Annotation of OpenXM_contrib/pari/src/test/32/program, Revision 1.1.1.1
1.1 maekawa 1: realprecision = 38 significant digits
2: echo = 1 (on)
3: ? alias(ln,log)
4: ? ln(2)
5: 0.69314718055994530941723212145817656807
6: ? for(x=1,5,print(x!))
7: 1
8: 2
9: 6
10: 24
11: 120
12: ? fordiv(10,x,print(x))
13: 1
14: 2
15: 5
16: 10
17: ? forprime(p=1,30,print(p))
18: 2
19: 3
20: 5
21: 7
22: 11
23: 13
24: 17
25: 19
26: 23
27: 29
28: ? forstep(x=0,Pi,Pi/12,print(sin(x)))
29: 0.E-38
30: 0.25881904510252076234889883762404832834
31: 0.49999999999999999999999999999999999999
32: 0.70710678118654752440084436210484903928
33: 0.86602540378443864676372317075293618346
34: 0.96592582628906828674974319972889736763
35: 1.0000000000000000000000000000000000000
36: 0.96592582628906828674974319972889736764
37: 0.86602540378443864676372317075293618348
38: 0.70710678118654752440084436210484903930
39: 0.50000000000000000000000000000000000002
40: 0.25881904510252076234889883762404832838
41: 4.7019774032891500318749461488889827112 E-38
42: ? forvec(x=[[1,3],[-2,2]],print1([x[1],x[2]]," "));print(" ");
43: [1, -2] [1, -1] [1, 0] [1, 1] [1, 2] [2, -2] [2, -1] [2, 0] [2, 1] [2, 2] [3
44: , -2] [3, -1] [3, 0] [3, 1] [3, 2]
45: ? getheap
46: [3, 29]
47: ? getrand
48: 1
49: ? getstack
50: 0
51: ? if(3<2,print("bof"),print("ok"));
52: ok
53: ? kill(y);print(x+y);reorder([x,y]);print(x+y);
54: x + y
55: x + y
56: ? f(u)=u+1;
57: ? print(f(5));kill(f);
58: 6
59: ? f=12
60: 12
61: ? g(u)=if(u,,return(17));u+2
62: ? g(2)
63: 4
64: ? g(0)
65: 17
66: ? setrand(10)
67: 10
68: ? n=33;until(n==1,print1(n," ");if(n%2,n=3*n+1,n=n/2));print(1)
69: 33 100 50 25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
70: ? m=5;while(m<20,print1(m," ");m=m+1);print()
71: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
72: ? default(realprecision,28)
73: realprecision = 28 significant digits
74: ? default(seriesprecision,12)
75: seriesprecision = 12 significant terms
76: ? print((x-12*y)/(y+13*x));
77: (x - 12*y)/(13*x + y)
78: ? print([1,2;3,4])
79: [1, 2; 3, 4]
80: ? print1(x+y);print(x+y);
81: x + yx + y
82: ? print((x-12*y)/(y+13*x));
83: (x - 12*y)/(13*x + y)
84: ? print([1,2;3,4])
85: [1, 2; 3, 4]
86: ? print1(x+y);print1(" equals ");print(x+y);
87: x + y equals x + y
88: ? print1("give a value for s? ");s=input();print(1/(s^2+1))
89: give a value for s? printtex((x+y)^3/(x-y)^2)
90: {{x^{3} + {{3}y}x^{2} + {{3}y^{2}}x + {y^{3}}}\over{x^{2} - {{2}y}x + {y^{2}
91: }}}
92: 1
93: ? for(i=1,100,for(j=1,25,if(i+j==32,break(2)));print(i))
94: 1
95: 2
96: 3
97: 4
98: 5
99: 6
100: ? u=v=p=q=1;for(k=1,400,w=u+v;u=v;v=w;p*=w;q=lcm(q,w);if(k%50==0,print(k" "l
101: og(p)/log(q))));
102: 50 1.561229126903099279206171725
103: 100 1.601335375590875348711141031
104: 150 1.606915548673659127523394774
105: 200 1.618659998991528481508175175
106: 250 1.626284706204746765086080988
107: 300 1.627822776845103001192024532
108: 350 1.632105905172986668189652273
109: 400 1.632424285532931448171405619
110: ? install(addii,GG)
111: ? addii(1,2)
112: 3
113: ? kill(addii)
114: ? getheap
115: [21, 2992]
116: ? print("Total time spent: ",gettime);
117: Total time spent: 1151
118: ? \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>