[BACK]Return to objets CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari / src / test / 32

Annotation of OpenXM_contrib/pari/src/test/32/objets, Revision 1.1.1.1

1.1       maekawa     1:    realprecision = 38 significant digits
                      2:    echo = 1 (on)
                      3: ? +3
                      4: 3
                      5: ? -5
                      6: -5
                      7: ? 5+3
                      8: 8
                      9: ? 5-3
                     10: 2
                     11: ? 5/3
                     12: 5/3
                     13: ? 5\3
                     14: 1
                     15: ? 5\/3
                     16: 2
                     17: ? 5%3
                     18: 2
                     19: ? 5^3
                     20: 125
                     21: ? binary(65537)
                     22: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
                     23: ? bittest(10^100,100)
                     24: 1
                     25: ? ceil(-2.5)
                     26: -2
                     27: ? centerlift(Mod(456,555))
                     28: -99
                     29: ? component(1+O(7^4),3)
                     30: 1
                     31: ? conj(1+I)
                     32: 1 - I
                     33: ? conjvec(Mod(x^2+x+1,x^3-x-1))
                     34: [4.0795956234914387860104177508366260325, 0.46020218825428060699479112458168
                     35: 698369 + 0.18258225455744299269398828369501930573*I, 0.460202188254280606994
                     36: 79112458168698369 - 0.18258225455744299269398828369501930573*I]~
                     37: ? truncate(1.7,&e)
                     38: 1
                     39: ? e
                     40: -1
                     41: ? denominator(12345/54321)
                     42: 18107
                     43: ? divrem(345,123)
                     44: [2, 99]~
                     45: ? divrem(x^7-1,x^5+1)
                     46: [x^2, -x^2 - 1]~
                     47: ? floor(-1/2)
                     48: -1
                     49: ? floor(-2.5)
                     50: -3
                     51: ? frac(-2.7)
                     52: 0.30000000000000000000000000000000000000
                     53: ? I^2
                     54: -1
                     55: ? imag(2+3*I)
                     56: 3
                     57: ? lex([1,3],[1,3,5])
                     58: -1
                     59: ? max(2,3)
                     60: 3
                     61: ? min(2,3)
                     62: 2
                     63: ? Mod(-12,7)
                     64: Mod(2, 7)
                     65: ? Mod(-12,7,1)
                     66: Mod(2, 7)
                     67: ? Mod(10873,49649)^-1
                     68:   ***   impossible inverse modulo: Mod(131, 49649).
                     69:
                     70: ? norm(1+I)
                     71: 2
                     72: ? norm(Mod(x+5,x^3+x+1))
                     73: 129
                     74: ? numerator((x+1)/(x-1))
                     75: x + 1
                     76: ? 1/(1+x)+O(x^20)
                     77: 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 -
                     78:  x^13 + x^14 - x^15 + x^16 - x^17 + x^18 - x^19 + O(x^20)
                     79: ? numtoperm(7,1035)
                     80: [4, 7, 1, 6, 3, 5, 2]
                     81: ? permtonum([4,7,1,6,3,5,2])
                     82: 1035
                     83: ? 37.
                     84: 37.000000000000000000000000000000000000
                     85: ? real(5-7*I)
                     86: 5
                     87: ? arat=(x^3+x+1)/x^3;type(arat,14)
                     88: (x^3 + x + 1)/x^3
                     89: ? shift(1,50)
                     90: 1125899906842624
                     91: ? shift([3,4,-11,-12],-2)
                     92: [0, 1, -2, -3]
                     93: ? shiftmul([3,4,-11,-12],-2)
                     94: [3/4, 1, -11/4, -3]
                     95: ? sign(-1)
                     96: -1
                     97: ? sign(0)
                     98: 0
                     99: ? sign(0.)
                    100: 0
                    101: ? simplify(((x+I+1)^2-x^2-2*x*(I+1))^2)
                    102: -4
                    103: ? sizedigit([1.3*10^5,2*I*Pi*exp(4*Pi)])
                    104: 7
                    105: ? truncate(-2.7)
                    106: -2
                    107: ? truncate(sin(x^2))
                    108: -1/5040*x^14 + 1/120*x^10 - 1/6*x^6 + x^2
                    109: ? type(Mod(x,x^2+1))
                    110: "t_POLMOD"
                    111: ? valuation(6^10000-1,5)
                    112: 5
                    113: ? \p57
                    114:    realprecision = 57 significant digits
                    115: ? Pi
                    116: 3.14159265358979323846264338327950288419716939937510582097
                    117: ? \p38
                    118:    realprecision = 38 significant digits
                    119: ? O(x^12)
                    120: O(x^12)
                    121: ? padicno=(5/3)*127+O(127^5)
                    122: 44*127 + 42*127^2 + 42*127^3 + 42*127^4 + O(127^5)
                    123: ? padicprec(padicno,127)
                    124: 5
                    125: ? length(divisors(1000))
                    126: 16
                    127: ? getheap
                    128: [65, 916]
                    129: ? print("Total time spent: ",gettime);
                    130: Total time spent: 51
                    131: ? \q

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>