Annotation of OpenXM_contrib/pari/src/test/32/objets, Revision 1.1.1.1
1.1 maekawa 1: realprecision = 38 significant digits
2: echo = 1 (on)
3: ? +3
4: 3
5: ? -5
6: -5
7: ? 5+3
8: 8
9: ? 5-3
10: 2
11: ? 5/3
12: 5/3
13: ? 5\3
14: 1
15: ? 5\/3
16: 2
17: ? 5%3
18: 2
19: ? 5^3
20: 125
21: ? binary(65537)
22: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
23: ? bittest(10^100,100)
24: 1
25: ? ceil(-2.5)
26: -2
27: ? centerlift(Mod(456,555))
28: -99
29: ? component(1+O(7^4),3)
30: 1
31: ? conj(1+I)
32: 1 - I
33: ? conjvec(Mod(x^2+x+1,x^3-x-1))
34: [4.0795956234914387860104177508366260325, 0.46020218825428060699479112458168
35: 698369 + 0.18258225455744299269398828369501930573*I, 0.460202188254280606994
36: 79112458168698369 - 0.18258225455744299269398828369501930573*I]~
37: ? truncate(1.7,&e)
38: 1
39: ? e
40: -1
41: ? denominator(12345/54321)
42: 18107
43: ? divrem(345,123)
44: [2, 99]~
45: ? divrem(x^7-1,x^5+1)
46: [x^2, -x^2 - 1]~
47: ? floor(-1/2)
48: -1
49: ? floor(-2.5)
50: -3
51: ? frac(-2.7)
52: 0.30000000000000000000000000000000000000
53: ? I^2
54: -1
55: ? imag(2+3*I)
56: 3
57: ? lex([1,3],[1,3,5])
58: -1
59: ? max(2,3)
60: 3
61: ? min(2,3)
62: 2
63: ? Mod(-12,7)
64: Mod(2, 7)
65: ? Mod(-12,7,1)
66: Mod(2, 7)
67: ? Mod(10873,49649)^-1
68: *** impossible inverse modulo: Mod(131, 49649).
69:
70: ? norm(1+I)
71: 2
72: ? norm(Mod(x+5,x^3+x+1))
73: 129
74: ? numerator((x+1)/(x-1))
75: x + 1
76: ? 1/(1+x)+O(x^20)
77: 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 -
78: x^13 + x^14 - x^15 + x^16 - x^17 + x^18 - x^19 + O(x^20)
79: ? numtoperm(7,1035)
80: [4, 7, 1, 6, 3, 5, 2]
81: ? permtonum([4,7,1,6,3,5,2])
82: 1035
83: ? 37.
84: 37.000000000000000000000000000000000000
85: ? real(5-7*I)
86: 5
87: ? arat=(x^3+x+1)/x^3;type(arat,14)
88: (x^3 + x + 1)/x^3
89: ? shift(1,50)
90: 1125899906842624
91: ? shift([3,4,-11,-12],-2)
92: [0, 1, -2, -3]
93: ? shiftmul([3,4,-11,-12],-2)
94: [3/4, 1, -11/4, -3]
95: ? sign(-1)
96: -1
97: ? sign(0)
98: 0
99: ? sign(0.)
100: 0
101: ? simplify(((x+I+1)^2-x^2-2*x*(I+1))^2)
102: -4
103: ? sizedigit([1.3*10^5,2*I*Pi*exp(4*Pi)])
104: 7
105: ? truncate(-2.7)
106: -2
107: ? truncate(sin(x^2))
108: -1/5040*x^14 + 1/120*x^10 - 1/6*x^6 + x^2
109: ? type(Mod(x,x^2+1))
110: "t_POLMOD"
111: ? valuation(6^10000-1,5)
112: 5
113: ? \p57
114: realprecision = 57 significant digits
115: ? Pi
116: 3.14159265358979323846264338327950288419716939937510582097
117: ? \p38
118: realprecision = 38 significant digits
119: ? O(x^12)
120: O(x^12)
121: ? padicno=(5/3)*127+O(127^5)
122: 44*127 + 42*127^2 + 42*127^3 + 42*127^4 + O(127^5)
123: ? padicprec(padicno,127)
124: 5
125: ? length(divisors(1000))
126: 16
127: ? getheap
128: [65, 916]
129: ? print("Total time spent: ",gettime);
130: Total time spent: 51
131: ? \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>