Annotation of OpenXM_contrib/pari/src/test/32/number, Revision 1.1.1.1
1.1 maekawa 1: realprecision = 38 significant digits
2: echo = 1 (on)
3: ? addprimes([nextprime(10^9),nextprime(10^10)])
4: [1000000007, 10000000019]
5: ? bestappr(Pi,10000)
6: 355/113
7: ? bezout(123456789,987654321)
8: [-8, 1, 9]
9: ? bigomega(12345678987654321)
10: 8
11: ? binomial(1.1,5)
12: -0.0045457499999999999999999999999999999997
13: ? chinese(Mod(7,15),Mod(13,21))
14: Mod(97, 105)
15: ? content([123,456,789,234])
16: 3
17: ? contfrac(Pi)
18: [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1
19: , 1, 15, 3, 13, 1, 4, 2, 6, 6]
20: ? contfrac(Pi,5)
21: [3, 7, 15, 1, 292]
22: ? contfrac((exp(1)-1)/(exp(1)+1),[1,3,5,7,9])
23: [0, 6, 10, 42, 30]
24: ? contfracpnqn([2,6,10,14,18,22,26])
25:
26: [19318376 741721]
27:
28: [8927353 342762]
29:
30: ? contfracpnqn([1,1,1,1,1,1,1,1;1,1,1,1,1,1,1,1])
31:
32: [34 21]
33:
34: [21 13]
35:
36: ? core(54713282649239)
37: 5471
38: ? core(54713282649239,1)
39: [5471, 100003]
40: ? coredisc(54713282649239)
41: 21884
42: ? coredisc(54713282649239,1)
43: [21884, 100003/2]
44: ? divisors(8!)
45: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32,
46: 35, 36, 40, 42, 45, 48, 56, 60, 63, 64, 70, 72, 80, 84, 90, 96, 105, 112, 12
47: 0, 126, 128, 140, 144, 160, 168, 180, 192, 210, 224, 240, 252, 280, 288, 315
48: , 320, 336, 360, 384, 420, 448, 480, 504, 560, 576, 630, 640, 672, 720, 840,
49: 896, 960, 1008, 1120, 1152, 1260, 1344, 1440, 1680, 1920, 2016, 2240, 2520,
50: 2688, 2880, 3360, 4032, 4480, 5040, 5760, 6720, 8064, 10080, 13440, 20160,
51: 40320]
52: ? eulerphi(257^2)
53: 65792
54: ? factor(17!+1)
55:
56: [661 1]
57:
58: [537913 1]
59:
60: [1000357 1]
61:
62: ? factor(100!+1,0)
63:
64: [101 1]
65:
66: [14303 1]
67:
68: [149239 1]
69:
70: [432885273849892962613071800918658949059679308685024481795740765527568493010
71: 727023757461397498800981521440877813288657839195622497225621499427628453 1]
72:
73: ? factor(40!+1,100000)
74:
75: [41 1]
76:
77: [59 1]
78:
79: [277 1]
80:
81: [1217669507565553887239873369513188900554127 1]
82:
83: ? factorback(factor(12354545545))
84: 12354545545
85: ? factorcantor(x^11+1,7)
86:
87: [Mod(1, 7)*x + Mod(1, 7) 1]
88:
89: [Mod(1, 7)*x^10 + Mod(6, 7)*x^9 + Mod(1, 7)*x^8 + Mod(6, 7)*x^7 + Mod(1, 7)*
90: x^6 + Mod(6, 7)*x^5 + Mod(1, 7)*x^4 + Mod(6, 7)*x^3 + Mod(1, 7)*x^2 + Mod(6,
91: 7)*x + Mod(1, 7) 1]
92:
93: ? centerlift(lift(factorff(x^3+x^2+x-1,3,t^3+t^2+t-1)))
94:
95: [x - t 1]
96:
97: [x + (t^2 + t - 1) 1]
98:
99: [x + (-t^2 - 1) 1]
100:
101: ? 10!
102: 3628800
103: ? factorial(10)
104: 3628800.0000000000000000000000000000000
105: ? factormod(x^11+1,7)
106:
107: [Mod(1, 7)*x + Mod(1, 7) 1]
108:
109: [Mod(1, 7)*x^10 + Mod(6, 7)*x^9 + Mod(1, 7)*x^8 + Mod(6, 7)*x^7 + Mod(1, 7)*
110: x^6 + Mod(6, 7)*x^5 + Mod(1, 7)*x^4 + Mod(6, 7)*x^3 + Mod(1, 7)*x^2 + Mod(6,
111: 7)*x + Mod(1, 7) 1]
112:
113: ? factormod(x^11+1,7,1)
114:
115: [1 1]
116:
117: [10 1]
118:
119: ? ffinit(2,11)
120: Mod(1, 2)*x^11 + Mod(1, 2)*x^2 + Mod(1, 2)
121: ? ffinit(7,4)
122: Mod(1, 7)*x^4 + Mod(1, 7)*x + Mod(1, 7)
123: ? fibonacci(100)
124: 354224848179261915075
125: ? gcd(12345678,87654321)
126: 9
127: ? gcd(x^10-1,x^15-1,2)
128: x^5 - 1
129: ? hilbert(2/3,3/4,5)
130: 1
131: ? hilbert(Mod(5,7),Mod(6,7))
132: 1
133: ? isfundamental(12345)
134: 1
135: ? isprime(12345678901234567)
136: 0
137: ? ispseudoprime(73!+1)
138: 1
139: ? issquare(12345678987654321)
140: 1
141: ? issquarefree(123456789876543219)
142: 0
143: ? kronecker(5,7)
144: -1
145: ? kronecker(3,18)
146: 0
147: ? lcm(15,-21)
148: 105
149: ? lift(chinese(Mod(7,15),Mod(4,21)))
150: 67
151: ? modreverse(Mod(x^2+1,x^3-x-1))
152: Mod(x^2 - 3*x + 2, x^3 - 5*x^2 + 8*x - 5)
153: ? moebius(3*5*7*11*13)
154: -1
155: ? nextprime(100000000000000000000000)
156: 100000000000000000000117
157: ? numdiv(2^99*3^49)
158: 5000
159: ? omega(100!)
160: 25
161: ? precprime(100000000000000000000000)
162: 99999999999999999999977
163: ? prime(100)
164: 541
165: ? primes(100)
166: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
167: 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
168: 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 2
169: 39, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 33
170: 1, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421
171: , 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,
172: 521, 523, 541]
173: ? qfbclassno(-12391)
174: 63
175: ? qfbclassno(1345)
176: 6
177: ? qfbclassno(-12391,1)
178: 63
179: ? qfbclassno(1345,1)
180: 6
181: ? Qfb(2,1,3)*Qfb(2,1,3)
182: Qfb(2, -1, 3)
183: ? qfbcompraw(Qfb(5,3,-1,0.),Qfb(7,1,-1,0.))
184: Qfb(35, 43, 13, 0.E-38)
185: ? qfbhclassno(2000003)
186: 357
187: ? qfbnucomp(Qfb(2,1,9),Qfb(4,3,5),3)
188: Qfb(2, -1, 9)
189: ? form=Qfb(2,1,9);qfbnucomp(form,form,3)
190: Qfb(4, -3, 5)
191: ? qfbnupow(form,111)
192: Qfb(2, -1, 9)
193: ? qfbpowraw(Qfb(5,3,-1,0.),3)
194: Qfb(125, 23, 1, 0.E-38)
195: ? qfbprimeform(-44,3)
196: Qfb(3, 2, 4)
197: ? qfbred(Qfb(3,10,12),,-1)
198: Qfb(3, -2, 4)
199: ? qfbred(Qfb(3,10,-20,1.5))
200: Qfb(3, 16, -7, 1.5000000000000000000000000000000000000)
201: ? qfbred(Qfb(3,10,-20,1.5),2,,18)
202: Qfb(3, 16, -7, 1.5000000000000000000000000000000000000)
203: ? qfbred(Qfb(3,10,-20,1.5),1)
204: Qfb(-20, -10, 3, 2.1074451073987839947135880252731470615)
205: ? qfbred(Qfb(3,10,-20,1.5),3,,18)
206: Qfb(-20, -10, 3, 1.5000000000000000000000000000000000000)
207: ? quaddisc(-252)
208: -7
209: ? quadgen(-11)
210: w
211: ? quadpoly(-11)
212: x^2 - x + 3
213: ? quadregulator(17)
214: 2.0947125472611012942448228460655286534
215: ? quadunit(17)
216: 3 + 2*w
217: ? sigma(100)
218: 217
219: ? sigma(100,2)
220: 13671
221: ? sigma(100,-3)
222: 1149823/1000000
223: ? sqrtint(10!^2+1)
224: 3628800
225: ? znorder(Mod(33,2^16+1))
226: 2048
227: ? forprime(p=2,100,print(p," ",lift(znprimroot(p))))
228: 2 1
229: 3 2
230: 5 2
231: 7 3
232: 11 2
233: 13 2
234: 17 3
235: 19 2
236: 23 5
237: 29 2
238: 31 3
239: 37 2
240: 41 6
241: 43 3
242: 47 5
243: 53 2
244: 59 2
245: 61 2
246: 67 2
247: 71 7
248: 73 5
249: 79 3
250: 83 2
251: 89 3
252: 97 5
253: ? znstar(3120)
254: [768, [12, 4, 4, 2, 2], [Mod(67, 3120), Mod(2341, 3120), Mod(1847, 3120), Mo
255: d(391, 3120), Mod(2081, 3120)]]
256: ? getheap
257: [85, 2647]
258: ? print("Total time spent: ",gettime);
259: Total time spent: 932
260: ? \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>