Annotation of OpenXM_contrib/pari/src/test/32/number, Revision 1.1
1.1 ! maekawa 1: realprecision = 38 significant digits
! 2: echo = 1 (on)
! 3: ? addprimes([nextprime(10^9),nextprime(10^10)])
! 4: [1000000007, 10000000019]
! 5: ? bestappr(Pi,10000)
! 6: 355/113
! 7: ? bezout(123456789,987654321)
! 8: [-8, 1, 9]
! 9: ? bigomega(12345678987654321)
! 10: 8
! 11: ? binomial(1.1,5)
! 12: -0.0045457499999999999999999999999999999997
! 13: ? chinese(Mod(7,15),Mod(13,21))
! 14: Mod(97, 105)
! 15: ? content([123,456,789,234])
! 16: 3
! 17: ? contfrac(Pi)
! 18: [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1
! 19: , 1, 15, 3, 13, 1, 4, 2, 6, 6]
! 20: ? contfrac(Pi,5)
! 21: [3, 7, 15, 1, 292]
! 22: ? contfrac((exp(1)-1)/(exp(1)+1),[1,3,5,7,9])
! 23: [0, 6, 10, 42, 30]
! 24: ? contfracpnqn([2,6,10,14,18,22,26])
! 25:
! 26: [19318376 741721]
! 27:
! 28: [8927353 342762]
! 29:
! 30: ? contfracpnqn([1,1,1,1,1,1,1,1;1,1,1,1,1,1,1,1])
! 31:
! 32: [34 21]
! 33:
! 34: [21 13]
! 35:
! 36: ? core(54713282649239)
! 37: 5471
! 38: ? core(54713282649239,1)
! 39: [5471, 100003]
! 40: ? coredisc(54713282649239)
! 41: 21884
! 42: ? coredisc(54713282649239,1)
! 43: [21884, 100003/2]
! 44: ? divisors(8!)
! 45: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32,
! 46: 35, 36, 40, 42, 45, 48, 56, 60, 63, 64, 70, 72, 80, 84, 90, 96, 105, 112, 12
! 47: 0, 126, 128, 140, 144, 160, 168, 180, 192, 210, 224, 240, 252, 280, 288, 315
! 48: , 320, 336, 360, 384, 420, 448, 480, 504, 560, 576, 630, 640, 672, 720, 840,
! 49: 896, 960, 1008, 1120, 1152, 1260, 1344, 1440, 1680, 1920, 2016, 2240, 2520,
! 50: 2688, 2880, 3360, 4032, 4480, 5040, 5760, 6720, 8064, 10080, 13440, 20160,
! 51: 40320]
! 52: ? eulerphi(257^2)
! 53: 65792
! 54: ? factor(17!+1)
! 55:
! 56: [661 1]
! 57:
! 58: [537913 1]
! 59:
! 60: [1000357 1]
! 61:
! 62: ? factor(100!+1,0)
! 63:
! 64: [101 1]
! 65:
! 66: [14303 1]
! 67:
! 68: [149239 1]
! 69:
! 70: [432885273849892962613071800918658949059679308685024481795740765527568493010
! 71: 727023757461397498800981521440877813288657839195622497225621499427628453 1]
! 72:
! 73: ? factor(40!+1,100000)
! 74:
! 75: [41 1]
! 76:
! 77: [59 1]
! 78:
! 79: [277 1]
! 80:
! 81: [1217669507565553887239873369513188900554127 1]
! 82:
! 83: ? factorback(factor(12354545545))
! 84: 12354545545
! 85: ? factorcantor(x^11+1,7)
! 86:
! 87: [Mod(1, 7)*x + Mod(1, 7) 1]
! 88:
! 89: [Mod(1, 7)*x^10 + Mod(6, 7)*x^9 + Mod(1, 7)*x^8 + Mod(6, 7)*x^7 + Mod(1, 7)*
! 90: x^6 + Mod(6, 7)*x^5 + Mod(1, 7)*x^4 + Mod(6, 7)*x^3 + Mod(1, 7)*x^2 + Mod(6,
! 91: 7)*x + Mod(1, 7) 1]
! 92:
! 93: ? centerlift(lift(factorff(x^3+x^2+x-1,3,t^3+t^2+t-1)))
! 94:
! 95: [x - t 1]
! 96:
! 97: [x + (t^2 + t - 1) 1]
! 98:
! 99: [x + (-t^2 - 1) 1]
! 100:
! 101: ? 10!
! 102: 3628800
! 103: ? factorial(10)
! 104: 3628800.0000000000000000000000000000000
! 105: ? factormod(x^11+1,7)
! 106:
! 107: [Mod(1, 7)*x + Mod(1, 7) 1]
! 108:
! 109: [Mod(1, 7)*x^10 + Mod(6, 7)*x^9 + Mod(1, 7)*x^8 + Mod(6, 7)*x^7 + Mod(1, 7)*
! 110: x^6 + Mod(6, 7)*x^5 + Mod(1, 7)*x^4 + Mod(6, 7)*x^3 + Mod(1, 7)*x^2 + Mod(6,
! 111: 7)*x + Mod(1, 7) 1]
! 112:
! 113: ? factormod(x^11+1,7,1)
! 114:
! 115: [1 1]
! 116:
! 117: [10 1]
! 118:
! 119: ? ffinit(2,11)
! 120: Mod(1, 2)*x^11 + Mod(1, 2)*x^2 + Mod(1, 2)
! 121: ? ffinit(7,4)
! 122: Mod(1, 7)*x^4 + Mod(1, 7)*x + Mod(1, 7)
! 123: ? fibonacci(100)
! 124: 354224848179261915075
! 125: ? gcd(12345678,87654321)
! 126: 9
! 127: ? gcd(x^10-1,x^15-1,2)
! 128: x^5 - 1
! 129: ? hilbert(2/3,3/4,5)
! 130: 1
! 131: ? hilbert(Mod(5,7),Mod(6,7))
! 132: 1
! 133: ? isfundamental(12345)
! 134: 1
! 135: ? isprime(12345678901234567)
! 136: 0
! 137: ? ispseudoprime(73!+1)
! 138: 1
! 139: ? issquare(12345678987654321)
! 140: 1
! 141: ? issquarefree(123456789876543219)
! 142: 0
! 143: ? kronecker(5,7)
! 144: -1
! 145: ? kronecker(3,18)
! 146: 0
! 147: ? lcm(15,-21)
! 148: 105
! 149: ? lift(chinese(Mod(7,15),Mod(4,21)))
! 150: 67
! 151: ? modreverse(Mod(x^2+1,x^3-x-1))
! 152: Mod(x^2 - 3*x + 2, x^3 - 5*x^2 + 8*x - 5)
! 153: ? moebius(3*5*7*11*13)
! 154: -1
! 155: ? nextprime(100000000000000000000000)
! 156: 100000000000000000000117
! 157: ? numdiv(2^99*3^49)
! 158: 5000
! 159: ? omega(100!)
! 160: 25
! 161: ? precprime(100000000000000000000000)
! 162: 99999999999999999999977
! 163: ? prime(100)
! 164: 541
! 165: ? primes(100)
! 166: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
! 167: 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
! 168: 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 2
! 169: 39, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 33
! 170: 1, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421
! 171: , 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,
! 172: 521, 523, 541]
! 173: ? qfbclassno(-12391)
! 174: 63
! 175: ? qfbclassno(1345)
! 176: 6
! 177: ? qfbclassno(-12391,1)
! 178: 63
! 179: ? qfbclassno(1345,1)
! 180: 6
! 181: ? Qfb(2,1,3)*Qfb(2,1,3)
! 182: Qfb(2, -1, 3)
! 183: ? qfbcompraw(Qfb(5,3,-1,0.),Qfb(7,1,-1,0.))
! 184: Qfb(35, 43, 13, 0.E-38)
! 185: ? qfbhclassno(2000003)
! 186: 357
! 187: ? qfbnucomp(Qfb(2,1,9),Qfb(4,3,5),3)
! 188: Qfb(2, -1, 9)
! 189: ? form=Qfb(2,1,9);qfbnucomp(form,form,3)
! 190: Qfb(4, -3, 5)
! 191: ? qfbnupow(form,111)
! 192: Qfb(2, -1, 9)
! 193: ? qfbpowraw(Qfb(5,3,-1,0.),3)
! 194: Qfb(125, 23, 1, 0.E-38)
! 195: ? qfbprimeform(-44,3)
! 196: Qfb(3, 2, 4)
! 197: ? qfbred(Qfb(3,10,12),,-1)
! 198: Qfb(3, -2, 4)
! 199: ? qfbred(Qfb(3,10,-20,1.5))
! 200: Qfb(3, 16, -7, 1.5000000000000000000000000000000000000)
! 201: ? qfbred(Qfb(3,10,-20,1.5),2,,18)
! 202: Qfb(3, 16, -7, 1.5000000000000000000000000000000000000)
! 203: ? qfbred(Qfb(3,10,-20,1.5),1)
! 204: Qfb(-20, -10, 3, 2.1074451073987839947135880252731470615)
! 205: ? qfbred(Qfb(3,10,-20,1.5),3,,18)
! 206: Qfb(-20, -10, 3, 1.5000000000000000000000000000000000000)
! 207: ? quaddisc(-252)
! 208: -7
! 209: ? quadgen(-11)
! 210: w
! 211: ? quadpoly(-11)
! 212: x^2 - x + 3
! 213: ? quadregulator(17)
! 214: 2.0947125472611012942448228460655286534
! 215: ? quadunit(17)
! 216: 3 + 2*w
! 217: ? sigma(100)
! 218: 217
! 219: ? sigma(100,2)
! 220: 13671
! 221: ? sigma(100,-3)
! 222: 1149823/1000000
! 223: ? sqrtint(10!^2+1)
! 224: 3628800
! 225: ? znorder(Mod(33,2^16+1))
! 226: 2048
! 227: ? forprime(p=2,100,print(p," ",lift(znprimroot(p))))
! 228: 2 1
! 229: 3 2
! 230: 5 2
! 231: 7 3
! 232: 11 2
! 233: 13 2
! 234: 17 3
! 235: 19 2
! 236: 23 5
! 237: 29 2
! 238: 31 3
! 239: 37 2
! 240: 41 6
! 241: 43 3
! 242: 47 5
! 243: 53 2
! 244: 59 2
! 245: 61 2
! 246: 67 2
! 247: 71 7
! 248: 73 5
! 249: 79 3
! 250: 83 2
! 251: 89 3
! 252: 97 5
! 253: ? znstar(3120)
! 254: [768, [12, 4, 4, 2, 2], [Mod(67, 3120), Mod(2341, 3120), Mod(1847, 3120), Mo
! 255: d(391, 3120), Mod(2081, 3120)]]
! 256: ? getheap
! 257: [85, 2647]
! 258: ? print("Total time spent: ",gettime);
! 259: Total time spent: 932
! 260: ? \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>