Annotation of OpenXM_contrib/pari/src/test/32/objets, Revision 1.1
1.1 ! maekawa 1: realprecision = 38 significant digits
! 2: echo = 1 (on)
! 3: ? +3
! 4: 3
! 5: ? -5
! 6: -5
! 7: ? 5+3
! 8: 8
! 9: ? 5-3
! 10: 2
! 11: ? 5/3
! 12: 5/3
! 13: ? 5\3
! 14: 1
! 15: ? 5\/3
! 16: 2
! 17: ? 5%3
! 18: 2
! 19: ? 5^3
! 20: 125
! 21: ? binary(65537)
! 22: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
! 23: ? bittest(10^100,100)
! 24: 1
! 25: ? ceil(-2.5)
! 26: -2
! 27: ? centerlift(Mod(456,555))
! 28: -99
! 29: ? component(1+O(7^4),3)
! 30: 1
! 31: ? conj(1+I)
! 32: 1 - I
! 33: ? conjvec(Mod(x^2+x+1,x^3-x-1))
! 34: [4.0795956234914387860104177508366260325, 0.46020218825428060699479112458168
! 35: 698369 + 0.18258225455744299269398828369501930573*I, 0.460202188254280606994
! 36: 79112458168698369 - 0.18258225455744299269398828369501930573*I]~
! 37: ? truncate(1.7,&e)
! 38: 1
! 39: ? e
! 40: -1
! 41: ? denominator(12345/54321)
! 42: 18107
! 43: ? divrem(345,123)
! 44: [2, 99]~
! 45: ? divrem(x^7-1,x^5+1)
! 46: [x^2, -x^2 - 1]~
! 47: ? floor(-1/2)
! 48: -1
! 49: ? floor(-2.5)
! 50: -3
! 51: ? frac(-2.7)
! 52: 0.30000000000000000000000000000000000000
! 53: ? I^2
! 54: -1
! 55: ? imag(2+3*I)
! 56: 3
! 57: ? lex([1,3],[1,3,5])
! 58: -1
! 59: ? max(2,3)
! 60: 3
! 61: ? min(2,3)
! 62: 2
! 63: ? Mod(-12,7)
! 64: Mod(2, 7)
! 65: ? Mod(-12,7,1)
! 66: Mod(2, 7)
! 67: ? Mod(10873,49649)^-1
! 68: *** impossible inverse modulo: Mod(131, 49649).
! 69:
! 70: ? norm(1+I)
! 71: 2
! 72: ? norm(Mod(x+5,x^3+x+1))
! 73: 129
! 74: ? numerator((x+1)/(x-1))
! 75: x + 1
! 76: ? 1/(1+x)+O(x^20)
! 77: 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 -
! 78: x^13 + x^14 - x^15 + x^16 - x^17 + x^18 - x^19 + O(x^20)
! 79: ? numtoperm(7,1035)
! 80: [4, 7, 1, 6, 3, 5, 2]
! 81: ? permtonum([4,7,1,6,3,5,2])
! 82: 1035
! 83: ? 37.
! 84: 37.000000000000000000000000000000000000
! 85: ? real(5-7*I)
! 86: 5
! 87: ? arat=(x^3+x+1)/x^3;type(arat,14)
! 88: (x^3 + x + 1)/x^3
! 89: ? shift(1,50)
! 90: 1125899906842624
! 91: ? shift([3,4,-11,-12],-2)
! 92: [0, 1, -2, -3]
! 93: ? shiftmul([3,4,-11,-12],-2)
! 94: [3/4, 1, -11/4, -3]
! 95: ? sign(-1)
! 96: -1
! 97: ? sign(0)
! 98: 0
! 99: ? sign(0.)
! 100: 0
! 101: ? simplify(((x+I+1)^2-x^2-2*x*(I+1))^2)
! 102: -4
! 103: ? sizedigit([1.3*10^5,2*I*Pi*exp(4*Pi)])
! 104: 7
! 105: ? truncate(-2.7)
! 106: -2
! 107: ? truncate(sin(x^2))
! 108: -1/5040*x^14 + 1/120*x^10 - 1/6*x^6 + x^2
! 109: ? type(Mod(x,x^2+1))
! 110: "t_POLMOD"
! 111: ? valuation(6^10000-1,5)
! 112: 5
! 113: ? \p57
! 114: realprecision = 57 significant digits
! 115: ? Pi
! 116: 3.14159265358979323846264338327950288419716939937510582097
! 117: ? \p38
! 118: realprecision = 38 significant digits
! 119: ? O(x^12)
! 120: O(x^12)
! 121: ? padicno=(5/3)*127+O(127^5)
! 122: 44*127 + 42*127^2 + 42*127^3 + 42*127^4 + O(127^5)
! 123: ? padicprec(padicno,127)
! 124: 5
! 125: ? length(divisors(1000))
! 126: 16
! 127: ? getheap
! 128: [65, 916]
! 129: ? print("Total time spent: ",gettime);
! 130: Total time spent: 51
! 131: ? \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>