 0, 1]]], [Mod(1, y^3 - y - 1), 0, 0, 0, 0; 0, Mod
                    604: (1, y^3 - y - 1), 0, 0, 0; 0, 0, Mod(1, y^3 - y - 1), 0, 0; 0, 0, 0, Mod(1,
                    605: y^3 - y - 1), 0; 0, 0, 0, 0, Mod(1, y^3 - y - 1)], [], [y^3 - y - 1, [1, 1],
                    606:  -23, 1, [[1, 1.3247179572447460259609088544780973407, 1.7548776662466927600
                    607: 495088963585286918; 1, -0.66235897862237301298045442723904867036 + 0.5622795
                    608: 1206230124389918214490937306149*I, 0.12256116687665361997524555182073565405
                    609: - 0.74486176661974423659317042860439236724*I], [1, 2; 1.32471795724474602596
                    610: 09088544780973407, -1.3247179572447460259609088544780973407 - 1.124559024124
                    611: 6024877983642898187461229*I; 1.7548776662466927600495088963585286918, 0.2451
                    612: 2233375330723995049110364147130810 + 1.4897235332394884731863408572087847344
                    613: *I], [3, 0.E-96, 2.0000000000000000000000000000000000000; 0.E-96, 3.26463299
                    614: 87400782801485266890755860756, 1.3247179572447460259609088544780973407; 2.00
                    615: 00000000000000000000000000000000000, 1.3247179572447460259609088544780973407
                    616: , 4.2192762054875453178332176670757633303], [3, 0, 2; 0, 2, 3; 2, 3, 2], [23
                    617: , 13, 15; 0, 1, 0; 0, 0, 1], [-5, 6, -4; 6, 2, -9; -4, -9, 6], [23, [7, 10,
                    618: 1]~, 529]], [1.3247179572447460259609088544780973407, -0.6623589786223730129
                    619: 8045442723904867036 + 0.56227951206230124389918214490937306149*I], [1, y, y^
                    620: 2], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 1, 0; 0, 1, 0, 1, 0,
                    621: 1, 0, 1, 1; 0, 0, 1, 0, 1, 0, 1, 0, 1]], [x^15 - 5*x^13 + 5*x^12 + 7*x^11 -
                    622: 26*x^10 - 5*x^9 + 45*x^8 + 158*x^7 - 98*x^6 + 110*x^5 - 190*x^4 + 189*x^3 +
                    623: 144*x^2 + 25*x + 1, Mod(39516536165538345/83718587879473471*x^14 - 650051247
                    624: 6832995/83718587879473471*x^13 - 196215472046117185/83718587879473471*x^12 +
                    625:  229902227480108910/83718587879473471*x^11 + 237380704030959181/837185878794
                    626: 73471*x^10 - 1064931988160773805/83718587879473471*x^9 - 20657086671714300/8
                    627: 3718587879473471*x^8 + 1772885205999206010/83718587879473471*x^7 + 595203321
                    628: 7241102348/83718587879473471*x^6 - 4838840187320655696/83718587879473471*x^5
                    629:  + 5180390720553188700/83718587879473471*x^4 - 8374015687535120430/837185878
                    630: 79473471*x^3 + 8907744727915040221/83718587879473471*x^2 + 41559766641234343
                    631: 81/83718587879473471*x + 318920215718580450/83718587879473471, x^15 - 5*x^13
                    632:  + 5*x^12 + 7*x^11 - 26*x^10 - 5*x^9 + 45*x^8 + 158*x^7 - 98*x^6 + 110*x^5 -
                    633:  190*x^4 + 189*x^3 + 144*x^2 + 25*x + 1), -1, [1, x, x^2, x^3, x^4, x^5, x^6
                    634: , x^7, x^8, x^9, x^10, x^11, x^12, x^13, 1/83718587879473471*x^14 - 20528463
                    635: 024680133/83718587879473471*x^13 - 4742392948888610/83718587879473471*x^12 -
                    636:  9983523646123358/83718587879473471*x^11 + 40898955597139011/837185878794734
                    637: 71*x^10 + 29412692423971937/83718587879473471*x^9 - 5017479463612351/8371858
                    638: 7879473471*x^8 + 41014993230075066/83718587879473471*x^7 - 2712810874903165/
                    639: 83718587879473471*x^6 + 20152905879672878/83718587879473471*x^5 + 9591643151
                    640: 927789/83718587879473471*x^4 - 8471905745957397/83718587879473471*x^3 - 1339
                    641: 5753879413605/83718587879473471*x^2 + 27623037732247492/83718587879473471*x
                    642: + 26306699661480593/83718587879473471], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                    643:  0, 0, -26306699661480593; 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -276230
                    644: 37732247492; 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13395753879413605; 0,
                    645:  0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8471905745957397; 0, 0, 0, 0, 1, 0,
                    646: 0, 0, 0, 0, 0, 0, 0, 0, -9591643151927789; 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
                    647: 0, 0, 0, -20152905879672878; 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 27128
                    648: 10874903165; 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -41014993230075066; 0
                    649: , 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 5017479463612351; 0, 0, 0, 0, 0, 0,
                    650:  0, 0, 0, 1, 0, 0, 0, 0, -29412692423971937; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
                    651: , 0, 0, 0, -40898955597139011; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 998
                    652: 3523646123358; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4742392948888610; 0
                    653: , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 20528463024680133; 0, 0, 0, 0, 0, 0
                    654: , 0, 0, 0, 0, 0, 0, 0, 0, 83718587879473471]]]
                    655: ? bnfcertify(bnf)
                    656: 1
                    657: ? setrand(1);bnfclassunit(x^4-7,2,[0.2,0.2])
                    658:
                    659: [x^4 - 7]
                    660:
                    661: [[2, 1]]
                    662:
                    663: [[-87808, 1]]
                    664:
                    665: [[1, x, x^2, x^3]]
                    666:
                    667: [[2, [2], [[2, 1, 1, 1; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]]]]
                    668:
                    669: [14.229975145405511722395637833443108790]
                    670:
                    671: [1.1211171071527562299744232290000000000]
                    672:
                    673: ? setrand(1);bnfclassunit(x^2-x-100000)
                    674:   ***   Warning: insufficient precision for fundamental units, not given.
                    675:
                    676: [x^2 - x - 100000]
                    677:
                    678: [[2, 0]]
                    679:
                    680: [[400001, 1]]
                    681:
                    682: [[1, x]]
                    683:
                    684: [[5, [5], [[2, 1; 0, 1]]]]
                    685:
                    686: [129.82045011403975460991182396195022419]
                    687:
                    688: [0.98765369790690472391212970100000000000]
                    689:
                    690: [[2, -1]]
                    691:
                    692: [[;]]
                    693:
                    694: [0]
                    695:
                    696: ? setrand(1);bnfclassunit(x^2-x-100000,1)
                    697:
                    698: [x^2 - x - 100000]
                    699:
                    700: [[2, 0]]
                    701:
                    702: [[400001, 1]]
                    703:
                    704: [[1, x]]
                    705:
                    706: [[5, [5], [[2, 1; 0, 1]]]]
                    707:
                    708: [129.82045011403975460991182396195022419]
                    709:
                    710: [0.98765369790690472391212970100000000000]
                    711:
                    712: [[2, -1]]
                    713:
                    714: [[379554884019013781006303254896369154068336082609238336*x + 119836165644250
                    715: 789990462835950022871665178127611316131167]]
                    716:
                    717: [124]
                    718:
                    719: ? setrand(1);bnfclassunit(x^4+24*x^2+585*x+1791,,[0.1,0.1])
                    720:
                    721: [x^4 + 24*x^2 + 585*x + 1791]
                    722:
                    723: [[0, 2]]
                    724:
                    725: [[18981, 3087]]
                    726:
                    727: [[1, x, 1/3*x^2, 1/1029*x^3 + 33/343*x^2 - 155/343*x - 58/343]]
                    728:
                    729: [[4, [4], [[7, 6, 2, 4; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]]]]
                    730:
                    731: [3.7941269688216589341408274220859400302]
                    732:
                    733: [0.88260182866555813061644128400000000000]
                    734:
                    735: [[6, 10/1029*x^3 - 13/343*x^2 + 165/343*x + 1478/343]]
                    736:
                    737: [[4/1029*x^3 + 53/1029*x^2 + 66/343*x + 111/343]]
                    738:
                    739: [103]
                    740:
                    741: ? setrand(1);bnfclgp(17)
                    742: [1, [], []]
                    743: ? setrand(1);bnfclgp(-31)
                    744: [3, [3], [Qfb(2, 1, 4)]]
                    745: ? setrand(1);bnfclgp(x^4+24*x^2+585*x+1791)
                    746: [4, [4], [[7, 5, 1, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]]]
                    747: ? bnrconductor(bnf,[[25,13;0,1],[1,1]])
                    748: [[5, 3; 0, 1], [1, 0]]
                    749: ? bnrconductorofchar(bnr,[2])
                    750: [[5, 3; 0, 1], [0, 0]]
                    751: ? bnfisprincipal(bnf,[5,1;0,1],0)
                    752: [1]~
                    753: ? bnfisprincipal(bnf,[5,1;0,1])
                    754: [[1]~, [2, 1/3]~, 117]
                    755: ? bnfisunit(bnf,Mod(3405*x-27466,x^2-x-57))
                    756: [-4, Mod(1, 2)]~
                    757: ? \p19
                    758:    realprecision = 19 significant digits
                    759: ? bnfmake(sbnf)
                    760: [Mat(2), Mat([0, 1, 1, 1, 0, 1, 1, 1]), [1.173637103435061715 + 3.1415926535
                    761: 89793238*I, -4.562279014988837901 + 3.141592653589793238*I; -2.6335434327389
                    762: 76049 + 3.141592653589793238*I, 1.420330600779487358 + 3.141592653589793238*
                    763: I; 1.459906329303914334, 3.141948414209350543], [1.246346989334819161, -1.99
                    764: 0056445584799713 + 3.141592653589793238*I, 0.5404006376129469727, -0.6926391
                    765: 142471042845 + 3.141592653589793238*I, 0.E-96, 0.004375616572659815402 + 3.1
                    766: 41592653589793238*I, 0.3677262014027817705 + 3.141592653589793238*I, -0.8305
                    767: 625946607188639 + 3.141592653589793238*I, -1.977791147836553953 + 3.14159265
                    768: 3589793238*I; 0.6716827432867392935, 0.5379005671092853266, -0.8333219883742
                    769: 404172, -0.2461086674077943078, 0.E-96, -0.8738318043071131265, 0.9729063188
                    770: 316092378, -1.552661549868775853, 0.5774919091398324092 + 3.1415926535897932
                    771: 38*I; -1.918029732621558454 + 3.141592653589793238*I, 1.452155878475514386,
                    772: 0.2929213507612934444 + 3.141592653589793238*I, 0.9387477816548985923, 0.E-9
                    773: 6, 0.8694561877344533111, -1.340632520234391008, 2.383224144529494717, 1.400
                    774: 299238696721544 + 3.141592653589793238*I], [[3, [-1, 1, 0]~, 1, 1, [1, 0, 1]
                    775: ~], [5, [3, 1, 0]~, 1, 1, [-2, 1, 1]~], [5, [-1, 1, 0]~, 1, 1, [1, 0, 1]~],
                    776: [5, [2, 1, 0]~, 1, 1, [2, 2, 1]~], [3, [1, 0, 1]~, 1, 2, [-1, 1, 0]~], [11,
                    777: [1, 1, 0]~, 1, 1, [-1, -2, 1]~], [23, [-10, 1, 0]~, 1, 1, [7, 9, 1]~], [13,
                    778: [19, 1, 0]~, 1, 1, [2, 6, 1]~], [19, [-6, 1, 0]~, 1, 1, [-3, 5, 1]~]]~, [1,
                    779: 2, 3, 4, 5, 6, 7, 8, 9]~, [x^3 - x^2 - 14*x - 1, [3, 0], 10889, 1, [[1, -3.2
                    780: 33732695981516673, 10.45702714905988813; 1, -0.07182350902743636344, 0.00515
                    781: 8616449014232794; 1, 4.305556205008953036, 18.53781423449109762], [1, 1, 1;
                    782: -3.233732695981516673, -0.07182350902743636344, 4.305556205008953036; 10.457
                    783: 02714905988813, 0.005158616449014232794, 18.53781423449109762], [3, 1.000000
                    784: 000000000000, 29.00000000000000000; 1.000000000000000000, 29.000000000000000
                    785: 00, 46.00000000000000000; 29.00000000000000000, 46.00000000000000000, 453.00
                    786: 00000000000000], [3, 1, 29; 1, 29, 46; 29, 46, 453], [10889, 5698, 3794; 0,
                    787: 1, 0; 0, 0, 1], [11021, 881, -795; 881, 518, -109; -795, -109, 86], [10889,
                    788: [1890, 5190, 1]~, 118570321]], [-3.233732695981516673, -0.071823509027436363
                    789: 44, 4.305556205008953036], [1, x, x^2], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0,
                    790: 0, 0, 0, 1, 0, 1, 1; 0, 1, 0, 1, 0, 14, 0, 14, 15; 0, 0, 1, 0, 1, 1, 1, 1, 1
                    791: 5]], [[2, [2], [[3, 2, 2; 0, 1, 0; 0, 0, 1]]], 10.34800724602767998, 1.00000
                    792: 0000000000000, [2, -1], [x, x^2 + 2*x - 4], 1000], [Mat(1), Mat(1), [[[3, 2,
                    793:  2; 0, 1, 0; 0, 0, 1], [0, 0, 0]]]], 0]
                    794: ? \p38
                    795:    realprecision = 38 significant digits
                    796: ? bnfnarrow(bnf)
                    797: [3, [3], [[3, 2; 0, 1]]]
                    798: ? bnfreg(x^2-x-57)
                    799: 2.7124653051843439746808795106061300699
                    800: ? bnfsignunit(bnf)
                    801:
                    802: [-1]
                    803:
                    804: [1]
                    805:
                    806: ? bnfunit(bnf)
                    807: [[x + 7], 130]
                    808: ? bnrclass(bnf,[[5,3;0,1],[1,0]])
                    809: [12, [12], [[3, 2; 0, 1]]]
                    810: ? bnr2=bnrclass(bnf,[[25,13;0,1],[1,1]],2)
                    811: [[Mat(3), Mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.7124653051843439746808795106
                    812: 061300699 + 3.1415926535897932384626433832795028842*I; 2.7124653051843439746
                    813: 808795106061300699 - 6.2831853071795864769252867665590057684*I], [23347.9792
                    814: 23478346319454659159707591731 + 6.2831853071795864769252867665590057684*I, 8
                    815: 66.56619430687100142570357249059499540 + 6.283185307179586476925286766559005
                    816: 7684*I, 2881.3396396084587293295626563644245032 + 3.141592653589793238462643
                    817: 3832795028842*I, 27379.624790530768080428797780058276925 + 1.928186686709523
                    818: 2000000000000000000000 E-42*I, 57933.334567930851067108050790839116749 + 2.6
                    819: 904930509626865380000000000000000000 E-42*I, -34585.556250151557719998034043
                    820: 918848670 + 9.4247779607693797153879301498385086526*I, 23348.322511122623346
                    821: 549049047574325150 + 3.1415926535897932384626433832795028842*I, -0.343287644
                    822: 27702709438988786673341921876 + 3.1415926535897932384626433832795028842*I, -
                    823: 4031.7117453543045067063239888430083582 + 9.42477796076937971538793014983850
                    824: 86526*I, 27379.690968832650826160983148550600089 + 9.42477796076937971538793
                    825: 01498385086526*I; -23347.979223478346319454659159707591731 + 9.4247779607693
                    826: 797153879301498385086526*I, -866.56619430687100142570357249059499540 + 2.101
                    827: 9476959481835360000000000000000000 E-45*I, -2881.339639608458729329562656364
                    828: 4245032 + 9.4247779607693797153879301498385086526*I, -27379.6247905307680804
                    829: 28797780058276925 + 6.2831853071795864769252867665590057684*I, -57933.334567
                    830: 930851067108050790839116749 + 3.1415926535897932384626433832795028842*I, 345
                    831: 85.556250151557719998034043918848670 + 6.28318530717958647692528676655900576
                    832: 84*I, -23348.322511122623346549049047574325150 + 9.4247779607693797153879301
                    833: 498385086526*I, 0.34328764427702709438988786673341921876 + 0.E-48*I, 4031.71
                    834: 17453543045067063239888430083582 + 3.1415926535897932384626433832795028842*I
                    835: , -27379.690968832650826160983148550600089 + 6.28318530717958647692528676655
                    836: 90057684*I], [[3, [-1, 1]~, 1, 1, [0, 1]~], [3, [0, 1]~, 1, 1, [-1, 1]~], [5
                    837: , [-2, 1]~, 1, 1, [1, 1]~], [5, [1, 1]~, 1, 1, [-2, 1]~], [11, [-2, 1]~, 1,
                    838: 1, [1, 1]~], [11, [1, 1]~, 1, 1, [-2, 1]~], [17, [-3, 1]~, 1, 1, [2, 1]~], [
                    839: 17, [2, 1]~, 1, 1, [-3, 1]~], [19, [-1, 1]~, 1, 1, [0, 1]~], [19, [0, 1]~, 1
                    840: , 1, [-1, 1]~]]~, [1, 3, 5, 2, 4, 6, 7, 8, 10, 9]~, [x^2 - x - 57, [2, 0], 2
                    841: 29, 1, [[1, -7.0663729752107779635959310246705326058; 1, 8.06637297521077796
                    842: 35959310246705326058], [1, 1; -7.0663729752107779635959310246705326058, 8.06
                    843: 63729752107779635959310246705326058], [2, 1.00000000000000000000000000000000
                    844: 00000; 1.0000000000000000000000000000000000000, 115.000000000000000000000000
                    845: 00000000000], [2, 1; 1, 115], [229, 114; 0, 1], [115, -1; -1, 2], [229, [114
                    846: , 1]~, 229]], [-7.0663729752107779635959310246705326058, 8.06637297521077796
                    847: 35959310246705326058], [1, x], [1, 0; 0, 1], [1, 0, 0, 57; 0, 1, 1, 1]], [[3
                    848: , [3], [[3, 2; 0, 1]]], 2.7124653051843439746808795106061300699, 0.881442251
                    849: 26545793690341704100000000000, [2, -1], [x + 7], 130], [Mat(1), Mat(1), [[[3
                    850: , 2; 0, 1], [0, 0]]]], 0], [[[25, 13; 0, 1], [1, 1]], [80, [20, 2, 2], [[2,
                    851: 0]~, [0, -2]~, [2, 2]~]], Mat([[5, [-2, 1]~, 1, 1, [1, 1]~], 2]), [[[[4], [[
                    852: 2, 0]~], [[2, 0]~], [[Mod(0, 2), Mod(0, 2)]~], 1], [[5], [[6, 0]~], [[6, 0]~
                    853: ], [[Mod(0, 2), Mod(0, 2)]~], Mat([1/5, -13/5])]], [[2, 2], [[0, -2]~, [2, 2
                    854: ]~], [0, 1; 1, 0]]], [1, -12, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]], [[1, 0]~], [1,
                    855:  -3, 0, -6; 0, 0, 1, 0; 0, 0, 0, 1; 0, 1, 0, 0], [12, [12], [[3, 2; 0, 1]]],
                    856:  [[1/2, 5, -9; -1/2, -5, 10], [-2, 0; 0, 10]]]
                    857: ? bnrclassno(bnf,[[5,3;0,1],[1,0]])
                    858: 12
                    859: ? lu=ideallist(bnf,55,3);
                    860: ? bnrclassnolist(bnf,lu)
                    861: [[3], [], [3, 3], [3], [6, 6], [], [], [], [3, 3, 3], [], [3, 3], [3, 3], []
                    862: , [], [12, 6, 6, 12], [3], [3, 3], [], [9, 9], [6, 6], [], [], [], [], [6, 1
                    863: 2, 6], [], [3, 3, 3, 3], [], [], [], [], [], [3, 6, 6, 3], [], [], [9, 3, 9]
                    864: , [6, 6], [], [], [], [], [], [3, 3], [3, 3], [12, 12, 6, 6, 12, 12], [], []
                    865: , [6, 6], [9], [], [3, 3, 3, 3], [], [3, 3], [], [6, 12, 12, 6]]
                    866: ? bnrdisc(bnr,Mat(6))
                    867: [12, 12, 18026977100265125]
                    868: ? bnrdisc(bnr)
                    869: [24, 12, 40621487921685401825918161408203125]
                    870: ? bnrdisc(bnr2,,,2)
                    871: 0
                    872: ? bnrdisc(bnr,Mat(6),,1)
                    873: [6, 2, [125, 13; 0, 1]]
                    874: ? bnrdisc(bnr,,,1)
                    875: [12, 1, [1953125, 1160888; 0, 1]]
                    876: ? bnrdisc(bnr2,,,3)
                    877: 0
                    878: ? bnrdisclist(bnf,lu)
                    879: [[[6, 6, Mat([229, 3])]], [], [[], []], [[]], [[12, 12, [5, 3; 229, 6]], [12
                    880: , 12, [5, 3; 229, 6]]], [], [], [], [[], [], []], [], [[], []], [[], []], []
                    881: , [], [[24, 24, [3, 6; 5, 9; 229, 12]], [], [], [24, 24, [3, 6; 5, 9; 229, 1
                    882: 2]]], [[]], [[], []], [], [[18, 18, [19, 6; 229, 9]], [18, 18, [19, 6; 229,
                    883: 9]]], [[], []], [], [], [], [], [[], [24, 24, [5, 12; 229, 12]], []], [], [[
                    884: ], [], [], []], [], [], [], [], [], [[], [12, 12, [3, 3; 11, 3; 229, 6]], [1
                    885: 2, 12, [3, 3; 11, 3; 229, 6]], []], [], [], [[18, 18, [2, 12; 3, 12; 229, 9]
                    886: ], [], [18, 18, [2, 12; 3, 12; 229, 9]]], [[12, 12, [37, 3; 229, 6]], [12, 1
                    887: 2, [37, 3; 229, 6]]], [], [], [], [], [], [[], []], [[], []], [[], [], [], [
                    888: ], [], []], [], [], [[12, 12, [2, 12; 3, 3; 229, 6]], [12, 12, [2, 12; 3, 3;
                    889:  229, 6]]], [[18, 18, [7, 12; 229, 9]]], [], [[], [], [], []], [], [[], []],
                    890:  [], [[], [24, 24, [5, 9; 11, 6; 229, 12]], [24, 24, [5, 9; 11, 6; 229, 12]]
                    891: , []]]
                    892: ? bnrdisclist(bnf,20,,1)
                    893: [[[[matrix(0,2), [[6, 6, Mat([229, 3])], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]],
                    894:  [], [[Mat([12, 1]), [[0, 0, 0], [0, 0, 0], [0, 0, 0], [12, 0, [3, 3; 229, 6
                    895: ]]]], [Mat([13, 1]), [[0, 0, 0], [0, 0, 0], [12, 6, [-1, 1; 3, 3; 229, 6]],
                    896: [0, 0, 0]]]], [[Mat([10, 1]), [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]]
                    897: , [[Mat([20, 1]), [[12, 12, [5, 3; 229, 6]], [0, 0, 0], [0, 0, 0], [24, 0, [
                    898: 5, 9; 229, 12]]]], [Mat([21, 1]), [[12, 12, [5, 3; 229, 6]], [0, 0, 0], [24,
                    899:  12, [5, 9; 229, 12]], [0, 0, 0]]]], [], [], [], [[Mat([12, 2]), [[0, 0, 0],
                    900:  [0, 0, 0], [0, 0, 0], [0, 0, 0]]], [[12, 1; 13, 1], [[0, 0, 0], [12, 6, [-1
                    901: , 1; 3, 6; 229, 6]], [0, 0, 0], [24, 0, [3, 12; 229, 12]]]], [Mat([13, 2]),
                    902: [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]], [], [[Mat([44, 1]), [[0, 0,
                    903: 0], [0, 0, 0], [12, 6, [-1, 1; 11, 3; 229, 6]], [0, 0, 0]]], [Mat([45, 1]),
                    904: [[0, 0, 0], [0, 0, 0], [0, 0, 0], [12, 0, [11, 3; 229, 6]]]]], [[[10, 1; 12,
                    905:  1], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]], [[10, 1; 13, 1], [[0, 0,
                    906:  0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]], [], [], [[[12, 1; 20, 1], [[24, 24,
                    907:  [3, 6; 5, 9; 229, 12]], [0, 0, 0], [0, 0, 0], [48, 0, [3, 12; 5, 18; 229, 2
                    908: 4]]]], [[13, 1; 20, 1], [[0, 0, 0], [24, 12, [3, 6; 5, 9; 229, 12]], [24, 12
                    909: , [3, 6; 5, 6; 229, 12]], [48, 0, [3, 12; 5, 18; 229, 24]]]], [[12, 1; 21, 1
                    910: ], [[0, 0, 0], [24, 12, [3, 6; 5, 9; 229, 12]], [0, 0, 0], [48, 0, [3, 12; 5
                    911: , 18; 229, 24]]]], [[13, 1; 21, 1], [[24, 24, [3, 6; 5, 9; 229, 12]], [0, 0,
                    912:  0], [48, 24, [3, 12; 5, 18; 229, 24]], [0, 0, 0]]]], [[Mat([10, 2]), [[0, 0
                    913: , 0], [12, 6, [-1, 1; 2, 12; 229, 6]], [12, 6, [-1, 1; 2, 12; 229, 6]], [24,
                    914:  0, [2, 36; 229, 12]]]]], [[Mat([68, 1]), [[0, 0, 0], [12, 6, [-1, 1; 17, 3;
                    915:  229, 6]], [0, 0, 0], [0, 0, 0]]], [Mat([69, 1]), [[0, 0, 0], [12, 6, [-1, 1
                    916: ; 17, 3; 229, 6]], [0, 0, 0], [0, 0, 0]]]], [], [[Mat([76, 1]), [[18, 18, [1
                    917: 9, 6; 229, 9]], [0, 0, 0], [0, 0, 0], [36, 0, [19, 15; 229, 18]]]], [Mat([77
                    918: , 1]), [[18, 18, [19, 6; 229, 9]], [0, 0, 0], [36, 18, [-1, 1; 19, 15; 229,
                    919: 18]], [0, 0, 0]]]], [[[10, 1; 20, 1], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0,
                    920: 0, 0]]], [[10, 1; 21, 1], [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]]]]]
                    921: ? bnrisprincipal(bnr,idealprimedec(bnf,7)[1])
                    922: [[9]~, [-2170/6561, -931/19683]~, 113]
                    923: ? dirzetak(nf4,30)
                    924: [1, 2, 0, 3, 1, 0, 0, 4, 0, 2, 1, 0, 0, 0, 0, 5, 1, 0, 0, 3, 0, 2, 0, 0, 2,
                    925: 0, 1, 0, 1, 0]
                    926: ? factornf(x^3+x^2-2*x-1,t^3+t^2-2*t-1)
                    927:
                    928: [Mod(1, t^3 + t^2 - 2*t - 1)*x + Mod(-t, t^3 + t^2 - 2*t - 1) 1]
                    929:
                    930: [Mod(1, t^3 + t^2 - 2*t - 1)*x + Mod(-t^2 + 2, t^3 + t^2 - 2*t - 1) 1]
                    931:
                    932: [Mod(1, t^3 + t^2 - 2*t - 1)*x + Mod(t^2 + t - 1, t^3 + t^2 - 2*t - 1) 1]
                    933:
                    934: ? vp=idealprimedec(nf,3)[1]
                    935: [3, [1, 1, 0, 0, 0]~, 1, 1, [1, -1, -1, 0, 0]~]
                    936: ? idx=idealmul(nf,matid(5),vp)
                    937:
                    938: [3 1 2 2 2]
                    939:
                    940: [0 1 0 0 0]
                    941:
                    942: [0 0 1 0 0]
                    943:
                    944: [0 0 0 1 0]
                    945:
                    946: [0 0 0 0 1]
                    947:
                    948: ? idealinv(nf,idx)
                    949:
                    950: [1 0 2/3 0 0]
                    951:
                    952: [0 1 1/3 0 0]
                    953:
                    954: [0 0 1/3 0 0]
                    955:
                    956: [0 0 0 1 0]
                    957:
                    958: [0 0 0 0 1]
                    959:
                    960: ? idy=idealred(nf,idx,[1,5,6])
                    961:
                    962: [5 0 0 2 0]
                    963:
                    964: [0 5 0 0 0]
                    965:
                    966: [0 0 5 2 0]
                    967:
                    968: [0 0 0 1 0]
                    969:
                    970: [0 0 0 0 5]
                    971:
                    972: ? idx2=idealmul(nf,idx,idx)
                    973:
                    974: [9 7 5 8 2]
                    975:
                    976: [0 1 0 0 0]
                    977:
                    978: [0 0 1 0 0]
                    979:
                    980: [0 0 0 1 0]
                    981:
                    982: [0 0 0 0 1]
                    983:
                    984: ? idt=idealmul(nf,idx,idx,1)
                    985:
                    986: [2 0 0 0 1]
                    987:
                    988: [0 2 0 0 1]
                    989:
                    990: [0 0 2 0 0]
                    991:
                    992: [0 0 0 2 1]
                    993:
                    994: [0 0 0 0 1]
                    995:
                    996: ? idz=idealintersect(nf,idx,idy)
                    997:
                    998: [15 5 10 12 10]
                    999:
                   1000: [0 5 0 0 0]
                   1001:
                   1002: [0 0 5 2 0]
                   1003:
                   1004: [0 0 0 1 0]
                   1005:
                   1006: [0 0 0 0 5]
                   1007:
                   1008: ? aid=[idx,idy,idz,matid(5),idx]
                   1009: [[3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]
                   1010: , [5, 0, 0, 2, 0; 0, 5, 0, 0, 0; 0, 0, 5, 2, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 5
                   1011: ], [15, 5, 10, 12, 10; 0, 5, 0, 0, 0; 0, 0, 5, 2, 0; 0, 0, 0, 1, 0; 0, 0, 0,
                   1012:  0, 5], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0
                   1013: , 0, 1], [3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0,
                   1014: 0, 0, 1]]
                   1015: ? bid=idealstar(nf2,54,1)
                   1016: [[[54, 0, 0; 0, 54, 0; 0, 0, 54], [0]], [132678, [1638, 9, 9]], [[2, [2, 0,
                   1017: 0]~, 1, 3, [1, 0, 0]~], 1; [3, [3, 0, 0]~, 1, 3, [1, 0, 0]~], 3], [[[[7], [[
                   1018: 0, 1, 0]~], [[-26, -27, 0]~], [[]~], 1]], [[[26], [[0, 2, 0]~], [[-27, 2, 0]
                   1019: ~], [[]~], 1], [[3, 3, 3], [[1, 3, 0]~, [1, 0, 3]~, [4, 0, 0]~], [[1, -24, 0
                   1020: ]~, [1, 0, -24]~, [-23, 0, 0]~], [[]~, []~, []~], [0, 1/3, 0; 0, 0, 1/3; 1/3
                   1021: , 0, 0]], [[3, 3, 3], [[1, 9, 0]~, [1, 0, 9]~, [10, 0, 0]~], [[1, -18, 0]~,
                   1022: [1, 0, -18]~, [-17, 0, 0]~], [[]~, []~, []~], [0, 1/9, 0; 0, 0, 1/9; 1/9, 0,
                   1023:  0]]], [[], [], [;]]], [468, 469, 0, 0, -48776, 0, 0, -36582; 0, 0, 1, 0, -7
                   1024: , -6, 0, -3; 0, 0, 0, 1, -3, 0, -6, 0]]
                   1025: ? vaid=[idx,idy,matid(5)]
                   1026: [[3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]
                   1027: , [5, 0, 0, 2, 0; 0, 5, 0, 0, 0; 0, 0, 5, 2, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 5
                   1028: ], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0,
                   1029: 1]]
                   1030: ? haid=[matid(5),matid(5),matid(5)]
                   1031: [[1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]
                   1032: , [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1
                   1033: ], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0,
                   1034: 1]]
                   1035: ? idealadd(nf,idx,idy)
                   1036:
                   1037: [1 0 0 0 0]
                   1038:
                   1039: [0 1 0 0 0]
                   1040:
                   1041: [0 0 1 0 0]
                   1042:
                   1043: [0 0 0 1 0]
                   1044:
                   1045: [0 0 0 0 1]
                   1046:
                   1047: ? idealaddtoone(nf,idx,idy)
                   1048: [[3, 0, 2, 1, 0]~, [-2, 0, -2, -1, 0]~]
                   1049: ? idealaddtoone(nf,[idy,idx])
                   1050: [[-5, 0, 0, 0, 0]~, [6, 0, 0, 0, 0]~]
                   1051: ? idealappr(nf,idy)
                   1052: [-2, 0, -2, 4, 0]~
                   1053: ? idealappr(nf,idealfactor(nf,idy),1)
                   1054: [-2, 0, -2, 4, 0]~
                   1055: ? idealcoprime(nf,idx,idx)
                   1056: [-2/3, 2/3, -1/3, 0, 0]~
                   1057: ? idealdiv(nf,idy,idt)
                   1058:
                   1059: [5 5/2 5/2 7/2 0]
                   1060:
                   1061: [0 5/2 0 0 0]
                   1062:
                   1063: [0 0 5/2 1 0]
                   1064:
                   1065: [0 0 0 1/2 0]
                   1066:
                   1067: [0 0 0 0 5/2]
                   1068:
                   1069: ? idealdiv(nf,idx2,idx,1)
                   1070:
                   1071: [3 1 2 2 2]
                   1072:
                   1073: [0 1 0 0 0]
                   1074:
                   1075: [0 0 1 0 0]
                   1076:
                   1077: [0 0 0 1 0]
                   1078:
                   1079: [0 0 0 0 1]
                   1080:
                   1081: ? idf=idealfactor(nf,idz)
                   1082:
                   1083: [[3, [1, 1, 0, 0, 0]~, 1, 1, [1, -1, -1, 0, 0]~] 1]
                   1084:
                   1085: [[5, [-2, 0, 0, 0, 1]~, 1, 1, [2, 2, 1, 1, 4]~] 1]
                   1086:
                   1087: [[5, [0, 0, -1, 0, 1]~, 4, 1, [4, 5, 4, 2, 0]~] 3]
                   1088:
                   1089: ? idealhnf(nf,vp)
                   1090:
                   1091: [3 1 2 2 2]
                   1092:
                   1093: [0 1 0 0 0]
                   1094:
                   1095: [0 0 1 0 0]
                   1096:
                   1097: [0 0 0 1 0]
                   1098:
                   1099: [0 0 0 0 1]
                   1100:
                   1101: ? idealhnf(nf,vp[2],3)
                   1102:
                   1103: [3 1 2 2 2]
                   1104:
                   1105: [0 1 0 0 0]
                   1106:
                   1107: [0 0 1 0 0]
                   1108:
                   1109: [0 0 0 1 0]
                   1110:
                   1111: [0 0 0 0 1]
                   1112:
                   1113: ? ideallist(bnf,20)
                   1114: [[[1, 0; 0, 1]], [], [[3, 2; 0, 1], [3, 0; 0, 1]], [[2, 0; 0, 2]], [[5, 3; 0
                   1115: , 1], [5, 1; 0, 1]], [], [], [], [[9, 5; 0, 1], [3, 0; 0, 3], [9, 3; 0, 1]],
                   1116:  [], [[11, 9; 0, 1], [11, 1; 0, 1]], [[6, 4; 0, 2], [6, 0; 0, 2]], [], [], [
                   1117: [15, 8; 0, 1], [15, 3; 0, 1], [15, 11; 0, 1], [15, 6; 0, 1]], [[4, 0; 0, 4]]
                   1118: , [[17, 14; 0, 1], [17, 2; 0, 1]], [], [[19, 18; 0, 1], [19, 0; 0, 1]], [[10
                   1119: , 6; 0, 2], [10, 2; 0, 2]]]
                   1120: ? ideallog(nf2,w,bid)
                   1121: [1574, 8, 6]~
                   1122: ? idealmin(nf,idx,[1,2,3,4,5])
                   1123: [[-1; 0; 0; 1; 0], [2.0885812311199768913287869744681966008 + 3.141592653589
                   1124: 7932384626433832795028842*I, 1.5921096812520196555597562531657929785 + 4.244
                   1125: 7196639216499665715751642189271112*I, -0.79031915447583185468082063233076160
                   1126: 203 + 2.5437460822678889883600220330800078854*I]]
                   1127: ? idealnorm(nf,idt)
                   1128: 16
                   1129: ? idp=idealpow(nf,idx,7)
                   1130:
                   1131: [2187 1807 2129 692 1379]
                   1132:
                   1133: [0 1 0 0 0]
                   1134:
                   1135: [0 0 1 0 0]
                   1136:
                   1137: [0 0 0 1 0]
                   1138:
                   1139: [0 0 0 0 1]
                   1140:
                   1141: ? idealpow(nf,idx,7,1)
                   1142:
                   1143: [2 0 0 0 1]
                   1144:
                   1145: [0 2 0 0 1]
                   1146:
                   1147: [0 0 2 0 0]
                   1148:
                   1149: [0 0 0 2 1]
                   1150:
                   1151: [0 0 0 0 1]
                   1152:
                   1153: ? idealprimedec(nf,2)
                   1154: [[2, [3, 1, 0, 0, 0]~, 1, 1, [1, 1, 0, 1, 1]~], [2, [-3, -5, -4, 3, 15]~, 1,
                   1155:  4, [1, 1, 0, 0, 0]~]]
                   1156: ? idealprimedec(nf,3)
                   1157: [[3, [1, 1, 0, 0, 0]~, 1, 1, [1, -1, -1, 0, 0]~], [3, [-1, 1, -1, 0, 1]~, 2,
                   1158:  2, [1, 2, 3, 1, 0]~]]
                   1159: ? idealprimedec(nf,11)
                   1160: [[11, [11, 0, 0, 0, 0]~, 1, 5, [1, 0, 0, 0, 0]~]]
                   1161: ? idealprincipal(nf,Mod(x^3+5,nfpol))
                   1162:
                   1163: [6]
                   1164:
                   1165: [0]
                   1166:
                   1167: [1]
                   1168:
                   1169: [3]
                   1170:
                   1171: [0]
                   1172:
                   1173: ? idealtwoelt(nf,idy)
                   1174: [5, [2, 0, 2, 1, 0]~]
                   1175: ? idealtwoelt(nf,idy,10)
                   1176: [-2, 0, -2, -1, 0]~
                   1177: ? idealstar(nf2,54)
                   1178: [[[54, 0, 0; 0, 54, 0; 0, 0, 54], [0]], [132678, [1638, 9, 9]], [[2, [2, 0,
                   1179: 0]~, 1, 3, [1, 0, 0]~], 1; [3, [3, 0, 0]~, 1, 3, [1, 0, 0]~], 3], [[[[7], [[
                   1180: 0, 1, 0]~], [[-26, -27, 0]~], [[]~], 1]], [[[26], [[0, 2, 0]~], [[-27, 2, 0]
                   1181: ~], [[]~], 1], [[3, 3, 3], [[1, 3, 0]~, [1, 0, 3]~, [4, 0, 0]~], [[1, -24, 0
                   1182: ]~, [1, 0, -24]~, [-23, 0, 0]~], [[]~, []~, []~], [0, 1/3, 0; 0, 0, 1/3; 1/3
                   1183: , 0, 0]], [[3, 3, 3], [[1, 9, 0]~, [1, 0, 9]~, [10, 0, 0]~], [[1, -18, 0]~,
                   1184: [1, 0, -18]~, [-17, 0, 0]~], [[]~, []~, []~], [0, 1/9, 0; 0, 0, 1/9; 1/9, 0,
                   1185:  0]]], [[], [], [;]]], [468, 469, 0, 0, -48776, 0, 0, -36582; 0, 0, 1, 0, -7
                   1186: , -6, 0, -3; 0, 0, 0, 1, -3, 0, -6, 0]]
                   1187: ? idealval(nf,idp,vp)
                   1188: 7
                   1189: ? ideleprincipal(nf,Mod(x^3+5,nfpol))
                   1190: [[6; 0; 1; 3; 0], [2.2324480827796254080981385584384939684 + 3.1415926535897
                   1191: 932384626433832795028842*I, 5.0387659675158716386435353106610489968 + 1.5851
                   1192: 760343512250049897278861965702423*I, 4.2664040272651028743625910797589683173
                   1193:  - 0.0083630478144368246110910258645462996191*I]]
                   1194: ? ba=nfalgtobasis(nf,Mod(x^3+5,nfpol))
                   1195: [6, 0, 1, 3, 0]~
                   1196: ? bb=nfalgtobasis(nf,Mod(x^3+x,nfpol))
                   1197: [1, 1, 1, 3, 0]~
                   1198: ? bc=matalgtobasis(nf,[Mod(x^2+x,nfpol);Mod(x^2+1,nfpol)])
                   1199:
                   1200: [[0, 1, 1, 0, 0]~]
                   1201:
                   1202: [[1, 0, 1, 0, 0]~]
                   1203:
                   1204: ? matbasistoalg(nf,bc)
                   1205:
                   1206: [Mod(x^2 + x, x^5 - 5*x^3 + 5*x + 25)]
                   1207:
                   1208: [Mod(x^2 + 1, x^5 - 5*x^3 + 5*x + 25)]
                   1209:
                   1210: ? nfbasis(x^3+4*x+5)
                   1211: [1, x, 1/7*x^2 - 1/7*x - 2/7]
                   1212: ? nfbasis(x^3+4*x+5,2)
                   1213: [1, x, 1/7*x^2 - 1/7*x - 2/7]
                   1214: ? nfbasis(x^3+4*x+12,1)
                   1215: [1, x, 1/2*x^2]
                   1216: ? nfbasistoalg(nf,ba)
                   1217: Mod(x^3 + 5, x^5 - 5*x^3 + 5*x + 25)
                   1218: ? nfbasis(p2,0,fa)
                   1219: [1, x, x^2, 1/11699*x^3 + 1847/11699*x^2 - 132/11699*x - 2641/11699, 1/13962
                   1220: 3738889203638909659*x^4 - 1552451622081122020/139623738889203638909659*x^3 +
                   1221:  418509858130821123141/139623738889203638909659*x^2 - 6810913798507599407313
                   1222: 4/139623738889203638909659*x - 13185339461968406/58346808996920447]
                   1223: ? da=nfdetint(nf,[a,aid])
                   1224:
                   1225: [30 5 25 27 10]
                   1226:
                   1227: [0 5 0 0 0]
                   1228:
                   1229: [0 0 5 2 0]
                   1230:
                   1231: [0 0 0 1 0]
                   1232:
                   1233: [0 0 0 0 5]
                   1234:
                   1235: ? nfdisc(x^3+4*x+12)
                   1236: -1036
                   1237: ? nfdisc(x^3+4*x+12,1)
                   1238: -1036
                   1239: ? nfdisc(p2,0,fa)
                   1240: 136866601
                   1241: ? nfeltdiv(nf,ba,bb)
                   1242: [755/373, -152/373, 159/373, 120/373, -264/373]~
                   1243: ? nfeltdiveuc(nf,ba,bb)
                   1244: [2, 0, 0, 0, -1]~
                   1245: ? nfeltdivrem(nf,ba,bb)
                   1246: [[2, 0, 0, 0, -1]~, [-12, -7, 0, 9, 5]~]
                   1247: ? nfeltmod(nf,ba,bb)
                   1248: [-12, -7, 0, 9, 5]~
                   1249: ? nfeltmul(nf,ba,bb)
                   1250: [-25, -50, -30, 15, 90]~
                   1251: ? nfeltpow(nf,bb,5)
                   1252: [23455, 156370, 115855, 74190, -294375]~
                   1253: ? nfeltreduce(nf,ba,idx)
                   1254: [1, 0, 0, 0, 0]~
                   1255: ? nfeltval(nf,ba,vp)
                   1256: 0
                   1257: ? nffactor(nf2,x^3+x)
                   1258:
                   1259: [Mod(1, y^3 - y - 1)*x 1]
                   1260:
                   1261: [Mod(1, y^3 - y - 1)*x^2 + Mod(1, y^3 - y - 1) 1]
                   1262:
                   1263: ? aut=nfgaloisconj(nf3)
                   1264: [x, 1/12*x^4 - 1/2*x, -1/12*x^4 - 1/2*x, 1/12*x^4 + 1/2*x, -1/12*x^4 + 1/2*x
                   1265: , -x]~
                   1266: ? nfgaloisapply(nf3,aut[5],Mod(x^5,x^6+108))
                   1267: Mod(1/2*x^5 - 9*x^2, x^6 + 108)
                   1268: ? nfhilbert(nf,3,5)
                   1269: -1
                   1270: ? nfhilbert(nf,3,5,idf[1,1])
                   1271: -1
                   1272: ? nfhnf(nf,[a,aid])
                   1273: [[[1, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [1
                   1274: , 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [1, 0,
                   1275:  0, 0, 0]~], [[2, 1, 1, 1, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0
                   1276: , 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
                   1277: 0, 0, 0, 0, 1], [3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
                   1278:  0, 0, 0, 0, 1]]]
                   1279: ? nfhnfmod(nf,[a,aid],da)
                   1280: [[[1, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [1
                   1281: , 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [1, 0,
                   1282:  0, 0, 0]~], [[2, 1, 1, 1, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0
                   1283: , 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
                   1284: 0, 0, 0, 0, 1], [3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
                   1285:  0, 0, 0, 0, 1]]]
                   1286: ? nfisideal(bnf[7],[5,1;0,1])
                   1287: 1
                   1288: ? nfisincl(x^2+1,x^4+1)
                   1289: [-x^2, x^2]
                   1290: ? nfisincl(x^2+1,nfinit(x^4+1))
                   1291: [-x^2, x^2]
                   1292: ? nfisisom(x^3+x^2-2*x-1,x^3+x^2-2*x-1)
                   1293: [x, -x^2 - x + 1, x^2 - 2]
                   1294: ? nfisisom(x^3-2,nfinit(x^3-6*x^2-6*x-30))
                   1295: [-1/25*x^2 + 13/25*x - 2/5]
                   1296: ? nfroots(nf2,x+2)
                   1297: [Mod(-2, y^3 - y - 1)]
                   1298: ? nfrootsof1(nf)
                   1299: [2, [-1, 0, 0, 0, 0]~]
                   1300: ? nfsnf(nf,[as,haid,vaid])
                   1301: [[10951073973332888246310, 5442457637639729109215, 2693780223637146570055, 3
                   1302: 910837124677073032737, 3754666252923836621170; 0, 5, 0, 0, 0; 0, 0, 5, 2, 0;
                   1303:  0, 0, 0, 1, 0; 0, 0, 0, 0, 5], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0
                   1304: ; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0,
                   1305: 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]]
                   1306: ? nfsubfields(nf)
                   1307: [[x^5 - 5*x^3 + 5*x + 25, x], [x, x^5 - 5*x^3 + 5*x + 25]]
                   1308: ? polcompositum(x^4-4*x+2,x^3-x-1)
                   1309: [x^12 - 4*x^10 + 8*x^9 + 12*x^8 + 12*x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*x
                   1310: ^2 - 128*x - 5]~
                   1311: ? polcompositum(x^4-4*x+2,x^3-x-1,1)
                   1312: [[x^12 - 4*x^10 + 8*x^9 + 12*x^8 + 12*x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*
                   1313: x^2 - 128*x - 5, Mod(-279140305176/29063006931199*x^11 + 129916611552/290630
                   1314: 06931199*x^10 + 1272919322296/29063006931199*x^9 - 2813750209005/29063006931
                   1315: 199*x^8 - 2859411937992/29063006931199*x^7 - 414533880536/29063006931199*x^6
                   1316:  - 35713977492936/29063006931199*x^5 - 17432607267590/29063006931199*x^4 + 4
                   1317: 9785595543672/29063006931199*x^3 + 9423768373204/29063006931199*x^2 - 427797
                   1318: 76146743/29063006931199*x + 37962587857138/29063006931199, x^12 - 4*x^10 + 8
                   1319: *x^9 + 12*x^8 + 12*x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*x^2 - 128*x - 5), M
                   1320: od(-279140305176/29063006931199*x^11 + 129916611552/29063006931199*x^10 + 12
                   1321: 72919322296/29063006931199*x^9 - 2813750209005/29063006931199*x^8 - 28594119
                   1322: 37992/29063006931199*x^7 - 414533880536/29063006931199*x^6 - 35713977492936/
                   1323: 29063006931199*x^5 - 17432607267590/29063006931199*x^4 + 49785595543672/2906
                   1324: 3006931199*x^3 + 9423768373204/29063006931199*x^2 - 13716769215544/290630069
                   1325: 31199*x + 37962587857138/29063006931199, x^12 - 4*x^10 + 8*x^9 + 12*x^8 + 12
                   1326: *x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*x^2 - 128*x - 5), -1]]
                   1327: ? polgalois(x^6-3*x^2-1)
                   1328: [12, 1, 1]
                   1329: ? polred(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
                   1330: [x - 1, x^5 - x^4 - 6*x^3 + 6*x^2 + 13*x - 5, x^5 - x^4 + 2*x^3 - 4*x^2 + x
                   1331: - 1, x^5 - x^4 + 4*x^3 - 2*x^2 + x - 1, x^5 + 4*x^3 - 4*x^2 + 8*x - 8]
                   1332: ? polred(x^4-28*x^3-458*x^2+9156*x-25321,3)
                   1333:
                   1334: [1 x - 1]
                   1335:
                   1336: [1/115*x^2 - 14/115*x - 327/115 x^2 - 10]
                   1337:
                   1338: [3/1495*x^3 - 63/1495*x^2 - 1607/1495*x + 13307/1495 x^4 - 32*x^2 + 216]
                   1339:
                   1340: [1/4485*x^3 - 7/1495*x^2 - 1034/4485*x + 7924/4485 x^4 - 8*x^2 + 6]
                   1341:
                   1342: ? polred(x^4+576,1)
                   1343: [x - 1, x^2 - x + 1, x^2 + 1, x^4 - x^2 + 1]
                   1344: ? polred(x^4+576,3)
                   1345:
                   1346: [1 x - 1]
                   1347:
                   1348: [1/192*x^3 + 1/8*x + 1/2 x^2 - x + 1]
                   1349:
                   1350: [-1/24*x^2 x^2 + 1]
                   1351:
                   1352: [-1/192*x^3 + 1/48*x^2 + 1/8*x x^4 - x^2 + 1]
                   1353:
                   1354: ? polred(p2,0,fa)
                   1355: [x - 1, x^5 - 2*x^4 - 62*x^3 + 85*x^2 + 818*x + 1, x^5 - 2*x^4 - 53*x^3 - 46
                   1356: *x^2 + 508*x + 913, x^5 - 2*x^4 - 13*x^3 + 37*x^2 - 21*x - 1, x^5 - x^4 - 52
                   1357: *x^3 - 197*x^2 - 273*x - 127]
                   1358: ? polred(p2,1,fa)
                   1359: [x - 1, x^5 - 2*x^4 - 62*x^3 + 85*x^2 + 818*x + 1, x^5 - 2*x^4 - 53*x^3 - 46
                   1360: *x^2 + 508*x + 913, x^5 - 2*x^4 - 13*x^3 + 37*x^2 - 21*x - 1, x^5 - x^4 - 52
                   1361: *x^3 - 197*x^2 - 273*x - 127]
                   1362: ? polredabs(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
                   1363: x^5 - x^4 + 2*x^3 - 4*x^2 + x - 1
                   1364: ? polredabs(x^5-2*x^4-4*x^3-96*x^2-352*x-568,1)
                   1365: [x^5 - x^4 + 2*x^3 - 4*x^2 + x - 1, Mod(2*x^4 - x^3 + 3*x^2 - 3*x - 1, x^5 -
                   1366:  x^4 + 2*x^3 - 4*x^2 + x - 1)]
                   1367: ? polredord(x^3-12*x+45*x-1)
                   1368: [x - 1, x^3 - 363*x - 2663, x^3 + 33*x - 1]
                   1369: ? polsubcyclo(31,5)
                   1370: x^5 + x^4 - 12*x^3 - 21*x^2 + x + 5
                   1371: ? setrand(1);poltschirnhaus(x^5-x-1)
                   1372: x^5 - 15*x^4 + 88*x^3 - 278*x^2 + 452*x - 289
                   1373: ? aa=rnfpseudobasis(nf2,p)
                   1374: [[[1, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [-2, 0, 0]~, [11, 0, 0]~; [0, 0, 0]~,
                   1375: [1, 0, 0]~, [0, 0, 0]~, [2, 0, 0]~, [-8, 0, 0]~; [0, 0, 0]~, [0, 0, 0]~, [1,
                   1376:  0, 0]~, [1, 0, 0]~, [4, 0, 0]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [1, 0,
                   1377: 0]~, [-2, 0, 0]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [1, 0, 0]~
                   1378: ], [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1
                   1379: , 0; 0, 0, 1], [1, 0, 3/5; 0, 1, 2/5; 0, 0, 1/5], [1, 0, 8/25; 0, 1, 22/25;
                   1380: 0, 0, 1/25]], [416134375, 212940625, 388649575; 0, 3125, 550; 0, 0, 25], [-1
                   1381: 280, 5, 5]~]
                   1382: ? rnfbasis(bnf2,aa)
                   1383:
                   1384: [[1, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [4/5, -4/5, -2/5]~ [187/25, 208/25, -61/25
                   1385: ]~]
                   1386:
                   1387: [[0, 0, 0]~ [1, 0, 0]~ [0, 0, 0]~ [-4/5, 4/5, 2/5]~ [-196/25, -214/25, 88/25
                   1388: ]~]
                   1389:
                   1390: [[0, 0, 0]~ [0, 0, 0]~ [1, 0, 0]~ [-2/5, 2/5, 1/5]~ [-122/25, -123/25, 116/2
                   1391: 5]~]
                   1392:
                   1393: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [-2/5, 2/5, 1/5]~ [-104/25, -111/25, 62/25
                   1394: ]~]
                   1395:
                   1396: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [-3/25, -2/25, 9/25]~]
                   1397:
                   1398: ? rnfdisc(nf2,p)
                   1399: [[416134375, 212940625, 388649575; 0, 3125, 550; 0, 0, 25], [-1280, 5, 5]~]
                   1400: ? rnfequation(nf2,p)
                   1401: x^15 - 15*x^11 + 75*x^7 - x^5 - 125*x^3 + 5*x + 1
                   1402: ? rnfequation(nf2,p,1)
                   1403: [x^15 - 15*x^11 + 75*x^7 - x^5 - 125*x^3 + 5*x + 1, Mod(-x^5 + 5*x, x^15 - 1
                   1404: 5*x^11 + 75*x^7 - x^5 - 125*x^3 + 5*x + 1), 0]
                   1405: ? rnfhnfbasis(bnf2,aa)
                   1406:
                   1407: [[1, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [-2/5, 2/5, -4/5]~ [11/25, 99/25, -33/25]~
                   1408: ]
                   1409:
                   1410: [[0, 0, 0]~ [1, 0, 0]~ [0, 0, 0]~ [2/5, -2/5, 4/5]~ [-8/25, -72/25, 24/25]~]
                   1411:
                   1412: [[0, 0, 0]~ [0, 0, 0]~ [1, 0, 0]~ [1/5, -1/5, 2/5]~ [4/25, 36/25, -12/25]~]
                   1413:
                   1414: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [1/5, -1/5, 2/5]~ [-2/25, -18/25, 6/25]~]
                   1415:
                   1416: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [1/25, 9/25, -3/25]~]
                   1417:
                   1418: ? rnfisfree(bnf2,aa)
                   1419: 1
                   1420: ? rnfsteinitz(nf2,aa)
                   1421: [[[1, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [4/5, -4/5, -2/5]~, [39/125, 11/125, 1
                   1422: 1/125]~; [0, 0, 0]~, [1, 0, 0]~, [0, 0, 0]~, [-4/5, 4/5, 2/5]~, [-42/125, -8
                   1423: /125, -8/125]~; [0, 0, 0]~, [0, 0, 0]~, [1, 0, 0]~, [-2/5, 2/5, 1/5]~, [-29/
                   1424: 125, 4/125, 4/125]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [-2/5, 2/5, 1/5]~,
                   1425: [-23/125, -2/125, -2/125]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~,
                   1426: [-1/125, 1/125, 1/125]~], [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0
                   1427: , 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [125, 0,
                   1428: 108; 0, 125, 22; 0, 0, 1]], [416134375, 212940625, 388649575; 0, 3125, 550;
                   1429: 0, 0, 25], [-1280, 5, 5]~]
                   1430: ? nfz=zetakinit(x^2-2);
                   1431: ? zetak(nfz,-3)
                   1432: 0.091666666666666666666666666666666666666
                   1433: ? zetak(nfz,1.5+3*I)
                   1434: 0.88324345992059326405525724366416928890 - 0.2067536250233895222724230899142
                   1435: 7938845*I
                   1436: ? setrand(1);quadclassunit(1-10^7,,[1,1])
                   1437:   ***   Warning: not a fundamental discriminant in quadclassunit.
                   1438: [2416, [1208, 2], [Qfb(277, 55, 9028), Qfb(1700, 1249, 1700)], 1, 0.99984980
                   1439: 753776002339750644800000000000]
                   1440: ? setrand(1);quadclassunit(10^9-3,,[0.5,0.5])
                   1441: [4, [4], [Qfb(3, 1, -83333333, 0.E-48)], 2800.625251907016076486370621737074
                   1442: 5513, 0.99903694589643832327024650000000000000]
                   1443: ? sizebyte(%)
                   1444: 176
                   1445: ? getheap
                   1446: [197, 135005]
                   1447: ? print("Total time spent: ",gettime);
                   1448: Total time spent: 8590
                   1449: ? \q

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>