[BACK]Return to number CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari / src / test / 32

Annotation of OpenXM_contrib/pari/src/test/32/number, Revision 1.1.1.1

1.1       maekawa     1:    realprecision = 38 significant digits
                      2:    echo = 1 (on)
                      3: ? addprimes([nextprime(10^9),nextprime(10^10)])
                      4: [1000000007, 10000000019]
                      5: ? bestappr(Pi,10000)
                      6: 355/113
                      7: ? bezout(123456789,987654321)
                      8: [-8, 1, 9]
                      9: ? bigomega(12345678987654321)
                     10: 8
                     11: ? binomial(1.1,5)
                     12: -0.0045457499999999999999999999999999999997
                     13: ? chinese(Mod(7,15),Mod(13,21))
                     14: Mod(97, 105)
                     15: ? content([123,456,789,234])
                     16: 3
                     17: ? contfrac(Pi)
                     18: [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1
                     19: , 1, 15, 3, 13, 1, 4, 2, 6, 6]
                     20: ? contfrac(Pi,5)
                     21: [3, 7, 15, 1, 292]
                     22: ? contfrac((exp(1)-1)/(exp(1)+1),[1,3,5,7,9])
                     23: [0, 6, 10, 42, 30]
                     24: ? contfracpnqn([2,6,10,14,18,22,26])
                     25:
                     26: [19318376 741721]
                     27:
                     28: [8927353 342762]
                     29:
                     30: ? contfracpnqn([1,1,1,1,1,1,1,1;1,1,1,1,1,1,1,1])
                     31:
                     32: [34 21]
                     33:
                     34: [21 13]
                     35:
                     36: ? core(54713282649239)
                     37: 5471
                     38: ? core(54713282649239,1)
                     39: [5471, 100003]
                     40: ? coredisc(54713282649239)
                     41: 21884
                     42: ? coredisc(54713282649239,1)
                     43: [21884, 100003/2]
                     44: ? divisors(8!)
                     45: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32,
                     46: 35, 36, 40, 42, 45, 48, 56, 60, 63, 64, 70, 72, 80, 84, 90, 96, 105, 112, 12
                     47: 0, 126, 128, 140, 144, 160, 168, 180, 192, 210, 224, 240, 252, 280, 288, 315
                     48: , 320, 336, 360, 384, 420, 448, 480, 504, 560, 576, 630, 640, 672, 720, 840,
                     49:  896, 960, 1008, 1120, 1152, 1260, 1344, 1440, 1680, 1920, 2016, 2240, 2520,
                     50:  2688, 2880, 3360, 4032, 4480, 5040, 5760, 6720, 8064, 10080, 13440, 20160,
                     51: 40320]
                     52: ? eulerphi(257^2)
                     53: 65792
                     54: ? factor(17!+1)
                     55:
                     56: [661 1]
                     57:
                     58: [537913 1]
                     59:
                     60: [1000357 1]
                     61:
                     62: ? factor(100!+1,0)
                     63:
                     64: [101 1]
                     65:
                     66: [14303 1]
                     67:
                     68: [149239 1]
                     69:
                     70: [432885273849892962613071800918658949059679308685024481795740765527568493010
                     71: 727023757461397498800981521440877813288657839195622497225621499427628453 1]
                     72:
                     73: ? factor(40!+1,100000)
                     74:
                     75: [41 1]
                     76:
                     77: [59 1]
                     78:
                     79: [277 1]
                     80:
                     81: [1217669507565553887239873369513188900554127 1]
                     82:
                     83: ? factorback(factor(12354545545))
                     84: 12354545545
                     85: ? factorcantor(x^11+1,7)
                     86:
                     87: [Mod(1, 7)*x + Mod(1, 7) 1]
                     88:
                     89: [Mod(1, 7)*x^10 + Mod(6, 7)*x^9 + Mod(1, 7)*x^8 + Mod(6, 7)*x^7 + Mod(1, 7)*
                     90: x^6 + Mod(6, 7)*x^5 + Mod(1, 7)*x^4 + Mod(6, 7)*x^3 + Mod(1, 7)*x^2 + Mod(6,
                     91:  7)*x + Mod(1, 7) 1]
                     92:
                     93: ? centerlift(lift(factorff(x^3+x^2+x-1,3,t^3+t^2+t-1)))
                     94:
                     95: [x - t 1]
                     96:
                     97: [x + (t^2 + t - 1) 1]
                     98:
                     99: [x + (-t^2 - 1) 1]
                    100:
                    101: ? 10!
                    102: 3628800
                    103: ? factorial(10)
                    104: 3628800.0000000000000000000000000000000
                    105: ? factormod(x^11+1,7)
                    106:
                    107: [Mod(1, 7)*x + Mod(1, 7) 1]
                    108:
                    109: [Mod(1, 7)*x^10 + Mod(6, 7)*x^9 + Mod(1, 7)*x^8 + Mod(6, 7)*x^7 + Mod(1, 7)*
                    110: x^6 + Mod(6, 7)*x^5 + Mod(1, 7)*x^4 + Mod(6, 7)*x^3 + Mod(1, 7)*x^2 + Mod(6,
                    111:  7)*x + Mod(1, 7) 1]
                    112:
                    113: ? factormod(x^11+1,7,1)
                    114:
                    115: [1 1]
                    116:
                    117: [10 1]
                    118:
                    119: ? ffinit(2,11)
                    120: Mod(1, 2)*x^11 + Mod(1, 2)*x^2 + Mod(1, 2)
                    121: ? ffinit(7,4)
                    122: Mod(1, 7)*x^4 + Mod(1, 7)*x + Mod(1, 7)
                    123: ? fibonacci(100)
                    124: 354224848179261915075
                    125: ? gcd(12345678,87654321)
                    126: 9
                    127: ? gcd(x^10-1,x^15-1,2)
                    128: x^5 - 1
                    129: ? hilbert(2/3,3/4,5)
                    130: 1
                    131: ? hilbert(Mod(5,7),Mod(6,7))
                    132: 1
                    133: ? isfundamental(12345)
                    134: 1
                    135: ? isprime(12345678901234567)
                    136: 0
                    137: ? ispseudoprime(73!+1)
                    138: 1
                    139: ? issquare(12345678987654321)
                    140: 1
                    141: ? issquarefree(123456789876543219)
                    142: 0
                    143: ? kronecker(5,7)
                    144: -1
                    145: ? kronecker(3,18)
                    146: 0
                    147: ? lcm(15,-21)
                    148: 105
                    149: ? lift(chinese(Mod(7,15),Mod(4,21)))
                    150: 67
                    151: ? modreverse(Mod(x^2+1,x^3-x-1))
                    152: Mod(x^2 - 3*x + 2, x^3 - 5*x^2 + 8*x - 5)
                    153: ? moebius(3*5*7*11*13)
                    154: -1
                    155: ? nextprime(100000000000000000000000)
                    156: 100000000000000000000117
                    157: ? numdiv(2^99*3^49)
                    158: 5000
                    159: ? omega(100!)
                    160: 25
                    161: ? precprime(100000000000000000000000)
                    162: 99999999999999999999977
                    163: ? prime(100)
                    164: 541
                    165: ? primes(100)
                    166: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
                    167:  73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
                    168: 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 2
                    169: 39, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 33
                    170: 1, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421
                    171: , 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,
                    172:  521, 523, 541]
                    173: ? qfbclassno(-12391)
                    174: 63
                    175: ? qfbclassno(1345)
                    176: 6
                    177: ? qfbclassno(-12391,1)
                    178: 63
                    179: ? qfbclassno(1345,1)
                    180: 6
                    181: ? Qfb(2,1,3)*Qfb(2,1,3)
                    182: Qfb(2, -1, 3)
                    183: ? qfbcompraw(Qfb(5,3,-1,0.),Qfb(7,1,-1,0.))
                    184: Qfb(35, 43, 13, 0.E-38)
                    185: ? qfbhclassno(2000003)
                    186: 357
                    187: ? qfbnucomp(Qfb(2,1,9),Qfb(4,3,5),3)
                    188: Qfb(2, -1, 9)
                    189: ? form=Qfb(2,1,9);qfbnucomp(form,form,3)
                    190: Qfb(4, -3, 5)
                    191: ? qfbnupow(form,111)
                    192: Qfb(2, -1, 9)
                    193: ? qfbpowraw(Qfb(5,3,-1,0.),3)
                    194: Qfb(125, 23, 1, 0.E-38)
                    195: ? qfbprimeform(-44,3)
                    196: Qfb(3, 2, 4)
                    197: ? qfbred(Qfb(3,10,12),,-1)
                    198: Qfb(3, -2, 4)
                    199: ? qfbred(Qfb(3,10,-20,1.5))
                    200: Qfb(3, 16, -7, 1.5000000000000000000000000000000000000)
                    201: ? qfbred(Qfb(3,10,-20,1.5),2,,18)
                    202: Qfb(3, 16, -7, 1.5000000000000000000000000000000000000)
                    203: ? qfbred(Qfb(3,10,-20,1.5),1)
                    204: Qfb(-20, -10, 3, 2.1074451073987839947135880252731470615)
                    205: ? qfbred(Qfb(3,10,-20,1.5),3,,18)
                    206: Qfb(-20, -10, 3, 1.5000000000000000000000000000000000000)
                    207: ? quaddisc(-252)
                    208: -7
                    209: ? quadgen(-11)
                    210: w
                    211: ? quadpoly(-11)
                    212: x^2 - x + 3
                    213: ? quadregulator(17)
                    214: 2.0947125472611012942448228460655286534
                    215: ? quadunit(17)
                    216: 3 + 2*w
                    217: ? sigma(100)
                    218: 217
                    219: ? sigma(100,2)
                    220: 13671
                    221: ? sigma(100,-3)
                    222: 1149823/1000000
                    223: ? sqrtint(10!^2+1)
                    224: 3628800
                    225: ? znorder(Mod(33,2^16+1))
                    226: 2048
                    227: ? forprime(p=2,100,print(p," ",lift(znprimroot(p))))
                    228: 2 1
                    229: 3 2
                    230: 5 2
                    231: 7 3
                    232: 11 2
                    233: 13 2
                    234: 17 3
                    235: 19 2
                    236: 23 5
                    237: 29 2
                    238: 31 3
                    239: 37 2
                    240: 41 6
                    241: 43 3
                    242: 47 5
                    243: 53 2
                    244: 59 2
                    245: 61 2
                    246: 67 2
                    247: 71 7
                    248: 73 5
                    249: 79 3
                    250: 83 2
                    251: 89 3
                    252: 97 5
                    253: ? znstar(3120)
                    254: [768, [12, 4, 4, 2, 2], [Mod(67, 3120), Mod(2341, 3120), Mod(1847, 3120), Mo
                    255: d(391, 3120), Mod(2081, 3120)]]
                    256: ? getheap
                    257: [85, 2647]
                    258: ? print("Total time spent: ",gettime);
                    259: Total time spent: 932
                    260: ? \q

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>