[BACK]Return to compat CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari / src / test / 64

Annotation of OpenXM_contrib/pari/src/test/64/compat, Revision 1.1.1.1

1.1       maekawa     1:    echo = 1 (on)
                      2: ? default(compatible,3)
                      3:    compatible = 3 (use old functions, ignore case)
                      4:   ***   Warning: user functions re-initialized.
                      5: ? +3
                      6: 3
                      7: ? -5
                      8: -5
                      9: ? 5+3
                     10: 8
                     11: ? 5-3
                     12: 2
                     13: ? 5/3
                     14: 5/3
                     15: ? 5\3
                     16: 1
                     17: ? 5\/3
                     18: 2
                     19: ? 5%3
                     20: 2
                     21: ? 5^3
                     22: 125
                     23: ? \precision=57
                     24:    realprecision = 57 significant digits
                     25: ? pi
                     26: 3.14159265358979323846264338327950288419716939937510582097
                     27: ? \precision=38
                     28:    realprecision = 38 significant digits
                     29: ? o(x^12)
                     30: O(x^12)
                     31: ? padicno=(5/3)*127+O(127^5)
                     32: 44*127 + 42*127^2 + 42*127^3 + 42*127^4 + O(127^5)
                     33: ? initrect(0,500,500)
                     34: ? abs(-0.01)
                     35: 0.0099999999999999999999999999999999999999
                     36: ? acos(0.5)
                     37: 1.0471975511965977461542144610931676280
                     38: ? acosh(3)
                     39: 1.7627471740390860504652186499595846180
                     40: ? acurve=initell([0,0,1,-1,0])
                     41: [0, 0, 1, -1, 0, 0, -2, 1, -1, 48, -216, 37, 110592/37, [0.83756543528332303
                     42: 544481089907503024040, 0.26959443640544455826293795134926000404, -1.10715987
                     43: 16887675937077488504242902444]~, 2.9934586462319596298320099794525081778, 2.
                     44: 4513893819867900608542248318665252253*I, -0.47131927795681147588259389708033
                     45: 769964, -1.4354565186686843187232088566788165076*I, 7.3381327407895767390707
                     46: 210033323055881]
                     47: ? apoint=[2,2]
                     48: [2, 2]
                     49: ? isoncurve(acurve,apoint)
                     50: 1
                     51: ? addell(acurve,apoint,apoint)
                     52: [21/25, -56/125]
                     53: ? addprimes([nextprime(10^9),nextprime(10^10)])
                     54: [1000000007, 10000000019]
                     55: ? adj([1,2;3,4])
                     56:
                     57: [4 -2]
                     58:
                     59: [-3 1]
                     60:
                     61: ? agm(1,2)
                     62: 1.4567910310469068691864323832650819749
                     63: ? agm(1+o(7^5),8+o(7^5))
                     64: 1 + 4*7 + 6*7^2 + 5*7^3 + 2*7^4 + O(7^5)
                     65: ? algdep(2*cos(2*pi/13),6)
                     66: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
                     67: ? algdep2(2*cos(2*pi/13),6,15)
                     68: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
                     69: ? akell(acurve,1000000007)
                     70: 43800
                     71: ? nfpol=x^5-5*x^3+5*x+25
                     72: x^5 - 5*x^3 + 5*x + 25
                     73: ? nf=initalg(nfpol)
                     74: [x^5 - 5*x^3 + 5*x + 25, [1, 2], 595125, 45, [[1, -2.42851749071941860689920
                     75: 69565359418364, 5.8976972027301414394898806541072047941, -7.0734526715090929
                     76: 269887668671457811020, 3.8085820570096366144649278594400435257; 1, 1.9647119
                     77: 211288133163138753392090569931 + 0.80971492418897895128294082219556466857*I,
                     78:  3.2044546745713084269203768790545260356 + 3.1817131285400005341145852263331
                     79: 539899*I, -0.16163499313031744537610982231988834519 + 1.88804378620070569319
                     80: 06454476483475283*I, 2.0660709538372480632698971148801090692 + 2.68989675196
                     81: 23140991170523711857387388*I; 1, -0.75045317576910401286427186094108607489 +
                     82:  1.3101462685358123283560773619310445915*I, -1.15330327593637914666531720610
                     83: 81284327 - 1.9664068558894834311780119356739268309*I, 1.19836132888486390887
                     84: 04932558927788962 + 0.64370238076256988899570325671192132449*I, -0.470361982
                     85: 34206637050236104460013083212 + 0.083628266711589186119416762685933385421*I]
                     86: , [1, 2, 2; -2.4285174907194186068992069565359418364, 3.92942384225762663262
                     87: 77506784181139862 - 1.6194298483779579025658816443911293371*I, -1.5009063515
                     88: 382080257285437218821721497 - 2.6202925370716246567121547238620891831*I; 5.8
                     89: 976972027301414394898806541072047941, 6.408909349142616853840753758109052071
                     90: 2 - 6.3634262570800010682291704526663079798*I, -2.30660655187275829333063441
                     91: 22162568654 + 3.9328137117789668623560238713478536619*I; -7.0734526715090929
                     92: 269887668671457811020, -0.32326998626063489075221964463977669038 - 3.7760875
                     93: 724014113863812908952966950567*I, 2.3967226577697278177409865117855577924 -
                     94: 1.2874047615251397779914065134238426489*I; 3.8085820570096366144649278594400
                     95: 435257, 4.1321419076744961265397942297602181385 - 5.379793503924628198234104
                     96: 7423714774776*I, -0.94072396468413274100472208920026166424 - 0.1672565334231
                     97: 7837223883352537186677084*I], [5, 0.E-77, 10.0000000000000000000000000000000
                     98: 00000, -5.0000000000000000000000000000000000000, 7.0000000000000000000000000
                     99: 000000000000; 0.E-77, 19.488486013650707197449403270536023970, 2.07268045322
                    100: 26667100551498190000000000 E-76, 19.488486013650707197449403270536023970, 4.
                    101: 1504592246706085588902013976045703227; 10.0000000000000000000000000000000000
                    102: 00, 2.0726804532226667100551498190000000000 E-76, 85.96021742085184648030513
                    103: 3936577594605, -36.034268291482979838267056239752434596, 53.5761304525111078
                    104: 88183080361946556763; -5.0000000000000000000000000000000000000, 19.488486013
                    105: 650707197449403270536023970, -36.034268291482979838267056239752434596, 60.91
                    106: 6248374441986300937507618575151517, -18.470101750219179344070032346246890434
                    107: ; 7.0000000000000000000000000000000000000, 4.1504592246706085588902013976045
                    108: 703227, 53.576130452511107888183080361946556763, -18.47010175021917934407003
                    109: 2346246890434, 37.970152892842367340897384258599214282], [5, 0, 10, -5, 7; 0
                    110: , 10, 0, 10, -5; 10, 0, 30, -55, 20; -5, 10, -55, 45, -39; 7, -5, 20, -39, 9
                    111: ], [345, 0, 340, 167, 150; 0, 345, 110, 220, 153; 0, 0, 5, 2, 1; 0, 0, 0, 1,
                    112:  0; 0, 0, 0, 0, 1], [132825, -18975, -5175, 27600, 17250; -18975, 34500, 414
                    113: 00, 3450, -43125; -5175, 41400, -41400, -15525, 51750; 27600, 3450, -15525,
                    114: -3450, 0; 17250, -43125, 51750, 0, -86250], [595125, [-120750, 63825, 113850
                    115: , 0, 8625]~, 125439056256992431640625]], [-2.4285174907194186068992069565359
                    116: 418364, 1.9647119211288133163138753392090569931 + 0.809714924188978951282940
                    117: 82219556466857*I, -0.75045317576910401286427186094108607489 + 1.310146268535
                    118: 8123283560773619310445915*I], [1, x, x^2, 1/3*x^3 - 1/3*x^2 - 1/3, 1/15*x^4
                    119: + 1/3*x^2 + 1/3*x + 1/3], [1, 0, 0, 1, -5; 0, 1, 0, 0, -5; 0, 0, 1, 1, -5; 0
                    120: , 0, 0, 3, 0; 0, 0, 0, 0, 15], [1, 0, 0, 0, 0, 0, 0, 1, -2, -1, 0, 1, -5, -5
                    121: , -3, 0, -2, -5, 1, -4, 0, -1, -3, -4, -3; 0, 1, 0, 0, 0, 1, 0, 0, -2, 0, 0,
                    122:  0, -5, 0, -5, 0, -2, 0, -5, 0, 0, 0, -5, 0, -4; 0, 0, 1, 0, 0, 0, 1, 1, -2,
                    123:  1, 1, 1, -5, 3, -3, 0, -2, 3, -5, 1, 0, 1, -3, 1, -2; 0, 0, 0, 1, 0, 0, 0,
                    124: 3, -1, 2, 0, 3, 0, 5, 1, 1, -1, 5, -4, 3, 0, 2, 1, 3, 1; 0, 0, 0, 0, 1, 0, 0
                    125: , 0, 5, 0, 0, 0, 15, -5, 10, 0, 5, -5, 10, -2, 1, 0, 10, -2, 7]]
                    126: ? ba=algtobasis(nf,mod(x^3+5,nfpol))
                    127: [6, 0, 1, 3, 0]~
                    128: ? anell(acurve,100)
                    129: [1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6, -4, 0, -12, 0, -4, 3, 1
                    130: 0, 2, 0, -1, 4, -9, -2, 6, -12, -4, 8, 15, 0, 2, 12, -1, 0, 6, 0, -9, -6, 2,
                    131:  -10, -12, -4, -9, 12, -6, 2, 0, -4, 1, 18, 10, 0, 0, -12, 8, 12, -8, 8, -6,
                    132:  -8, 4, -30, 8, 0, -6, -4, 9, 0, -1, 2, 3, 0, 5, -12, 4, 8, 9, 18, -15, 6, 0
                    133: , -4, -18, 0, 4, 24, 2, 4, 12, 18, 0, -24, 4, 12, -30, -2]
                    134: ? apell(acurve,10007)
                    135: 66
                    136: ? apell2(acurve,10007)
                    137: 66
                    138: ? apol=x^3+5*x+1
                    139: x^3 + 5*x + 1
                    140: ? apprpadic(apol,1+O(7^8))
                    141: [1 + 6*7 + 4*7^2 + 4*7^3 + 3*7^4 + 4*7^5 + 6*7^7 + O(7^8)]
                    142: ? apprpadic(x^3+5*x+1,mod(x*(1+O(7^8)),x^2+x-1))
                    143: [mod((1 + 3*7 + 3*7^2 + 4*7^3 + 4*7^4 + 4*7^5 + 2*7^6 + 3*7^7 + O(7^8))*x +
                    144: (2*7 + 6*7^2 + 6*7^3 + 3*7^4 + 3*7^5 + 4*7^6 + 5*7^7 + O(7^8)), x^2 + x - 1)
                    145: ]~
                    146: ? 4*arg(3+3*i)
                    147: 3.1415926535897932384626433832795028842
                    148: ? 3*asin(sqrt(3)/2)
                    149: 3.1415926535897932384626433832795028841
                    150: ? asinh(0.5)
                    151: 0.48121182505960344749775891342436842313
                    152: ? assmat(x^5-12*x^3+0.0005)
                    153:
                    154: [0 0 0 0 -0.00049999999999999999999999999999999999999]
                    155:
                    156: [1 0 0 0 0]
                    157:
                    158: [0 1 0 0 0]
                    159:
                    160: [0 0 1 0 12]
                    161:
                    162: [0 0 0 1 0]
                    163:
                    164: ? 3*atan(sqrt(3))
                    165: 3.1415926535897932384626433832795028841
                    166: ? atanh(0.5)
                    167: 0.54930614433405484569762261846126285232
                    168: ? basis(x^3+4*x+5)
                    169: [1, x, 1/7*x^2 - 1/7*x - 2/7]
                    170: ? basis2(x^3+4*x+5)
                    171: [1, x, 1/7*x^2 - 1/7*x - 2/7]
                    172: ? basistoalg(nf,ba)
                    173: mod(x^3 + 5, x^5 - 5*x^3 + 5*x + 25)
                    174: ? bernreal(12)
                    175: -0.25311355311355311355311355311355311354
                    176: ? bernvec(6)
                    177: [1, 1/6, -1/30, 1/42, -1/30, 5/66, -691/2730]
                    178: ? bestappr(pi,10000)
                    179: 355/113
                    180: ? bezout(123456789,987654321)
                    181: [-8, 1, 9]
                    182: ? bigomega(12345678987654321)
                    183: 8
                    184: ? mcurve=initell([0,0,0,-17,0])
                    185: [0, 0, 0, -17, 0, 0, -34, 0, -289, 816, 0, 314432, 1728, [4.1231056256176605
                    186: 498214098559740770251, 0.E-38, -4.1231056256176605498214098559740770251]~, 1
                    187: .2913084409290072207105564235857096009, 1.2913084409290072207105564235857096
                    188: 009*I, -1.2164377440798088266474269946818791934, -3.649313232239426479942280
                    189: 9840456375802*I, 1.6674774896145033307120230298772362381]
                    190: ? mpoints=[[-1,4],[-4,2]]~
                    191: [[-1, 4], [-4, 2]]~
                    192: ? mhbi=bilhell(mcurve,mpoints,[9,24])
                    193: [-0.72448571035980184146215805860545027438, 1.307328627832055544492943428892
                    194: 1943055]~
                    195: ? bin(1.1,5)
                    196: -0.0045457499999999999999999999999999999997
                    197: ? binary(65537)
                    198: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
                    199: ? bittest(10^100,100)
                    200: 1
                    201: ? boundcf(pi,5)
                    202: [3, 7, 15, 1, 292]
                    203: ? boundfact(40!+1,100000)
                    204:
                    205: [41 1]
                    206:
                    207: [59 1]
                    208:
                    209: [277 1]
                    210:
                    211: [1217669507565553887239873369513188900554127 1]
                    212:
                    213: ? move(0,0,0);box(0,500,500)
                    214: ? setrand(1);buchimag(1-10^7,1,1)
                    215:   ***   Warning: not a fundamental discriminant in quadclassunit.
                    216: [2416, [1208, 2], [qfi(277, 55, 9028), qfi(1700, 1249, 1700)], 1, 0.99984980
                    217: 753776002339750644800000000000]
                    218: ? setrand(1);bnf=buchinitfu(x^2-x-57,0.2,0.2)
                    219: [mat(3), mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.71246530518434397468087951060
                    220: 61300699 - 9.4247779607693797153879301498385086526*I; 2.71246530518434397468
                    221: 08795106061300699 - 6.2831853071795864769252867665590057684*I], [23347.97922
                    222: 3478346319454659159707591731 + 6.2831853071795864769252867665590057684*I, 86
                    223: 6.56619430687100142570357249059499540 + 6.2831853071795864769252867665590057
                    224: 684*I, 2881.3396396084587293295626563644245032 + 3.1415926535897932384626433
                    225: 832795028842*I, 27379.624790530768080428797780058276925 + 2.0880974297595278
                    226: 484866027080000000000 E-52*I, 57933.334567930851067108050790839116749 + 3.54
                    227: 97656305911973423188043860000000000 E-52*I, -34585.5562501515577199980340439
                    228: 18848670 + 9.4247779607693797153879301498385086526*I, 23348.3225111226233465
                    229: 49049047574325150 + 3.1415926535897932384626433832795028842*I, -0.3432876442
                    230: 7702709438988786673341921876 + 3.1415926535897932384626433832795028842*I, -4
                    231: 031.7117453543045067063239888430083582 + 9.424777960769379715387930149838508
                    232: 6526*I, 27379.690968832650826160983148550600089 + 9.424777960769379715387930
                    233: 1498385086526*I; -23347.979223478346319454659159707591731 + 9.42477796076937
                    234: 97153879301498385086526*I, -866.56619430687100142570357249059499540 + 8.1566
                    235: 305849981556577374397490000000000 E-55*I, -2881.3396396084587293295626563644
                    236: 245032 + 9.4247779607693797153879301498385086526*I, -27379.62479053076808042
                    237: 8797780058276925 + 6.2831853071795864769252867665590057684*I, -57933.3345679
                    238: 30851067108050790839116749 + 3.1415926535897932384626433832795028842*I, 3458
                    239: 5.556250151557719998034043918848670 + 6.283185307179586476925286766559005768
                    240: 4*I, -23348.322511122623346549049047574325150 + 9.42477796076937971538793014
                    241: 98385086526*I, 0.34328764427702709438988786673341921876 + 0.E-57*I, 4031.711
                    242: 7453543045067063239888430083582 + 3.1415926535897932384626433832795028842*I,
                    243:  -27379.690968832650826160983148550600089 + 6.283185307179586476925286766559
                    244: 0057684*I], [[3, [-1, 1]~, 1, 1, [0, 1]~], [3, [0, 1]~, 1, 1, [-1, 1]~], [5,
                    245:  [-2, 1]~, 1, 1, [1, 1]~], [5, [1, 1]~, 1, 1, [-2, 1]~], [11, [-2, 1]~, 1, 1
                    246: , [1, 1]~], [11, [1, 1]~, 1, 1, [-2, 1]~], [17, [-3, 1]~, 1, 1, [2, 1]~], [1
                    247: 7, [2, 1]~, 1, 1, [-3, 1]~], [19, [-1, 1]~, 1, 1, [0, 1]~], [19, [0, 1]~, 1,
                    248:  1, [-1, 1]~]]~, [1, 3, 5, 2, 4, 6, 7, 8, 10, 9]~, [x^2 - x - 57, [2, 0], 22
                    249: 9, 1, [[1, -7.0663729752107779635959310246705326058; 1, 8.066372975210777963
                    250: 5959310246705326058], [1, 1; -7.0663729752107779635959310246705326058, 8.066
                    251: 3729752107779635959310246705326058], [2, 1.000000000000000000000000000000000
                    252: 0000; 1.0000000000000000000000000000000000000, 115.0000000000000000000000000
                    253: 0000000000], [2, 1; 1, 115], [229, 114; 0, 1], [115, -1; -1, 2], [229, [114,
                    254:  1]~, 229]], [-7.0663729752107779635959310246705326058, 8.066372975210777963
                    255: 5959310246705326058], [1, x], [1, 0; 0, 1], [1, 0, 0, 57; 0, 1, 1, 1]], [[3,
                    256:  [3], [[3, 2; 0, 1]]], 2.7124653051843439746808795106061300699, 0.8814422512
                    257: 6545793690341704100000000000, [2, -1], [x + 7], 162], [mat(1), mat(1), [[[3,
                    258:  2; 0, 1], [0, 0]]]], 0]
                    259: ? buchcertify(bnf)
                    260: 1
                    261: ? buchfu(bnf)
                    262: [[x + 7], 162]
                    263: ? setrand(1);buchinitforcefu(x^2-x-100000)
                    264: [mat(5), mat([3, 2, 1, 2, 0, 3, 2, 3, 0, 0, 1, 4, 3, 2, 2, 3, 3, 2]), [-129.
                    265: 82045011403975460991182396195022419 + 6.283185307179586476925286766559005768
                    266: 4*I; 129.82045011403975460991182396195022419 + 5.348345931263972060504263694
                    267: 0000000000 E-115*I], [2093832.2286247580721598744691800364716 + 9.4247779607
                    268: 693797153879301498385086526*I, 463727.88770776479369558667281813008490 + 6.2
                    269: 831853071795864769252867665590057684*I, 229510.68119174121074359900744873056
                    270: 520 + 3.1415926535897932384626433832795028842*I, -13814064.27618485624828610
                    271: 7275967161406 + 6.2831853071795864769252867665590057684*I, 10975229.44237614
                    272: 5014058790444262893275 + 9.4247779607693797153879301498385086526*I, 12628868
                    273: .476868730308574917279106536834 + 6.2831853071795864769252867665590057684*I,
                    274:  2595210.6815750606798700790306370856686 + 3.1415926535897932384626433832795
                    275: 028842*I, 21463208.279603014333968661075393279510 + 6.2831853071795864769252
                    276: 867665590057684*I, 9340416.4917416354701732132629720490406 + 9.4247779607693
                    277: 797153879301498385086526*I, 224801.35127844528675036994618361508061 + 12.566
                    278: 370614359172953850573533118011536*I, -224801.3512784452867503699461836150806
                    279: 1 + 9.6067672535041710996049808843552935572 E-110*I, 40271115.67885724271600
                    280: 3879014241558828 + 6.2831853071795864769252867665590057684*I, -10066612.2847
                    281: 88886379386747743460630561 + 4.3018790993764137358012770550502916873 E-108*I
                    282: , 10267873.880681641662748682261863339788 + 12.56637061435917295385057353311
                    283: 8011536*I, -4435991.6114732228963510067335229085617 + 6.28318530717958647692
                    284: 52867665590057684*I, 8361196.2032957779193404684451855312611 + 9.42477796076
                    285: 93797153879301498385086526*I, -10272584.501589374356405593568879583106 + 9.4
                    286: 247779607693797153879301498385086526*I, 41648172.195327314227598351804544361
                    287: 493 + 9.4247779607693797153879301498385086526*I, -2117367.665066341919805155
                    288: 1003369291210 + 9.0483757581445359017535541005707614256 E-109*I; -2093832.22
                    289: 86247580721598744691800364716 + 3.1415926535897932384626433832795028842*I, -
                    290: 463727.88770776479369558667281813008490 + 9.42477796076937971538793014983850
                    291: 86526*I, -229510.68119174121074359900744873056520 + 12.566370614359172953850
                    292: 573533118011536*I, 13814064.276184856248286107275967161405 + 5.6909456906323
                    293: 670696834504660000000000 E-110*I, -10975229.442376145014058790444262893275 +
                    294:  12.566370614359172953850573533118011536*I, -12628868.4768687303085749172791
                    295: 06536834 + 3.1415926535897932384626433832795028842*I, -2595210.6815750606798
                    296: 700790306370856686 + 12.566370614359172953850573533118011536*I, -21463208.27
                    297: 9603014333968661075393279510 + 9.4247779607693797153879301498385086526*I, -9
                    298: 340416.4917416354701732132629720490406 + 6.283185307179586476925286766559005
                    299: 7684*I, -224801.35127844528675036994618361508061 + 12.5663706143591729538505
                    300: 73533118011536*I, 224801.35127844528675036994618361508061 + 9.26104300469294
                    301: 36195130014290000000000 E-112*I, -40271115.678857242716003879014241558828 +
                    302: 12.566370614359172953850573533118011536*I, 10066612.284788886379386747743460
                    303: 630561 + 4.1471150755962714546179470600000000000 E-110*I, -10267873.88068164
                    304: 1662748682261863339788 + 3.1415926535897932384626433832795028842*I, 4435991.
                    305: 6114732228963510067335229085617 + 9.4247779607693797153879301498385086526*I,
                    306:  -8361196.2032957779193404684451855312611 + 12.56637061435917295385057353311
                    307: 8011536*I, 10272584.501589374356405593568879583106 + 4.231970404042868132057
                    308: 2257270000000000 E-110*I, -41648172.195327314227598351804544361493 + 3.14159
                    309: 26535897932384626433832795028842*I, 2117367.6650663419198051551003369291210
                    310: + 8.7228465941240376311377469060000000000 E-111*I], [[2, [1, 1]~, 1, 1, [0,
                    311: 1]~], [2, [2, 1]~, 1, 1, [1, 1]~], [5, [4, 1]~, 1, 1, [0, 1]~], [5, [5, 1]~,
                    312:  1, 1, [-1, 1]~], [7, [3, 1]~, 2, 1, [3, 1]~], [13, [-6, 1]~, 1, 1, [5, 1]~]
                    313: , [13, [5, 1]~, 1, 1, [-6, 1]~], [17, [14, 1]~, 1, 1, [2, 1]~], [17, [19, 1]
                    314: ~, 1, 1, [-3, 1]~], [23, [-7, 1]~, 1, 1, [6, 1]~], [23, [6, 1]~, 1, 1, [-7,
                    315: 1]~], [29, [-14, 1]~, 1, 1, [13, 1]~], [29, [13, 1]~, 1, 1, [-14, 1]~], [31,
                    316:  [23, 1]~, 1, 1, [7, 1]~], [31, [38, 1]~, 1, 1, [-8, 1]~], [41, [-7, 1]~, 1,
                    317:  1, [6, 1]~], [41, [6, 1]~, 1, 1, [-7, 1]~], [43, [-16, 1]~, 1, 1, [15, 1]~]
                    318: , [43, [15, 1]~, 1, 1, [-16, 1]~]]~, [1, 3, 6, 2, 4, 5, 7, 9, 8, 11, 10, 13,
                    319:  12, 15, 14, 17, 16, 19, 18]~, [x^2 - x - 100000, [2, 0], 400001, 1, [[1, -3
                    320: 15.72816130129840161392089489603747004; 1, 316.72816130129840161392089489603
                    321: 747004], [1, 1; -315.72816130129840161392089489603747004, 316.72816130129840
                    322: 161392089489603747004], [2, 1.0000000000000000000000000000000000000; 1.00000
                    323: 00000000000000000000000000000000, 200001.00000000000000000000000000000000],
                    324: [2, 1; 1, 200001], [400001, 200000; 0, 1], [200001, -1; -1, 2], [400001, [20
                    325: 0000, 1]~, 400001]], [-315.72816130129840161392089489603747004, 316.72816130
                    326: 129840161392089489603747004], [1, x], [1, 0; 0, 1], [1, 0, 0, 100000; 0, 1,
                    327: 1, 1]], [[5, [5], [[2, 1; 0, 1]]], 129.82045011403975460991182396195022419,
                    328: 0.98765369790690472391212970100000000000, [2, -1], [379554884019013781006303
                    329: 254896369154068336082609238336*x + 11983616564425078999046283595002287166517
                    330: 8127611316131167], 185], [mat(1), mat(1), [[[2, 1; 0, 1], [0, 0]]]], 0]
                    331: ? setrand(1);bnf=buchinitfu(x^2-x-57,0.2,0.2)
                    332: [mat(3), mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.71246530518434397468087951060
                    333: 61300699 - 9.4247779607693797153879301498385086526*I; 2.71246530518434397468
                    334: 08795106061300699 - 6.2831853071795864769252867665590057684*I], [23347.97922
                    335: 3478346319454659159707591731 + 6.2831853071795864769252867665590057684*I, 86
                    336: 6.56619430687100142570357249059499540 + 6.2831853071795864769252867665590057
                    337: 684*I, 2881.3396396084587293295626563644245032 + 3.1415926535897932384626433
                    338: 832795028842*I, 27379.624790530768080428797780058276925 + 2.0880974297595278
                    339: 484866027080000000000 E-52*I, 57933.334567930851067108050790839116749 + 3.54
                    340: 97656305911973423188043860000000000 E-52*I, -34585.5562501515577199980340439
                    341: 18848670 + 9.4247779607693797153879301498385086526*I, 23348.3225111226233465
                    342: 49049047574325150 + 3.1415926535897932384626433832795028842*I, -0.3432876442
                    343: 7702709438988786673341921876 + 3.1415926535897932384626433832795028842*I, -4
                    344: 031.7117453543045067063239888430083582 + 9.424777960769379715387930149838508
                    345: 6526*I, 27379.690968832650826160983148550600089 + 9.424777960769379715387930
                    346: 1498385086526*I; -23347.979223478346319454659159707591731 + 9.42477796076937
                    347: 97153879301498385086526*I, -866.56619430687100142570357249059499540 + 8.1566
                    348: 305849981556577374397490000000000 E-55*I, -2881.3396396084587293295626563644
                    349: 245032 + 9.4247779607693797153879301498385086526*I, -27379.62479053076808042
                    350: 8797780058276925 + 6.2831853071795864769252867665590057684*I, -57933.3345679
                    351: 30851067108050790839116749 + 3.1415926535897932384626433832795028842*I, 3458
                    352: 5.556250151557719998034043918848670 + 6.283185307179586476925286766559005768
                    353: 4*I, -23348.322511122623346549049047574325150 + 9.42477796076937971538793014
                    354: 98385086526*I, 0.34328764427702709438988786673341921876 + 0.E-57*I, 4031.711
                    355: 7453543045067063239888430083582 + 3.1415926535897932384626433832795028842*I,
                    356:  -27379.690968832650826160983148550600089 + 6.283185307179586476925286766559
                    357: 0057684*I], [[3, [-1, 1]~, 1, 1, [0, 1]~], [3, [0, 1]~, 1, 1, [-1, 1]~], [5,
                    358:  [-2, 1]~, 1, 1, [1, 1]~], [5, [1, 1]~, 1, 1, [-2, 1]~], [11, [-2, 1]~, 1, 1
                    359: , [1, 1]~], [11, [1, 1]~, 1, 1, [-2, 1]~], [17, [-3, 1]~, 1, 1, [2, 1]~], [1
                    360: 7, [2, 1]~, 1, 1, [-3, 1]~], [19, [-1, 1]~, 1, 1, [0, 1]~], [19, [0, 1]~, 1,
                    361:  1, [-1, 1]~]]~, [1, 3, 5, 2, 4, 6, 7, 8, 10, 9]~, [x^2 - x - 57, [2, 0], 22
                    362: 9, 1, [[1, -7.0663729752107779635959310246705326058; 1, 8.066372975210777963
                    363: 5959310246705326058], [1, 1; -7.0663729752107779635959310246705326058, 8.066
                    364: 3729752107779635959310246705326058], [2, 1.000000000000000000000000000000000
                    365: 0000; 1.0000000000000000000000000000000000000, 115.0000000000000000000000000
                    366: 0000000000], [2, 1; 1, 115], [229, 114; 0, 1], [115, -1; -1, 2], [229, [114,
                    367:  1]~, 229]], [-7.0663729752107779635959310246705326058, 8.066372975210777963
                    368: 5959310246705326058], [1, x], [1, 0; 0, 1], [1, 0, 0, 57; 0, 1, 1, 1]], [[3,
                    369:  [3], [[3, 2; 0, 1]]], 2.7124653051843439746808795106061300699, 0.8814422512
                    370: 6545793690341704100000000000, [2, -1], [x + 7], 162], [mat(1), mat(1), [[[3,
                    371:  2; 0, 1], [0, 0]]]], 0]
                    372: ? setrand(1);buchreal(10^9-3,0,0.5,0.5)
                    373: [4, [4], [qfr(3, 1, -83333333, 0.E-57)], 2800.625251907016076486370621737074
                    374: 5514, 0.99903694589643832327024650000000000000]
                    375: ? setrand(1);buchgen(x^4-7,0.2,0.2)
                    376:
                    377: [x^4 - 7]
                    378:
                    379: [[2, 1]]
                    380:
                    381: [[-87808, 1]]
                    382:
                    383: [[1, x, x^2, x^3]]
                    384:
                    385: [[2, [2], [[2, 1, 1, 1; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]]]]
                    386:
                    387: [14.229975145405511722395637833443108790]
                    388:
                    389: [1.1211171071527562299744232290000000000]
                    390:
                    391: ? setrand(1);buchgenfu(x^2-x-100000)
                    392:   ***   Warning: fundamental units too large, not given.
                    393:
                    394: [x^2 - x - 100000]
                    395:
                    396: [[2, 0]]
                    397:
                    398: [[400001, 1]]
                    399:
                    400: [[1, x]]
                    401:
                    402: [[5, [5], [[2, 1; 0, 1]]]]
                    403:
                    404: [129.82045011403975460991182396195022419]
                    405:
                    406: [0.98765369790690472391212970100000000000]
                    407:
                    408: [[2, -1]]
                    409:
                    410: [[;]]
                    411:
                    412: [0]
                    413:
                    414: ? setrand(1);buchgenforcefu(x^2-x-100000)
                    415:
                    416: [x^2 - x - 100000]
                    417:
                    418: [[2, 0]]
                    419:
                    420: [[400001, 1]]
                    421:
                    422: [[1, x]]
                    423:
                    424: [[5, [5], [[2, 1; 0, 1]]]]
                    425:
                    426: [129.82045011403975460991182396195022419]
                    427:
                    428: [0.98765369790690472391212970100000000000]
                    429:
                    430: [[2, -1]]
                    431:
                    432: [[379554884019013781006303254896369154068336082609238336*x + 119836165644250
                    433: 789990462835950022871665178127611316131167]]
                    434:
                    435: [185]
                    436:
                    437: ? setrand(1);buchgenfu(x^4+24*x^2+585*x+1791,0.1,0.1)
                    438:
                    439: [x^4 + 24*x^2 + 585*x + 1791]
                    440:
                    441: [[0, 2]]
                    442:
                    443: [[18981, 3087]]
                    444:
                    445: [[1, x, 1/3*x^2, 1/1029*x^3 + 33/343*x^2 - 155/343*x - 58/343]]
                    446:
                    447: [[4, [4], [[7, 6, 2, 4; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]]]]
                    448:
                    449: [3.7941269688216589341408274220859400302]
                    450:
                    451: [0.88260182866555813061644128400000000000]
                    452:
                    453: [[6, -10/1029*x^3 + 13/343*x^2 - 165/343*x - 1135/343]]
                    454:
                    455: [[4/1029*x^3 + 53/1029*x^2 + 66/343*x + 111/343]]
                    456:
                    457: [140]
                    458:
                    459: ? buchnarrow(bnf)
                    460: [3, [3], [[3, 2; 0, 1]]]
                    461: ? buchray(bnf,[[5,3;0,1],[1,0]])
                    462: [12, [12], [[3, 2; 0, 1]]]
                    463: ? bnr=buchrayinitgen(bnf,[[5,3;0,1],[1,0]])
                    464: [[mat(3), mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.7124653051843439746808795106
                    465: 061300699 - 9.4247779607693797153879301498385086526*I; 2.7124653051843439746
                    466: 808795106061300699 - 6.2831853071795864769252867665590057684*I], [23347.9792
                    467: 23478346319454659159707591731 + 6.2831853071795864769252867665590057684*I, 8
                    468: 66.56619430687100142570357249059499540 + 6.283185307179586476925286766559005
                    469: 7684*I, 2881.3396396084587293295626563644245032 + 3.141592653589793238462643
                    470: 3832795028842*I, 27379.624790530768080428797780058276925 + 2.088097429759527
                    471: 8484866027080000000000 E-52*I, 57933.334567930851067108050790839116749 + 3.5
                    472: 497656305911973423188043860000000000 E-52*I, -34585.556250151557719998034043
                    473: 918848670 + 9.4247779607693797153879301498385086526*I, 23348.322511122623346
                    474: 549049047574325150 + 3.1415926535897932384626433832795028842*I, -0.343287644
                    475: 27702709438988786673341921876 + 3.1415926535897932384626433832795028842*I, -
                    476: 4031.7117453543045067063239888430083582 + 9.42477796076937971538793014983850
                    477: 86526*I, 27379.690968832650826160983148550600089 + 9.42477796076937971538793
                    478: 01498385086526*I; -23347.979223478346319454659159707591731 + 9.4247779607693
                    479: 797153879301498385086526*I, -866.56619430687100142570357249059499540 + 8.156
                    480: 6305849981556577374397490000000000 E-55*I, -2881.339639608458729329562656364
                    481: 4245032 + 9.4247779607693797153879301498385086526*I, -27379.6247905307680804
                    482: 28797780058276925 + 6.2831853071795864769252867665590057684*I, -57933.334567
                    483: 930851067108050790839116749 + 3.1415926535897932384626433832795028842*I, 345
                    484: 85.556250151557719998034043918848670 + 6.28318530717958647692528676655900576
                    485: 84*I, -23348.322511122623346549049047574325150 + 9.4247779607693797153879301
                    486: 498385086526*I, 0.34328764427702709438988786673341921876 + 0.E-57*I, 4031.71
                    487: 17453543045067063239888430083582 + 3.1415926535897932384626433832795028842*I
                    488: , -27379.690968832650826160983148550600089 + 6.28318530717958647692528676655
                    489: 90057684*I], [[3, [-1, 1]~, 1, 1, [0, 1]~], [3, [0, 1]~, 1, 1, [-1, 1]~], [5
                    490: , [-2, 1]~, 1, 1, [1, 1]~], [5, [1, 1]~, 1, 1, [-2, 1]~], [11, [-2, 1]~, 1,
                    491: 1, [1, 1]~], [11, [1, 1]~, 1, 1, [-2, 1]~], [17, [-3, 1]~, 1, 1, [2, 1]~], [
                    492: 17, [2, 1]~, 1, 1, [-3, 1]~], [19, [-1, 1]~, 1, 1, [0, 1]~], [19, [0, 1]~, 1
                    493: , 1, [-1, 1]~]]~, [1, 3, 5, 2, 4, 6, 7, 8, 10, 9]~, [x^2 - x - 57, [2, 0], 2
                    494: 29, 1, [[1, -7.0663729752107779635959310246705326058; 1, 8.06637297521077796
                    495: 35959310246705326058], [1, 1; -7.0663729752107779635959310246705326058, 8.06
                    496: 63729752107779635959310246705326058], [2, 1.00000000000000000000000000000000
                    497: 00000; 1.0000000000000000000000000000000000000, 115.000000000000000000000000
                    498: 00000000000], [2, 1; 1, 115], [229, 114; 0, 1], [115, -1; -1, 2], [229, [114
                    499: , 1]~, 229]], [-7.0663729752107779635959310246705326058, 8.06637297521077796
                    500: 35959310246705326058], [1, x], [1, 0; 0, 1], [1, 0, 0, 57; 0, 1, 1, 1]], [[3
                    501: , [3], [[3, 2; 0, 1]]], 2.7124653051843439746808795106061300699, 0.881442251
                    502: 26545793690341704100000000000, [2, -1], [x + 7], 162], [mat(1), mat(1), [[[3
                    503: , 2; 0, 1], [0, 0]]]], 0], [[[5, 3; 0, 1], [1, 0]], [8, [4, 2], [[2, 0]~, [-
                    504: 1, 1]~]], mat([[5, [-2, 1]~, 1, 1, [1, 1]~], 1]), [[[[4], [[2, 0]~], [[2, 0]
                    505: ~], [[mod(0, 2)]~], 1]], [[2], [[-1, 1]~], mat(1)]], [1, 0; 0, 1]], [[1, 0]~
                    506: ], [1, -3, -6; 0, 0, 1; 0, 1, 0], [12, [12], [[3, 2; 0, 1]]], [[0, 0; 0, 1],
                    507:  [1, -1; 1, 1]]]
                    508: ? bnr2=buchrayinitgen(bnf,[[25,13;0,1],[1,1]])
                    509: [[mat(3), mat([1, 2, 1, 2, 1, 2, 1, 2, 1]), [-2.7124653051843439746808795106
                    510: 061300699 - 9.4247779607693797153879301498385086526*I; 2.7124653051843439746
                    511: 808795106061300699 - 6.2831853071795864769252867665590057684*I], [23347.9792
                    512: 23478346319454659159707591731 + 6.2831853071795864769252867665590057684*I, 8
                    513: 66.56619430687100142570357249059499540 + 6.283185307179586476925286766559005
                    514: 7684*I, 2881.3396396084587293295626563644245032 + 3.141592653589793238462643
                    515: 3832795028842*I, 27379.624790530768080428797780058276925 + 2.088097429759527
                    516: 8484866027080000000000 E-52*I, 57933.334567930851067108050790839116749 + 3.5
                    517: 497656305911973423188043860000000000 E-52*I, -34585.556250151557719998034043
                    518: 918848670 + 9.4247779607693797153879301498385086526*I, 23348.322511122623346
                    519: 549049047574325150 + 3.1415926535897932384626433832795028842*I, -0.343287644
                    520: 27702709438988786673341921876 + 3.1415926535897932384626433832795028842*I, -
                    521: 4031.7117453543045067063239888430083582 + 9.42477796076937971538793014983850
                    522: 86526*I, 27379.690968832650826160983148550600089 + 9.42477796076937971538793
                    523: 01498385086526*I; -23347.979223478346319454659159707591731 + 9.4247779607693
                    524: 797153879301498385086526*I, -866.56619430687100142570357249059499540 + 8.156
                    525: 6305849981556577374397490000000000 E-55*I, -2881.339639608458729329562656364
                    526: 4245032 + 9.4247779607693797153879301498385086526*I, -27379.6247905307680804
                    527: 28797780058276925 + 6.2831853071795864769252867665590057684*I, -57933.334567
                    528: 930851067108050790839116749 + 3.1415926535897932384626433832795028842*I, 345
                    529: 85.556250151557719998034043918848670 + 6.28318530717958647692528676655900576
                    530: 84*I, -23348.322511122623346549049047574325150 + 9.4247779607693797153879301
                    531: 498385086526*I, 0.34328764427702709438988786673341921876 + 0.E-57*I, 4031.71
                    532: 17453543045067063239888430083582 + 3.1415926535897932384626433832795028842*I
                    533: , -27379.690968832650826160983148550600089 + 6.28318530717958647692528676655
                    534: 90057684*I], [[3, [-1, 1]~, 1, 1, [0, 1]~], [3, [0, 1]~, 1, 1, [-1, 1]~], [5
                    535: , [-2, 1]~, 1, 1, [1, 1]~], [5, [1, 1]~, 1, 1, [-2, 1]~], [11, [-2, 1]~, 1,
                    536: 1, [1, 1]~], [11, [1, 1]~, 1, 1, [-2, 1]~], [17, [-3, 1]~, 1, 1, [2, 1]~], [
                    537: 17, [2, 1]~, 1, 1, [-3, 1]~], [19, [-1, 1]~, 1, 1, [0, 1]~], [19, [0, 1]~, 1
                    538: , 1, [-1, 1]~]]~, [1, 3, 5, 2, 4, 6, 7, 8, 10, 9]~, [x^2 - x - 57, [2, 0], 2
                    539: 29, 1, [[1, -7.0663729752107779635959310246705326058; 1, 8.06637297521077796
                    540: 35959310246705326058], [1, 1; -7.0663729752107779635959310246705326058, 8.06
                    541: 63729752107779635959310246705326058], [2, 1.00000000000000000000000000000000
                    542: 00000; 1.0000000000000000000000000000000000000, 115.000000000000000000000000
                    543: 00000000000], [2, 1; 1, 115], [229, 114; 0, 1], [115, -1; -1, 2], [229, [114
                    544: , 1]~, 229]], [-7.0663729752107779635959310246705326058, 8.06637297521077796
                    545: 35959310246705326058], [1, x], [1, 0; 0, 1], [1, 0, 0, 57; 0, 1, 1, 1]], [[3
                    546: , [3], [[3, 2; 0, 1]]], 2.7124653051843439746808795106061300699, 0.881442251
                    547: 26545793690341704100000000000, [2, -1], [x + 7], 162], [mat(1), mat(1), [[[3
                    548: , 2; 0, 1], [0, 0]]]], 0], [[[25, 13; 0, 1], [1, 1]], [80, [20, 2, 2], [[2,
                    549: 0]~, [0, -2]~, [2, 2]~]], mat([[5, [-2, 1]~, 1, 1, [1, 1]~], 2]), [[[[4], [[
                    550: 2, 0]~], [[2, 0]~], [[mod(0, 2), mod(0, 2)]~], 1], [[5], [[6, 0]~], [[6, 0]~
                    551: ], [[mod(0, 2), mod(0, 2)]~], mat([1/5, -13/5])]], [[2, 2], [[0, -2]~, [2, 2
                    552: ]~], [0, 1; 1, 0]]], [1, -12, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]], [[1, 0]~], [1,
                    553:  -3, 0, -6; 0, 0, 1, 0; 0, 0, 0, 1; 0, 1, 0, 0], [12, [12], [[3, 2; 0, 1]]],
                    554:  [[1/2, 5, -9; -1/2, -5, 10], [-2, 0; 0, 10]]]
                    555: ? bytesize(%)
                    556: 14040
                    557: ? ceil(-2.5)
                    558: -2
                    559: ? centerlift(mod(456,555))
                    560: -99
                    561: ? cf(pi)
                    562: [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1
                    563: , 1, 15, 3, 13, 1, 4, 2, 6, 6]
                    564: ? cf2([1,3,5,7,9],(exp(1)-1)/(exp(1)+1))
                    565: [0, 6, 10, 42, 30]
                    566: ? changevar(x+y,[z,t])
                    567: y + z
                    568: ? char([1,2;3,4],z)
                    569: z^2 - 5*z - 2
                    570: ? char(mod(x^2+x+1,x^3+5*x+1),z)
                    571: z^3 + 7*z^2 + 16*z - 19
                    572: ? char1([1,2;3,4],z)
                    573: z^2 - 5*z - 2
                    574: ? char2(mod(1,8191)*[1,2;3,4],z)
                    575: mod(1, 8191)*z^2 + mod(8186, 8191)*z + mod(8189, 8191)
                    576: ? acurve=chell(acurve,[-1,1,2,3])
                    577: [-4, -1, -7, -12, -12, 12, 4, 1, -1, 48, -216, 37, 110592/37, [-0.1624345647
                    578: 1667696455518910092496975959, -0.73040556359455544173706204865073999595, -2.
                    579: 1071598716887675937077488504242902444]~, -2.99345864623195962983200997945250
                    580: 81778, -2.4513893819867900608542248318665252253*I, 0.47131927795681147588259
                    581: 389708033769964, 1.4354565186686843187232088566788165076*I, 7.33813274078957
                    582: 67390707210033323055881]
                    583: ? chinese(mod(7,15),mod(13,21))
                    584: mod(97, 105)
                    585: ? apoint=chptell(apoint,[-1,1,2,3])
                    586: [1, 3]
                    587: ? isoncurve(acurve,apoint)
                    588: 1
                    589: ? classno(-12391)
                    590: 63
                    591: ? classno(1345)
                    592: 6
                    593: ? classno2(-12391)
                    594: 63
                    595: ? classno2(1345)
                    596: 6
                    597: ? coeff(sin(x),7)
                    598: -1/5040
                    599: ? compimag(qfi(2,1,3),qfi(2,1,3))
                    600: qfi(2, -1, 3)
                    601: ? compo(1+o(7^4),3)
                    602: 1
                    603: ? compositum(x^4-4*x+2,x^3-x-1)
                    604: [x^12 - 4*x^10 + 8*x^9 + 12*x^8 + 12*x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*x
                    605: ^2 - 128*x - 5]~
                    606: ? compositum2(x^4-4*x+2,x^3-x-1)
                    607: [[x^12 - 4*x^10 + 8*x^9 + 12*x^8 + 12*x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*
                    608: x^2 - 128*x - 5, mod(-279140305176/29063006931199*x^11 + 129916611552/290630
                    609: 06931199*x^10 + 1272919322296/29063006931199*x^9 - 2813750209005/29063006931
                    610: 199*x^8 - 2859411937992/29063006931199*x^7 - 414533880536/29063006931199*x^6
                    611:  - 35713977492936/29063006931199*x^5 - 17432607267590/29063006931199*x^4 + 4
                    612: 9785595543672/29063006931199*x^3 + 9423768373204/29063006931199*x^2 - 427797
                    613: 76146743/29063006931199*x + 37962587857138/29063006931199, x^12 - 4*x^10 + 8
                    614: *x^9 + 12*x^8 + 12*x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*x^2 - 128*x - 5), m
                    615: od(-279140305176/29063006931199*x^11 + 129916611552/29063006931199*x^10 + 12
                    616: 72919322296/29063006931199*x^9 - 2813750209005/29063006931199*x^8 - 28594119
                    617: 37992/29063006931199*x^7 - 414533880536/29063006931199*x^6 - 35713977492936/
                    618: 29063006931199*x^5 - 17432607267590/29063006931199*x^4 + 49785595543672/2906
                    619: 3006931199*x^3 + 9423768373204/29063006931199*x^2 - 13716769215544/290630069
                    620: 31199*x + 37962587857138/29063006931199, x^12 - 4*x^10 + 8*x^9 + 12*x^8 + 12
                    621: *x^7 + 138*x^6 + 132*x^5 - 43*x^4 + 58*x^2 - 128*x - 5), -1]]
                    622: ? comprealraw(qfr(5,3,-1,0.),qfr(7,1,-1,0.))
                    623: qfr(35, 43, 13, 0.E-38)
                    624: ? concat([1,2],[3,4])
                    625: [1, 2, 3, 4]
                    626: ? conductor(bnf,[[25,13;0,1],[1,1]])
                    627: [[[5, 3; 0, 1], [1, 0]], [12, [12], [[3, 2; 0, 1]]], mat(12)]
                    628: ? conductorofchar(bnr,[2])
                    629: [[5, 3; 0, 1], [0, 0]]
                    630: ? conj(1+i)
                    631: 1 - I
                    632: ? conjvec(mod(x^2+x+1,x^3-x-1))
                    633: [4.0795956234914387860104177508366260325, 0.46020218825428060699479112458168
                    634: 698369 + 0.18258225455744299269398828369501930573*I, 0.460202188254280606994
                    635: 79112458168698369 - 0.18258225455744299269398828369501930573*I]~
                    636: ? content([123,456,789,234])
                    637: 3
                    638: ? convol(sin(x),x*cos(x))
                    639: x + 1/12*x^3 + 1/2880*x^5 + 1/3628800*x^7 + 1/14631321600*x^9 + 1/1448500838
                    640: 40000*x^11 + 1/2982752926433280000*x^13 + 1/114000816848279961600000*x^15 +
                    641: O(x^16)
                    642: ? core(54713282649239)
                    643: 5471
                    644: ? core2(54713282649239)
                    645: [5471, 100003]
                    646: ? coredisc(54713282649239)
                    647: 21884
                    648: ? coredisc2(54713282649239)
                    649: [21884, 100003/2]
                    650: ? cos(1)
                    651: 0.54030230586813971740093660744297660373
                    652: ? cosh(1)
                    653: 1.5430806348152437784779056207570616825
                    654: ? move(0,200,150)
                    655: ? cursor(0)
                    656: ? cvtoi(1.7)
                    657: 1
                    658: ? cyclo(105)
                    659: x^48 + x^47 + x^46 - x^43 - x^42 - 2*x^41 - x^40 - x^39 + x^36 + x^35 + x^34
                    660:  + x^33 + x^32 + x^31 - x^28 - x^26 - x^24 - x^22 - x^20 + x^17 + x^16 + x^1
                    661: 5 + x^14 + x^13 + x^12 - x^9 - x^8 - 2*x^7 - x^6 - x^5 + x^2 + x + 1
                    662: ? degree(x^3/(x-1))
                    663: 2
                    664: ? denom(12345/54321)
                    665: 18107
                    666: ? deplin(mod(1,7)*[2,-1;1,3])
                    667: [mod(6, 7), mod(5, 7)]~
                    668: ? deriv((x+y)^5,y)
                    669: 5*x^4 + 20*y*x^3 + 30*y^2*x^2 + 20*y^3*x + 5*y^4
                    670: ? ((x+y)^5)'
                    671: 5*x^4 + 20*y*x^3 + 30*y^2*x^2 + 20*y^3*x + 5*y^4
                    672: ? det([1,2,3;1,5,6;9,8,7])
                    673: -30
                    674: ? det2([1,2,3;1,5,6;9,8,7])
                    675: -30
                    676: ? detint([1,2,3;4,5,6])
                    677: 3
                    678: ? diagonal([2,4,6])
                    679:
                    680: [2 0 0]
                    681:
                    682: [0 4 0]
                    683:
                    684: [0 0 6]
                    685:
                    686: ? dilog(0.5)
                    687: 0.58224052646501250590265632015968010858
                    688: ? dz=vector(30,k,1);dd=vector(30,k,k==1);dm=dirdiv(dd,dz)
                    689: [1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -
                    690: 1, 0, 0, 1, 0, 0, -1, -1]
                    691: ? deu=direuler(p=2,100,1/(1-apell(acurve,p)*x+if(acurve[12]%p,p,0)*x^2))
                    692: [1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6, -4, 0, -12, 0, -4, 3, 1
                    693: 0, 2, 0, -1, 4, -9, -2, 6, -12, -4, 8, 15, 0, 2, 12, -1, 0, 6, 0, -9, -6, 2,
                    694:  -10, -12, -4, -9, 12, -6, 2, 0, -4, 1, 18, 10, 0, 0, -12, 8, 12, -8, 8, -6,
                    695:  -8, 4, -30, 8, 0, -6, -4, 9, 0, -1, 2, 3, 0, 5, -12, 4, 8, 9, 18, -15, 6, 0
                    696: , -4, -18, 0, 4, 24, 2, 4, 12, 18, 0, -24, 4, 12, -30, -2]
                    697: ? anell(acurve,100)==deu
                    698: 1
                    699: ? dirmul(abs(dm),dz)
                    700: [1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2,
                    701: 4, 2, 4, 2, 8]
                    702: ? dirzetak(initalg(x^3-10*x+8),30)
                    703: [1, 2, 0, 3, 1, 0, 0, 4, 0, 2, 1, 0, 0, 0, 0, 5, 1, 0, 0, 3, 0, 2, 0, 0, 2,
                    704: 0, 1, 0, 1, 0]
                    705: ? disc(x^3+4*x+12)
                    706: -4144
                    707: ? discf(x^3+4*x+12)
                    708: -1036
                    709: ? discrayabs(bnr,mat(6))
                    710: [12, 12, 18026977100265125]
                    711: ? discrayabs(bnr)
                    712: [24, 12, 40621487921685401825918161408203125]
                    713: ? discrayabscond(bnr2)
                    714: 0
                    715: ? lu=ideallistunitgen(bnf,55);discrayabslist(bnf,lu)
                    716: [[[6, 6, mat([229, 3])]], [], [[], []], [[]], [[12, 12, [5, 3; 229, 6]], [12
                    717: , 12, [5, 3; 229, 6]]], [], [], [], [[], [], []], [], [[], []], [[], []], []
                    718: , [], [[24, 24, [3, 6; 5, 9; 229, 12]], [], [], [24, 24, [3, 6; 5, 9; 229, 1
                    719: 2]]], [[]], [[], []], [], [[18, 18, [19, 6; 229, 9]], [18, 18, [19, 6; 229,
                    720: 9]]], [[], []], [], [], [], [], [[], [24, 24, [5, 12; 229, 12]], []], [], [[
                    721: ], [], [], []], [], [], [], [], [], [[], [12, 12, [3, 3; 11, 3; 229, 6]], [1
                    722: 2, 12, [3, 3; 11, 3; 229, 6]], []], [], [], [[18, 18, [2, 12; 3, 12; 229, 9]
                    723: ], [], [18, 18, [2, 12; 3, 12; 229, 9]]], [[12, 12, [37, 3; 229, 6]], [12, 1
                    724: 2, [37, 3; 229, 6]]], [], [], [], [], [], [[], []], [[], []], [[], [], [], [
                    725: ], [], []], [], [], [[12, 12, [2, 12; 3, 3; 229, 6]], [12, 12, [2, 12; 3, 3;
                    726:  229, 6]]], [[18, 18, [7, 12; 229, 9]]], [], [[], [], [], []], [], [[], []],
                    727:  [], [[], [24, 24, [5, 9; 11, 6; 229, 12]], [24, 24, [5, 9; 11, 6; 229, 12]]
                    728: , []]]
                    729: ? discrayabslistlong(bnf,20)
                    730: [[[[matrix(0,2,j,k,0), 6, 6, mat([229, 3])]], [], [[mat([12, 1]), 0, 0, 0],
                    731: [mat([13, 1]), 0, 0, 0]], [[mat([10, 1]), 0, 0, 0]], [[mat([20, 1]), 12, 12,
                    732:  [5, 3; 229, 6]], [mat([21, 1]), 12, 12, [5, 3; 229, 6]]], [], [], [], [[mat
                    733: ([12, 2]), 0, 0, 0], [[12, 1; 13, 1], 0, 0, 0], [mat([13, 2]), 0, 0, 0]], []
                    734: , [[mat([44, 1]), 0, 0, 0], [mat([45, 1]), 0, 0, 0]], [[[10, 1; 12, 1], 0, 0
                    735: , 0], [[10, 1; 13, 1], 0, 0, 0]], [], [], [[[12, 1; 20, 1], 24, 24, [3, 6; 5
                    736: , 9; 229, 12]], [[13, 1; 20, 1], 0, 0, 0], [[12, 1; 21, 1], 0, 0, 0], [[13,
                    737: 1; 21, 1], 24, 24, [3, 6; 5, 9; 229, 12]]], [[mat([10, 2]), 0, 0, 0]], [[mat
                    738: ([68, 1]), 0, 0, 0], [mat([69, 1]), 0, 0, 0]], [], [[mat([76, 1]), 18, 18, [
                    739: 19, 6; 229, 9]], [mat([77, 1]), 18, 18, [19, 6; 229, 9]]], [[[10, 1; 20, 1],
                    740:  0, 0, 0], [[10, 1; 21, 1], 0, 0, 0]]]]
                    741: ? discrayrel(bnr,mat(6))
                    742: [6, 2, [125, 13; 0, 1]]
                    743: ? discrayrel(bnr)
                    744: [12, 1, [1953125, 1160888; 0, 1]]
                    745: ? discrayrelcond(bnr2)
                    746: 0
                    747: ? divisors(8!)
                    748: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32,
                    749: 35, 36, 40, 42, 45, 48, 56, 60, 63, 64, 70, 72, 80, 84, 90, 96, 105, 112, 12
                    750: 0, 126, 128, 140, 144, 160, 168, 180, 192, 210, 224, 240, 252, 280, 288, 315
                    751: , 320, 336, 360, 384, 420, 448, 480, 504, 560, 576, 630, 640, 672, 720, 840,
                    752:  896, 960, 1008, 1120, 1152, 1260, 1344, 1440, 1680, 1920, 2016, 2240, 2520,
                    753:  2688, 2880, 3360, 4032, 4480, 5040, 5760, 6720, 8064, 10080, 13440, 20160,
                    754: 40320]
                    755: ? divres(345,123)
                    756: [2, 99]~
                    757: ? divres(x^7-1,x^5+1)
                    758: [x^2, -x^2 - 1]~
                    759: ? divsum(8!,x,x)
                    760: 159120
                    761: ? postdraw([0,0,0])
                    762: ? eigen([1,2,3;4,5,6;7,8,9])
                    763:
                    764: [-1.2833494518006402717978106547571267252 1 0.283349451800640271797810654757
                    765: 12672521]
                    766:
                    767: [-0.14167472590032013589890532737856336261 -2 0.6416747259003201358989053273
                    768: 7856336260]
                    769:
                    770: [1 1 1]
                    771:
                    772: ? eint1(2)
                    773: 0.048900510708061119567239835228049522206
                    774: ? erfc(2)
                    775: 0.0046777349810472658379307436327470713891
                    776: ? eta(q)
                    777: 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + O(q^16)
                    778: ? euler
                    779: 0.57721566490153286060651209008240243104
                    780: ? z=y;y=x;eval(z)
                    781: x
                    782: ? exp(1)
                    783: 2.7182818284590452353602874713526624977
                    784: ? extract([1,2,3,4,5,6,7,8,9,10],1000)
                    785: [4, 6, 7, 8, 9, 10]
                    786: ? 10!
                    787: 3628800
                    788: ? fact(10)
                    789: 3628800.0000000000000000000000000000000
                    790: ? factcantor(x^11+1,7)
                    791:
                    792: [mod(1, 7)*x + mod(1, 7) 1]
                    793:
                    794: [mod(1, 7)*x^10 + mod(6, 7)*x^9 + mod(1, 7)*x^8 + mod(6, 7)*x^7 + mod(1, 7)*
                    795: x^6 + mod(6, 7)*x^5 + mod(1, 7)*x^4 + mod(6, 7)*x^3 + mod(1, 7)*x^2 + mod(6,
                    796:  7)*x + mod(1, 7) 1]
                    797:
                    798: ? centerlift(lift(factfq(x^3+x^2+x-1,3,t^3+t^2+t-1)))
                    799:
                    800: [x - t 1]
                    801:
                    802: [x + (t^2 + t - 1) 1]
                    803:
                    804: [x + (-t^2 - 1) 1]
                    805:
                    806: ? factmod(x^11+1,7)
                    807:
                    808: [mod(1, 7)*x + mod(1, 7) 1]
                    809:
                    810: [mod(1, 7)*x^10 + mod(6, 7)*x^9 + mod(1, 7)*x^8 + mod(6, 7)*x^7 + mod(1, 7)*
                    811: x^6 + mod(6, 7)*x^5 + mod(1, 7)*x^4 + mod(6, 7)*x^3 + mod(1, 7)*x^2 + mod(6,
                    812:  7)*x + mod(1, 7) 1]
                    813:
                    814: ? factor(17!+1)
                    815:
                    816: [661 1]
                    817:
                    818: [537913 1]
                    819:
                    820: [1000357 1]
                    821:
                    822: ? p=x^5+3021*x^4-786303*x^3-6826636057*x^2-546603588746*x+3853890514072057
                    823: x^5 + 3021*x^4 - 786303*x^3 - 6826636057*x^2 - 546603588746*x + 385389051407
                    824: 2057
                    825: ? fa=[11699,6;2392997,2;4987333019653,2]
                    826:
                    827: [11699 6]
                    828:
                    829: [2392997 2]
                    830:
                    831: [4987333019653 2]
                    832:
                    833: ? factoredbasis(p,fa)
                    834: [1, x, x^2, 1/11699*x^3 + 1847/11699*x^2 - 132/11699*x - 2641/11699, 1/13962
                    835: 3738889203638909659*x^4 - 1552451622081122020/139623738889203638909659*x^3 +
                    836:  418509858130821123141/139623738889203638909659*x^2 - 6810913798507599407313
                    837: 4/139623738889203638909659*x - 13185339461968406/58346808996920447]
                    838: ? factoreddiscf(p,fa)
                    839: 136866601
                    840: ? factoredpolred(p,fa)
                    841: [x - 1, x^5 - 2*x^4 - 62*x^3 + 85*x^2 + 818*x + 1, x^5 - 2*x^4 - 53*x^3 - 46
                    842: *x^2 + 508*x + 913, x^5 - 2*x^4 - 13*x^3 + 37*x^2 - 21*x - 1, x^5 - x^4 - 52
                    843: *x^3 - 197*x^2 - 273*x - 127]
                    844: ? factoredpolred2(p,fa)
                    845:
                    846: [1 x - 1]
                    847:
                    848: [320031469790/139623738889203638909659*x^4 + 525154323698149/139623738889203
                    849: 638909659*x^3 + 68805502220272624/139623738889203638909659*x^2 + 11626197624
                    850: 4907072724/139623738889203638909659*x - 265513916545157609/58346808996920447
                    851:  x^5 - 2*x^4 - 62*x^3 + 85*x^2 + 818*x + 1]
                    852:
                    853: [-649489679500/139623738889203638909659*x^4 - 1004850936416946/1396237388892
                    854: 03638909659*x^3 + 1850137668999773331/139623738889203638909659*x^2 + 1162464
                    855: 435118744503168/139623738889203638909659*x - 744221404070129897/583468089969
                    856: 20447 x^5 - 2*x^4 - 53*x^3 - 46*x^2 + 508*x + 913]
                    857:
                    858: [404377049971/139623738889203638909659*x^4 + 1028343729806593/13962373888920
                    859: 3638909659*x^3 - 220760129739668913/139623738889203638909659*x^2 - 139192454
                    860: 3479498840309/139623738889203638909659*x - 21580477171925514/583468089969204
                    861: 47 x^5 - 2*x^4 - 13*x^3 + 37*x^2 - 21*x - 1]
                    862:
                    863: [160329790087/139623738889203638909659*x^4 + 1043812506369034/13962373888920
                    864: 3638909659*x^3 + 1517006779298914407/139623738889203638909659*x^2 - 52234888
                    865: 8528537141362/139623738889203638909659*x - 677624890046649103/58346808996920
                    866: 447 x^5 - x^4 - 52*x^3 - 197*x^2 - 273*x - 127]
                    867:
                    868: ? factornf(x^3+x^2-2*x-1,t^3+t^2-2*t-1)
                    869:
                    870: [mod(1, t^3 + t^2 - 2*t - 1)*x + mod(-t, t^3 + t^2 - 2*t - 1) 1]
                    871:
                    872: [mod(1, t^3 + t^2 - 2*t - 1)*x + mod(-t^2 + 2, t^3 + t^2 - 2*t - 1) 1]
                    873:
                    874: [mod(1, t^3 + t^2 - 2*t - 1)*x + mod(t^2 + t - 1, t^3 + t^2 - 2*t - 1) 1]
                    875:
                    876: ? factorpadic(apol,7,8)
                    877:
                    878: [(1 + O(7^8))*x + (6 + 2*7^2 + 2*7^3 + 3*7^4 + 2*7^5 + 6*7^6 + O(7^8)) 1]
                    879:
                    880: [(1 + O(7^8))*x^2 + (1 + 6*7 + 4*7^2 + 4*7^3 + 3*7^4 + 4*7^5 + 6*7^7 + O(7^8
                    881: ))*x + (6 + 5*7 + 3*7^2 + 6*7^3 + 7^4 + 3*7^5 + 2*7^6 + 5*7^7 + O(7^8)) 1]
                    882:
                    883: ? factorpadic2(apol,7,8)
                    884:
                    885: [(1 + O(7^8))*x + (6 + 2*7^2 + 2*7^3 + 3*7^4 + 2*7^5 + 6*7^6 + O(7^8)) 1]
                    886:
                    887: [(1 + O(7^8))*x^2 + (1 + 6*7 + 4*7^2 + 4*7^3 + 3*7^4 + 4*7^5 + 6*7^7 + O(7^8
                    888: ))*x + (6 + 5*7 + 3*7^2 + 6*7^3 + 7^4 + 3*7^5 + 2*7^6 + 5*7^7 + O(7^8)) 1]
                    889:
                    890: ? factpol(x^15-1,3,1)
                    891:
                    892: [x - 1 1]
                    893:
                    894: [x^2 + x + 1 1]
                    895:
                    896: [x^12 + x^9 + x^6 + x^3 + 1 1]
                    897:
                    898: ? factpol(x^15-1,0,1)
                    899:
                    900: [x - 1 1]
                    901:
                    902: [x^2 + x + 1 1]
                    903:
                    904: [x^4 + x^3 + x^2 + x + 1 1]
                    905:
                    906: [x^8 - x^7 + x^5 - x^4 + x^3 - x + 1 1]
                    907:
                    908: ? factpol2(x^15-1,0)
                    909:
                    910: [x - 1 1]
                    911:
                    912: [x^2 + x + 1 1]
                    913:
                    914: [x^4 + x^3 + x^2 + x + 1 1]
                    915:
                    916: [x^8 - x^7 + x^5 - x^4 + x^3 - x + 1 1]
                    917:
                    918: ? fibo(100)
                    919: 354224848179261915075
                    920: ? floor(-1/2)
                    921: -1
                    922: ? floor(-2.5)
                    923: -3
                    924: ? for(x=1,5,print(x!))
                    925: 1
                    926: 2
                    927: 6
                    928: 24
                    929: 120
                    930: ? fordiv(10,x,print(x))
                    931: 1
                    932: 2
                    933: 5
                    934: 10
                    935: ? forprime(p=1,30,print(p))
                    936: 2
                    937: 3
                    938: 5
                    939: 7
                    940: 11
                    941: 13
                    942: 17
                    943: 19
                    944: 23
                    945: 29
                    946: ? forstep(x=0,pi,pi/12,print(sin(x)))
                    947: 0.E-38
                    948: 0.25881904510252076234889883762404832834
                    949: 0.49999999999999999999999999999999999999
                    950: 0.70710678118654752440084436210484903928
                    951: 0.86602540378443864676372317075293618346
                    952: 0.96592582628906828674974319972889736763
                    953: 1.0000000000000000000000000000000000000
                    954: 0.96592582628906828674974319972889736764
                    955: 0.86602540378443864676372317075293618348
                    956: 0.70710678118654752440084436210484903930
                    957: 0.50000000000000000000000000000000000002
                    958: 0.25881904510252076234889883762404832838
                    959: 4.7019774032891500318749461488889827112 E-38
                    960: ? forvec(x=[[1,3],[-2,2]],print1([x[1],x[2]]," "));print(" ");
                    961: [1, -2] [1, -1] [1, 0] [1, 1] [1, 2] [2, -2] [2, -1] [2, 0] [2, 1] [2, 2] [3
                    962: , -2] [3, -1] [3, 0] [3, 1] [3, 2]
                    963: ? frac(-2.7)
                    964: 0.30000000000000000000000000000000000000
                    965: ? galois(x^6-3*x^2-1)
                    966: [12, 1, 1]
                    967: ? nf3=initalg(x^6+108);galoisconj(nf3)
                    968: [-x, x, -1/12*x^4 - 1/2*x, -1/12*x^4 + 1/2*x, 1/12*x^4 - 1/2*x, 1/12*x^4 + 1
                    969: /2*x]~
                    970: ? galoisconjforce(nf3)
                    971:   ***   this function has been suppressed.
                    972:
                    973: ? aut=%[2];galoisapply(nf3,aut,mod(x^5,x^6+108))
                    974: mod(x^5, x^6 + 108)
                    975: ? gamh(10)
                    976: 1133278.3889487855673345741655888924755
                    977: ? gamma(10.5)
                    978: 1133278.3889487855673345741655888924755
                    979: ? gauss(hilbert(10),[1,2,3,4,5,6,7,8,9,0]~)
                    980: [9236800, -831303990, 18288515520, -170691240720, 832112321040, -23298940665
                    981: 00, 3883123564320, -3803844432960, 2020775945760, -449057772020]~
                    982: ? gaussmodulo([2,3;5,4],[7,11],[1,4]~)
                    983: [-5, -1]~
                    984: ? gaussmodulo2([2,3;5,4],[7,11],[1,4]~)
                    985: [[-5, -1]~, [-77, 723; 0, 1]]
                    986: ? gcd(12345678,87654321)
                    987: 9
                    988: ? getheap()
                    989: [214, 46202]
                    990: ? getrand()
                    991: 1285582432
                    992: ? getstack()
                    993: 0
                    994: ? globalred(acurve)
                    995: [37, [1, -1, 2, 2], 1]
                    996: ? getstack()
                    997: 0
                    998: ? hclassno(2000003)
                    999: 357
                   1000: ? hell(acurve,apoint)
                   1001: 0.40889126591975072188708879805553617287
                   1002: ? hell2(acurve,apoint)
                   1003: 0.40889126591975072188708879805553617296
                   1004: ? hermite(amat=1/hilbert(7))
                   1005:
                   1006: [420 0 0 0 210 168 175]
                   1007:
                   1008: [0 840 0 0 0 0 504]
                   1009:
                   1010: [0 0 2520 0 0 0 1260]
                   1011:
                   1012: [0 0 0 2520 0 0 840]
                   1013:
                   1014: [0 0 0 0 13860 0 6930]
                   1015:
                   1016: [0 0 0 0 0 5544 0]
                   1017:
                   1018: [0 0 0 0 0 0 12012]
                   1019:
                   1020: ? hermite2(amat)
                   1021: [[420, 0, 0, 0, 210, 168, 175; 0, 840, 0, 0, 0, 0, 504; 0, 0, 2520, 0, 0, 0,
                   1022:  1260; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 13860, 0, 6930; 0, 0, 0, 0, 0,
                   1023: 5544, 0; 0, 0, 0, 0, 0, 0, 12012], [420, 420, 840, 630, 2982, 1092, 4159; 21
                   1024: 0, 280, 630, 504, 2415, 876, 3395; 140, 210, 504, 420, 2050, 749, 2901; 105,
                   1025:  168, 420, 360, 1785, 658, 2542; 84, 140, 360, 315, 1582, 588, 2266; 70, 120
                   1026: , 315, 280, 1421, 532, 2046; 60, 105, 280, 252, 1290, 486, 1866]]
                   1027: ? hermitehavas(amat)
                   1028: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
                   1029: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
                   1030: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
                   1031: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
                   1032: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
                   1033: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
                   1034: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
                   1035: ? hermitemod(amat,detint(amat))
                   1036:
                   1037: [420 0 0 0 210 168 175]
                   1038:
                   1039: [0 840 0 0 0 0 504]
                   1040:
                   1041: [0 0 2520 0 0 0 1260]
                   1042:
                   1043: [0 0 0 2520 0 0 840]
                   1044:
                   1045: [0 0 0 0 13860 0 6930]
                   1046:
                   1047: [0 0 0 0 0 5544 0]
                   1048:
                   1049: [0 0 0 0 0 0 12012]
                   1050:
                   1051: ? hermiteperm(amat)
                   1052: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
                   1053: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
                   1054: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
                   1055: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
                   1056: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
                   1057: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
                   1058: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
                   1059: ? hess(hilbert(7))
                   1060:
                   1061: [1 90281/58800 -1919947/4344340 4858466341/1095033030 -77651417539/819678732
                   1062: 6 3386888964/106615355 1/2]
                   1063:
                   1064: [1/3 43/48 38789/5585580 268214641/109503303 -581330123627/126464718744 4365
                   1065: 450643/274153770 1/4]
                   1066:
                   1067: [0 217/2880 442223/7447440 53953931/292008808 -32242849453/168619624992 1475
                   1068: 457901/1827691800 1/80]
                   1069:
                   1070: [0 0 1604444/264539275 24208141/149362505292 847880210129/47916076768560 -45
                   1071: 44407141/103873817300 -29/40920]
                   1072:
                   1073: [0 0 0 9773092581/35395807550620 -24363634138919/107305824577186620 72118203
                   1074: 606917/60481351061158500 55899/3088554700]
                   1075:
                   1076: [0 0 0 0 67201501179065/8543442888354179988 -9970556426629/74082861999267660
                   1077: 0 -3229/13661312210]
                   1078:
                   1079: [0 0 0 0 0 -258198800769/9279048099409000 -13183/38381527800]
                   1080:
                   1081: ? hilb(2/3,3/4,5)
                   1082: 1
                   1083: ? hilbert(5)
                   1084:
                   1085: [1 1/2 1/3 1/4 1/5]
                   1086:
                   1087: [1/2 1/3 1/4 1/5 1/6]
                   1088:
                   1089: [1/3 1/4 1/5 1/6 1/7]
                   1090:
                   1091: [1/4 1/5 1/6 1/7 1/8]
                   1092:
                   1093: [1/5 1/6 1/7 1/8 1/9]
                   1094:
                   1095: ? hilbp(mod(5,7),mod(6,7))
                   1096: 1
                   1097: ? hvector(10,x,1/x)
                   1098: [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10]
                   1099: ? hyperu(1,1,1)
                   1100: 0.59634736232319407434107849936927937488
                   1101: ? i^2
                   1102: -1
                   1103: ? nf1=initalgred(nfpol)
                   1104: [x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2, [1, 2], 595125, 4, [[1, -1.089115145
                   1105: 7205048250249527946671612684, 1.1861718006377964594796293860483989860, -0.59
                   1106: 741050929194782733001765987770358483, 0.158944197453903762065494816710718942
                   1107: 89; 1, -0.13838372073406036365047976417441696637 + 0.49181637657768643499753
                   1108: 285514741525107*I, -0.22273329410580226599155701611419649154 - 0.13611876021
                   1109: 752805221674918029071012580*I, -0.13167445871785818798769651537619416009 + 0
                   1110: .13249517760521973840801462296650806543*I, -0.053650958656997725359297528357
                   1111: 602608116 + 0.27622636814169107038138284681568361486*I; 1, 1.682941293594312
                   1112: 7761629561615079976005 + 2.0500351226010726172974286983598602163*I, -1.37035
                   1113: 26062130959637482576769100030014 + 6.9001775222880494773720769629846373016*I
                   1114: , -8.0696202866361678983472946546849540475 + 8.87676767859710424508852843013
                   1115: 48051602*I, -22.025821140069954155673449879997756863 - 8.4306586896999153544
                   1116: 710860185447589664*I], [1, 2, 2; -1.0891151457205048250249527946671612684, -
                   1117: 0.27676744146812072730095952834883393274 - 0.9836327531553728699950657102948
                   1118: 3050214*I, 3.3658825871886255523259123230159952011 - 4.100070245202145234594
                   1119: 8573967197204327*I; 1.1861718006377964594796293860483989860, -0.445466588211
                   1120: 60453198311403222839298308 + 0.27223752043505610443349836058142025160*I, -2.
                   1121: 7407052124261919274965153538200060029 - 13.800355044576098954744153925969274
                   1122: 603*I; -0.59741050929194782733001765987770358483, -0.26334891743571637597539
                   1123: 303075238832018 - 0.26499035521043947681602924593301613087*I, -16.1392405732
                   1124: 72335796694589309369908095 - 17.753535357194208490177056860269610320*I; 0.15
                   1125: 894419745390376206549481671071894289, -0.10730191731399545071859505671520521
                   1126: 623 - 0.55245273628338214076276569363136722973*I, -44.0516422801399083113468
                   1127: 99759995513726 + 16.861317379399830708942172037089517932*I], [5, 2.000000000
                   1128: 0000000000000000000000000000, -2.0000000000000000000000000000000000000, -17.
                   1129: 000000000000000000000000000000000000, -44.0000000000000000000000000000000000
                   1130: 00; 2.0000000000000000000000000000000000000, 15.7781094086719980448363574712
                   1131: 83695361, 22.314643349754061651916553814602769764, 10.0513952578314782754999
                   1132: 32716306366248, -108.58917507620841447456569092094763671; -2.000000000000000
                   1133: 0000000000000000000000, 22.314643349754061651916553814602769764, 100.5239126
                   1134: 2388960975827806174040462368, 143.93295090847353519436673793501057176, -55.8
                   1135: 42564718082452641322500190813370023; -17.00000000000000000000000000000000000
                   1136: 0, 10.051395257831478275499932716306366248, 143.9329509084735351943667379350
                   1137: 1057176, 288.25823756749944693139292174819167135, 205.7984003827766237572018
                   1138: 0649465932302; -44.000000000000000000000000000000000000, -108.58917507620841
                   1139: 447456569092094763671, -55.842564718082452641322500190813370023, 205.7984003
                   1140: 8277662375720180649465932302, 1112.6092277946777707779250962522343036], [5,
                   1141: 2, -2, -17, -44; 2, -2, -34, -63, -40; -2, -34, -90, -101, 177; -17, -63, -1
                   1142: 01, -27, 505; -44, -40, 177, 505, 828], [345, 0, 160, 252, 156; 0, 345, 215,
                   1143:  311, 306; 0, 0, 5, 3, 2; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [163875, -388125, -
                   1144: 296700, 234600, -89700; -388125, -1593900, -677925, 595125, -315675; -296700
                   1145: , -677925, 17250, 58650, -87975; 234600, 595125, 58650, -100050, 89700; -897
                   1146: 00, -315675, -87975, 89700, -55200], [595125, [-167325, -82800, 79350, 1725,
                   1147:  0]~, 125439056256992431640625]], [-1.0891151457205048250249527946671612684,
                   1148:  -0.13838372073406036365047976417441696637 + 0.49181637657768643499753285514
                   1149: 741525107*I, 1.6829412935943127761629561615079976005 + 2.0500351226010726172
                   1150: 974286983598602163*I], [1, x, x^2, 1/2*x^3 + 1/2*x^2 + 1/2*x, 1/2*x^4 + 1/2*
                   1151: x], [1, 0, 0, 0, 0; 0, 1, 0, -1, -1; 0, 0, 1, -1, 0; 0, 0, 0, 2, 0; 0, 0, 0,
                   1152:  0, 2], [1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, -2, 0, 0, -1, -2, -2, 0
                   1153: , -1, -2, -2, 5; 0, 1, 0, 0, 0, 1, 0, -1, -1, -1, 0, -1, -1, -2, 2, 0, -1, -
                   1154: 2, -1, 7, 0, -1, 2, 7, 14; 0, 0, 1, 0, 0, 0, 1, -1, 0, -2, 1, -1, 0, -3, -3,
                   1155:  0, 0, -3, -4, -1, 0, -2, -3, -1, 15; 0, 0, 0, 1, 0, 0, 0, 2, 1, -3, 0, 2, 0
                   1156: , -2, -13, 1, 1, -2, -9, -19, 0, -3, -13, -19, 7; 0, 0, 0, 0, 1, 0, 0, 0, 1,
                   1157:  2, 0, 0, 2, 3, 1, 0, 1, 3, 4, -4, 1, 2, 1, -4, -21]]
                   1158: ? initalgred2(nfpol)
                   1159: [[x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2, [1, 2], 595125, 4, [[1, -1.08911514
                   1160: 57205048250249527946671612684, 1.1861718006377964594796293860483989860, -0.5
                   1161: 9741050929194782733001765987770358483, 0.15894419745390376206549481671071894
                   1162: 289; 1, -0.13838372073406036365047976417441696637 + 0.4918163765776864349975
                   1163: 3285514741525107*I, -0.22273329410580226599155701611419649154 - 0.1361187602
                   1164: 1752805221674918029071012580*I, -0.13167445871785818798769651537619416009 +
                   1165: 0.13249517760521973840801462296650806543*I, -0.05365095865699772535929752835
                   1166: 7602608116 + 0.27622636814169107038138284681568361486*I; 1, 1.68294129359431
                   1167: 27761629561615079976005 + 2.0500351226010726172974286983598602163*I, -1.3703
                   1168: 526062130959637482576769100030014 + 6.9001775222880494773720769629846373016*
                   1169: I, -8.0696202866361678983472946546849540475 + 8.8767676785971042450885284301
                   1170: 348051602*I, -22.025821140069954155673449879997756863 - 8.430658689699915354
                   1171: 4710860185447589664*I], [1, 2, 2; -1.0891151457205048250249527946671612684,
                   1172: -0.27676744146812072730095952834883393274 - 0.983632753155372869995065710294
                   1173: 83050214*I, 3.3658825871886255523259123230159952011 - 4.10007024520214523459
                   1174: 48573967197204327*I; 1.1861718006377964594796293860483989860, -0.44546658821
                   1175: 160453198311403222839298308 + 0.27223752043505610443349836058142025160*I, -2
                   1176: .7407052124261919274965153538200060029 - 13.80035504457609895474415392596927
                   1177: 4603*I; -0.59741050929194782733001765987770358483, -0.2633489174357163759753
                   1178: 9303075238832018 - 0.26499035521043947681602924593301613087*I, -16.139240573
                   1179: 272335796694589309369908095 - 17.753535357194208490177056860269610320*I; 0.1
                   1180: 5894419745390376206549481671071894289, -0.1073019173139954507185950567152052
                   1181: 1623 - 0.55245273628338214076276569363136722973*I, -44.051642280139908311346
                   1182: 899759995513726 + 16.861317379399830708942172037089517932*I], [5, 2.00000000
                   1183: 00000000000000000000000000000, -2.0000000000000000000000000000000000000, -17
                   1184: .000000000000000000000000000000000000, -44.000000000000000000000000000000000
                   1185: 000; 2.0000000000000000000000000000000000000, 15.778109408671998044836357471
                   1186: 283695361, 22.314643349754061651916553814602769764, 10.051395257831478275499
                   1187: 932716306366248, -108.58917507620841447456569092094763671; -2.00000000000000
                   1188: 00000000000000000000000, 22.314643349754061651916553814602769764, 100.523912
                   1189: 62388960975827806174040462368, 143.93295090847353519436673793501057176, -55.
                   1190: 842564718082452641322500190813370023; -17.0000000000000000000000000000000000
                   1191: 00, 10.051395257831478275499932716306366248, 143.932950908473535194366737935
                   1192: 01057176, 288.25823756749944693139292174819167135, 205.798400382776623757201
                   1193: 80649465932302; -44.000000000000000000000000000000000000, -108.5891750762084
                   1194: 1447456569092094763671, -55.842564718082452641322500190813370023, 205.798400
                   1195: 38277662375720180649465932302, 1112.6092277946777707779250962522343036], [5,
                   1196:  2, -2, -17, -44; 2, -2, -34, -63, -40; -2, -34, -90, -101, 177; -17, -63, -
                   1197: 101, -27, 505; -44, -40, 177, 505, 828], [345, 0, 160, 252, 156; 0, 345, 215
                   1198: , 311, 306; 0, 0, 5, 3, 2; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [163875, -388125,
                   1199: -296700, 234600, -89700; -388125, -1593900, -677925, 595125, -315675; -29670
                   1200: 0, -677925, 17250, 58650, -87975; 234600, 595125, 58650, -100050, 89700; -89
                   1201: 700, -315675, -87975, 89700, -55200], [595125, [-167325, -82800, 79350, 1725
                   1202: , 0]~, 125439056256992431640625]], [-1.0891151457205048250249527946671612684
                   1203: , -0.13838372073406036365047976417441696637 + 0.4918163765776864349975328551
                   1204: 4741525107*I, 1.6829412935943127761629561615079976005 + 2.050035122601072617
                   1205: 2974286983598602163*I], [1, x, x^2, 1/2*x^3 + 1/2*x^2 + 1/2*x, 1/2*x^4 + 1/2
                   1206: *x], [1, 0, 0, 0, 0; 0, 1, 0, -1, -1; 0, 0, 1, -1, 0; 0, 0, 0, 2, 0; 0, 0, 0
                   1207: , 0, 2], [1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, -2, 0, 0, -1, -2, -2,
                   1208: 0, -1, -2, -2, 5; 0, 1, 0, 0, 0, 1, 0, -1, -1, -1, 0, -1, -1, -2, 2, 0, -1,
                   1209: -2, -1, 7, 0, -1, 2, 7, 14; 0, 0, 1, 0, 0, 0, 1, -1, 0, -2, 1, -1, 0, -3, -3
                   1210: , 0, 0, -3, -4, -1, 0, -2, -3, -1, 15; 0, 0, 0, 1, 0, 0, 0, 2, 1, -3, 0, 2,
                   1211: 0, -2, -13, 1, 1, -2, -9, -19, 0, -3, -13, -19, 7; 0, 0, 0, 0, 1, 0, 0, 0, 1
                   1212: , 2, 0, 0, 2, 3, 1, 0, 1, 3, 4, -4, 1, 2, 1, -4, -21]], mod(-1/2*x^4 + 3/2*x
                   1213: ^3 - 5/2*x^2 - 2*x + 1, x^5 - 2*x^4 + 3*x^3 + 8*x^2 + 3*x + 2)]
                   1214: ? vp=primedec(nf,3)[1]
                   1215: [3, [1, 1, 0, 0, 0]~, 1, 1, [1, -1, -1, 0, 0]~]
                   1216: ? idx=idealmul(nf,idmat(5),vp)
                   1217:
                   1218: [3 1 2 2 2]
                   1219:
                   1220: [0 1 0 0 0]
                   1221:
                   1222: [0 0 1 0 0]
                   1223:
                   1224: [0 0 0 1 0]
                   1225:
                   1226: [0 0 0 0 1]
                   1227:
                   1228: ? idealinv(nf,idx)
                   1229:
                   1230: [1 0 2/3 0 0]
                   1231:
                   1232: [0 1 1/3 0 0]
                   1233:
                   1234: [0 0 1/3 0 0]
                   1235:
                   1236: [0 0 0 1 0]
                   1237:
                   1238: [0 0 0 0 1]
                   1239:
                   1240: ? idy=ideallllred(nf,idx,[1,5,6])
                   1241:
                   1242: [5 0 0 2 0]
                   1243:
                   1244: [0 5 0 0 0]
                   1245:
                   1246: [0 0 5 2 0]
                   1247:
                   1248: [0 0 0 1 0]
                   1249:
                   1250: [0 0 0 0 5]
                   1251:
                   1252: ? idealadd(nf,idx,idy)
                   1253:
                   1254: [1 0 0 0 0]
                   1255:
                   1256: [0 1 0 0 0]
                   1257:
                   1258: [0 0 1 0 0]
                   1259:
                   1260: [0 0 0 1 0]
                   1261:
                   1262: [0 0 0 0 1]
                   1263:
                   1264: ? idealaddone(nf,idx,idy)
                   1265: [[3, 0, 2, 1, 0]~, [-2, 0, -2, -1, 0]~]
                   1266: ? idealaddmultone(nf,[idy,idx])
                   1267: [[-5, 0, 0, 0, 0]~, [6, 0, 0, 0, 0]~]
                   1268: ? idealappr(nf,idy)
                   1269: [-2, 0, -2, 4, 0]~
                   1270: ? idealapprfact(nf,idealfactor(nf,idy))
                   1271: [-2, 0, -2, 4, 0]~
                   1272: ? idealcoprime(nf,idx,idx)
                   1273: [-2/3, 2/3, -1/3, 0, 0]~
                   1274: ? idz=idealintersect(nf,idx,idy)
                   1275:
                   1276: [15 5 10 12 10]
                   1277:
                   1278: [0 5 0 0 0]
                   1279:
                   1280: [0 0 5 2 0]
                   1281:
                   1282: [0 0 0 1 0]
                   1283:
                   1284: [0 0 0 0 5]
                   1285:
                   1286: ? idealfactor(nf,idz)
                   1287:
                   1288: [[3, [1, 1, 0, 0, 0]~, 1, 1, [1, -1, -1, 0, 0]~] 1]
                   1289:
                   1290: [[5, [-2, 0, 0, 0, 1]~, 1, 1, [2, 2, 1, 1, 4]~] 1]
                   1291:
                   1292: [[5, [0, 0, -1, 0, 1]~, 4, 1, [4, 5, 4, 2, 0]~] 3]
                   1293:
                   1294: ? ideallist(bnf,20)
                   1295: [[[1, 0; 0, 1]], [], [[3, 2; 0, 1], [3, 0; 0, 1]], [[2, 0; 0, 2]], [[5, 3; 0
                   1296: , 1], [5, 1; 0, 1]], [], [], [], [[9, 5; 0, 1], [3, 0; 0, 3], [9, 3; 0, 1]],
                   1297:  [], [[11, 9; 0, 1], [11, 1; 0, 1]], [[6, 4; 0, 2], [6, 0; 0, 2]], [], [], [
                   1298: [15, 8; 0, 1], [15, 3; 0, 1], [15, 11; 0, 1], [15, 6; 0, 1]], [[4, 0; 0, 4]]
                   1299: , [[17, 14; 0, 1], [17, 2; 0, 1]], [], [[19, 18; 0, 1], [19, 0; 0, 1]], [[10
                   1300: , 6; 0, 2], [10, 2; 0, 2]]]
                   1301: ? idx2=idealmul(nf,idx,idx)
                   1302:
                   1303: [9 7 5 8 2]
                   1304:
                   1305: [0 1 0 0 0]
                   1306:
                   1307: [0 0 1 0 0]
                   1308:
                   1309: [0 0 0 1 0]
                   1310:
                   1311: [0 0 0 0 1]
                   1312:
                   1313: ? idt=idealmulred(nf,idx,idx)
                   1314:
                   1315: [2 0 0 0 1]
                   1316:
                   1317: [0 2 0 0 1]
                   1318:
                   1319: [0 0 2 0 0]
                   1320:
                   1321: [0 0 0 2 1]
                   1322:
                   1323: [0 0 0 0 1]
                   1324:
                   1325: ? idealdiv(nf,idy,idt)
                   1326:
                   1327: [5 5/2 5/2 7/2 0]
                   1328:
                   1329: [0 5/2 0 0 0]
                   1330:
                   1331: [0 0 5/2 1 0]
                   1332:
                   1333: [0 0 0 1/2 0]
                   1334:
                   1335: [0 0 0 0 5/2]
                   1336:
                   1337: ? idealdivexact(nf,idx2,idx)
                   1338:
                   1339: [3 1 2 2 2]
                   1340:
                   1341: [0 1 0 0 0]
                   1342:
                   1343: [0 0 1 0 0]
                   1344:
                   1345: [0 0 0 1 0]
                   1346:
                   1347: [0 0 0 0 1]
                   1348:
                   1349: ? idealhermite(nf,vp)
                   1350:
                   1351: [3 1 2 2 2]
                   1352:
                   1353: [0 1 0 0 0]
                   1354:
                   1355: [0 0 1 0 0]
                   1356:
                   1357: [0 0 0 1 0]
                   1358:
                   1359: [0 0 0 0 1]
                   1360:
                   1361: ? idealhermite2(nf,vp[2],3)
                   1362:
                   1363: [3 1 2 2 2]
                   1364:
                   1365: [0 1 0 0 0]
                   1366:
                   1367: [0 0 1 0 0]
                   1368:
                   1369: [0 0 0 1 0]
                   1370:
                   1371: [0 0 0 0 1]
                   1372:
                   1373: ? idealnorm(nf,idt)
                   1374: 16
                   1375: ? idp=idealpow(nf,idx,7)
                   1376:
                   1377: [2187 1807 2129 692 1379]
                   1378:
                   1379: [0 1 0 0 0]
                   1380:
                   1381: [0 0 1 0 0]
                   1382:
                   1383: [0 0 0 1 0]
                   1384:
                   1385: [0 0 0 0 1]
                   1386:
                   1387: ? idealpowred(nf,idx,7)
                   1388:
                   1389: [2 0 0 0 1]
                   1390:
                   1391: [0 2 0 0 1]
                   1392:
                   1393: [0 0 2 0 0]
                   1394:
                   1395: [0 0 0 2 1]
                   1396:
                   1397: [0 0 0 0 1]
                   1398:
                   1399: ? idealtwoelt(nf,idy)
                   1400: [5, [2, 0, 2, 1, 0]~]
                   1401: ? idealtwoelt2(nf,idy,10)
                   1402: [-2, 0, -2, -1, 0]~
                   1403: ? idealval(nf,idp,vp)
                   1404: 7
                   1405: ? idmat(5)
                   1406:
                   1407: [1 0 0 0 0]
                   1408:
                   1409: [0 1 0 0 0]
                   1410:
                   1411: [0 0 1 0 0]
                   1412:
                   1413: [0 0 0 1 0]
                   1414:
                   1415: [0 0 0 0 1]
                   1416:
                   1417: ? if(3<2,print("bof"),print("ok"));
                   1418: ok
                   1419: ? imag(2+3*i)
                   1420: 3
                   1421: ? image([1,3,5;2,4,6;3,5,7])
                   1422:
                   1423: [1 3]
                   1424:
                   1425: [2 4]
                   1426:
                   1427: [3 5]
                   1428:
                   1429: ? image(pi*[1,3,5;2,4,6;3,5,7])
                   1430:
                   1431: [3.1415926535897932384626433832795028841 9.424777960769379715387930149838508
                   1432: 6525]
                   1433:
                   1434: [6.2831853071795864769252867665590057683 12.56637061435917295385057353311801
                   1435: 1536]
                   1436:
                   1437: [9.4247779607693797153879301498385086525 15.70796326794896619231321691639751
                   1438: 4420]
                   1439:
                   1440: ? incgam(2,1)
                   1441: 0.73575888234288464319104754032292173491
                   1442: ? incgam1(2,1)
                   1443: -0.26424111765711535680895245967678075578
                   1444: ? incgam2(2,1)
                   1445: 0.73575888234288464319104754032292173489
                   1446: ? incgam3(2,1)
                   1447: 0.26424111765711535680895245967707826508
                   1448: ? incgam4(4,1,6)
                   1449: 5.8860710587430771455283803225833738791
                   1450: ? indexrank([1,1,1;1,1,1;1,1,2])
                   1451: [[1, 3], [1, 3]]
                   1452: ? indsort([8,7,6,5])
                   1453: [4, 3, 2, 1]
                   1454: ? initell([0,0,0,-1,0])
                   1455: [0, 0, 0, -1, 0, 0, -2, 0, -1, 48, 0, 64, 1728, [1.0000000000000000000000000
                   1456: 000000000000, 0.E-38, -1.0000000000000000000000000000000000000]~, 2.62205755
                   1457: 42921198104648395898911194136, 2.6220575542921198104648395898911194136*I, -0
                   1458: .59907011736779610371996124614016193910, -1.79721035210338831115988373842048
                   1459: 58173*I, 6.8751858180203728274900957798105571979]
                   1460: ? initrect(1,700,700)
                   1461: ? nfz=initzeta(x^2-2);
                   1462: ? integ(sin(x),x)
                   1463: 1/2*x^2 - 1/24*x^4 + 1/720*x^6 - 1/40320*x^8 + 1/3628800*x^10 - 1/479001600*
                   1464: x^12 + 1/87178291200*x^14 - 1/20922789888000*x^16 + O(x^17)
                   1465: ? integ((-x^2-2*a*x+8*a)/(x^4-14*x^3+(2*a+49)*x^2-14*a*x+a^2),x)
                   1466: (x + a)/(x^2 - 7*x + a)
                   1467: ? intersect([1,2;3,4;5,6],[2,3;7,8;8,9])
                   1468:
                   1469: [-1]
                   1470:
                   1471: [-1]
                   1472:
                   1473: [-1]
                   1474:
                   1475: ? \precision=19
                   1476:    realprecision = 19 significant digits
                   1477: ? intgen(x=0,pi,sin(x))
                   1478: 2.000000000000000017
                   1479: ? sqr(2*intgen(x=0,4,exp(-x^2)))
                   1480: 3.141592556720305685
                   1481: ? 4*intinf(x=1,10^20,1/(1+x^2))
                   1482: 3.141592653589793208
                   1483: ? intnum(x=-0.5,0.5,1/sqrt(1-x^2))
                   1484: 1.047197551196597747
                   1485: ? 2*intopen(x=0,100,sin(x)/x)
                   1486: 3.124450933778112629
                   1487: ? \precision=38
                   1488:    realprecision = 38 significant digits
                   1489: ? inverseimage([1,1;2,3;5,7],[2,2,6]~)
                   1490: [4, -2]~
                   1491: ? isdiagonal([1,0,0;0,5,0;0,0,0])
                   1492: 1
                   1493: ? isfund(12345)
                   1494: 1
                   1495: ? isideal(bnf[7],[5,1;0,1])
                   1496: 1
                   1497: ? isincl(x^2+1,x^4+1)
                   1498: [-x^2, x^2]
                   1499: ? isinclfast(initalg(x^2+1),initalg(x^4+1))
                   1500: [-x^2, x^2]
                   1501: ? isirreducible(x^5+3*x^3+5*x^2+15)
                   1502: 0
                   1503: ? isisom(x^3+x^2-2*x-1,x^3+x^2-2*x-1)
                   1504: [x, -x^2 - x + 1, x^2 - 2]
                   1505: ? isisomfast(initalg(x^3-2),initalg(x^3-6*x^2-6*x-30))
                   1506: [-1/25*x^2 + 13/25*x - 2/5]
                   1507: ? isprime(12345678901234567)
                   1508: 0
                   1509: ? isprincipal(bnf,[5,1;0,1])
                   1510: [1]~
                   1511: ? isprincipalgen(bnf,[5,1;0,1])
                   1512: [[1]~, [2, 1/3]~, 151]
                   1513: ? isprincipalraygen(bnr,primedec(bnf,7)[1])
                   1514: [[9]~, [-2170/6561, -931/19683]~, 148]
                   1515: ? ispsp(73!+1)
                   1516: 1
                   1517: ? isqrt(10!^2+1)
                   1518: 3628800
                   1519: ? isset([-3,5,7,7])
                   1520: 0
                   1521: ? issqfree(123456789876543219)
                   1522: 0
                   1523: ? issquare(12345678987654321)
                   1524: 1
                   1525: ? isunit(bnf,mod(3405*x-27466,x^2-x-57))
                   1526: [-4, mod(1, 2)]~
                   1527: ? jacobi(hilbert(6))
                   1528: [[1.6188998589243390969705881471257800712, 0.2423608705752095521357284158507
                   1529: 0114077, 0.000012570757122625194922982397996498755027, 0.0000001082799484565
                   1530: 5497685388772372251711485, 0.016321521319875822124345079564191505890, 0.0006
                   1531: 1574835418265769764919938428527140264]~, [0.74871921887909485900280109200517
                   1532: 845109, -0.61454482829258676899320019644273870645, 0.01114432093072471053067
                   1533: 8340374220998541, -0.0012481940840821751169398163046387834473, 0.24032536934
                   1534: 252330399154228873240534568, -0.062226588150197681775152126611810492910; 0.4
                   1535: 4071750324351206127160083580231701801, 0.21108248167867048675227675845247769
                   1536: 095, -0.17973275724076003758776897803740640964, 0.03560664294428763526612284
                   1537: 8131812048466, -0.69765137527737012296208335046678265583, 0.4908392097109243
                   1538: 6297498316169060044997; 0.32069686982225190106359024326699463106, 0.36589360
                   1539: 730302614149086554211117169622, 0.60421220675295973004426567844103062241, -0
                   1540: .24067907958842295837736719558855679285, -0.23138937333290388042251363554209
                   1541: 048309, -0.53547692162107486593474491750949545456; 0.25431138634047419251788
                   1542: 312792590944672, 0.39470677609501756783094636145991581708, -0.44357471627623
                   1543: 954554460416705180105301, 0.62546038654922724457753441039459331059, 0.132863
                   1544: 15850933553530333839628101576050, -0.41703769221897886840494514780771076439;
                   1545:  0.21153084007896524664213667673977991959, 0.3881904338738864286311144882599
                   1546: 2418973, -0.44153664101228966222143649752977203423, -0.689807199293836684198
                   1547: 01738006926829419, 0.36271492146487147525299457604461742111, 0.0470340189331
                   1548: 15649705614518466541243873; 0.18144297664876947372217005457727093715, 0.3706
                   1549: 9590776736280861775501084807394603, 0.45911481681642960284551392793050866602
                   1550: , 0.27160545336631286930015536176213647001, 0.502762866757515384892605663686
                   1551: 47786272, 0.54068156310385293880022293448123782121]]
                   1552: ? jbesselh(1,1)
                   1553: 0.24029783912342701089584304474193368045
                   1554: ? jell(i)
                   1555: 1728.0000000000000000000000000000000000 + 0.E-54*I
                   1556: ? kbessel(1+i,1)
                   1557: 0.32545977186584141085464640324923711863 + 0.2894280370259921276345671592415
                   1558: 2302704*I
                   1559: ? kbessel2(1+i,1)
                   1560: 0.32545977186584141085464640324923711863 + 0.2894280370259921276345671592415
                   1561: 2302704*I
                   1562: ? x
                   1563: x
                   1564: ? y
                   1565: x
                   1566: ? ker(matrix(4,4,x,y,x/y))
                   1567:
                   1568: [-1/2 -1/3 -1/4]
                   1569:
                   1570: [1 0 0]
                   1571:
                   1572: [0 1 0]
                   1573:
                   1574: [0 0 1]
                   1575:
                   1576: ? ker(matrix(4,4,x,y,sin(x+y)))
                   1577:
                   1578: [1.0000000000000000000000000000000000000 1.080604611736279434801873214885953
                   1579: 2074]
                   1580:
                   1581: [-1.0806046117362794348018732148859532074 -0.1677063269057152260048635409984
                   1582: 7562046]
                   1583:
                   1584: [1 0]
                   1585:
                   1586: [0 1]
                   1587:
                   1588: ? keri(matrix(4,4,x,y,x+y))
                   1589:
                   1590: [1 2]
                   1591:
                   1592: [-2 -3]
                   1593:
                   1594: [1 0]
                   1595:
                   1596: [0 1]
                   1597:
                   1598: ? kerint(matrix(4,4,x,y,x*y))
                   1599:
                   1600: [-1 -1 -1]
                   1601:
                   1602: [-1 0 1]
                   1603:
                   1604: [1 -1 1]
                   1605:
                   1606: [0 1 -1]
                   1607:
                   1608: ? kerint1(matrix(4,4,x,y,x*y))
                   1609:
                   1610: [-1 -1 -1]
                   1611:
                   1612: [-1 0 1]
                   1613:
                   1614: [1 -1 1]
                   1615:
                   1616: [0 1 -1]
                   1617:
                   1618: ? kerint2(matrix(4,6,x,y,2520/(x+y)))
                   1619:
                   1620: [3 1]
                   1621:
                   1622: [-30 -15]
                   1623:
                   1624: [70 70]
                   1625:
                   1626: [0 -140]
                   1627:
                   1628: [-126 126]
                   1629:
                   1630: [84 -42]
                   1631:
                   1632: ? f(u)=u+1;
                   1633: ? print(f(5));kill(f);
                   1634: 6
                   1635: ? f=12
                   1636: 12
                   1637: ? killrect(1)
                   1638: ? kro(5,7)
                   1639: -1
                   1640: ? kro(3,18)
                   1641: 0
                   1642: ? laplace(x*exp(x*y)/(exp(x)-1))
                   1643: 1 - 1/2*x + 13/6*x^2 - 3*x^3 + 419/30*x^4 - 30*x^5 + 6259/42*x^6 - 420*x^7 +
                   1644:  22133/10*x^8 - 7560*x^9 + 2775767/66*x^10 - 166320*x^11 + 2655339269/2730*x
                   1645: ^12 - 4324320*x^13 + 264873251/10*x^14 + O(x^15)
                   1646: ? lcm(15,-21)
                   1647: 105
                   1648: ? length(divisors(1000))
                   1649: 16
                   1650: ? legendre(10)
                   1651: 46189/256*x^10 - 109395/256*x^8 + 45045/128*x^6 - 15015/128*x^4 + 3465/256*x
                   1652: ^2 - 63/256
                   1653: ? lex([1,3],[1,3,5])
                   1654: -1
                   1655: ? lexsort([[1,5],[2,4],[1,5,1],[1,4,2]])
                   1656: [[1, 4, 2], [1, 5], [1, 5, 1], [2, 4]]
                   1657: ? lift(chinese(mod(7,15),mod(4,21)))
                   1658: 67
                   1659: ? lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)])
                   1660: [-3, -3, 9, -2, 6]
                   1661: ? lindep2([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)],14)
                   1662: [-3, -3, 9, -2, 6]
                   1663: ? move(0,0,900);line(0,900,0)
                   1664: ? lines(0,vector(5,k,50*k),vector(5,k,10*k*k))
                   1665: ? m=1/hilbert(7)
                   1666:
                   1667: [49 -1176 8820 -29400 48510 -38808 12012]
                   1668:
                   1669: [-1176 37632 -317520 1128960 -1940400 1596672 -504504]
                   1670:
                   1671: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040]
                   1672:
                   1673: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160]
                   1674:
                   1675: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800]
                   1676:
                   1677: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264]
                   1678:
                   1679: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088]
                   1680:
                   1681: ? mp=concat(m,idmat(7))
                   1682:
                   1683: [49 -1176 8820 -29400 48510 -38808 12012 1 0 0 0 0 0 0]
                   1684:
                   1685: [-1176 37632 -317520 1128960 -1940400 1596672 -504504 0 1 0 0 0 0 0]
                   1686:
                   1687: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040 0 0 1 0 0 0 0]
                   1688:
                   1689: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160 0 0 0 1 0 0
                   1690: 0]
                   1691:
                   1692: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800 0 0 0 0 1 0
                   1693:  0]
                   1694:
                   1695: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264 0 0 0 0 0
                   1696: 1 0]
                   1697:
                   1698: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088 0 0 0 0 0 0 1]
                   1699:
                   1700: ? lll(m)
                   1701:
                   1702: [-420 -420 840 630 -1092 -83 2562]
                   1703:
                   1704: [-210 -280 630 504 -876 70 2205]
                   1705:
                   1706: [-140 -210 504 420 -749 137 1910]
                   1707:
                   1708: [-105 -168 420 360 -658 169 1680]
                   1709:
                   1710: [-84 -140 360 315 -588 184 1498]
                   1711:
                   1712: [-70 -120 315 280 -532 190 1351]
                   1713:
                   1714: [-60 -105 280 252 -486 191 1230]
                   1715:
                   1716: ? lll1(m)
                   1717:
                   1718: [-420 -420 840 630 -1092 -83 2562]
                   1719:
                   1720: [-210 -280 630 504 -876 70 2205]
                   1721:
                   1722: [-140 -210 504 420 -749 137 1910]
                   1723:
                   1724: [-105 -168 420 360 -658 169 1680]
                   1725:
                   1726: [-84 -140 360 315 -588 184 1498]
                   1727:
                   1728: [-70 -120 315 280 -532 190 1351]
                   1729:
                   1730: [-60 -105 280 252 -486 191 1230]
                   1731:
                   1732: ? lllgram(m)
                   1733:
                   1734: [1 1 27 -27 69 0 141]
                   1735:
                   1736: [0 1 4 -22 34 -24 49]
                   1737:
                   1738: [0 1 3 -21 18 -24 23]
                   1739:
                   1740: [0 1 3 -20 10 -19 13]
                   1741:
                   1742: [0 1 3 -19 6 -14 8]
                   1743:
                   1744: [0 1 3 -18 4 -10 5]
                   1745:
                   1746: [0 1 3 -17 3 -7 3]
                   1747:
                   1748: ? lllgram1(m)
                   1749:
                   1750: [1 1 27 -27 69 0 141]
                   1751:
                   1752: [0 1 4 -22 34 -24 49]
                   1753:
                   1754: [0 1 3 -21 18 -24 23]
                   1755:
                   1756: [0 1 3 -20 10 -19 13]
                   1757:
                   1758: [0 1 3 -19 6 -14 8]
                   1759:
                   1760: [0 1 3 -18 4 -10 5]
                   1761:
                   1762: [0 1 3 -17 3 -7 3]
                   1763:
                   1764: ? lllgramint(m)
                   1765:
                   1766: [1 1 27 -27 69 0 141]
                   1767:
                   1768: [0 1 4 -23 34 -24 91]
                   1769:
                   1770: [0 1 3 -22 18 -24 65]
                   1771:
                   1772: [0 1 3 -21 10 -19 49]
                   1773:
                   1774: [0 1 3 -20 6 -14 38]
                   1775:
                   1776: [0 1 3 -19 4 -10 30]
                   1777:
                   1778: [0 1 3 -18 3 -7 24]
                   1779:
                   1780: ? lllgramkerim(mp~*mp)
                   1781: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
                   1782: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
                   1783:  169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
                   1784:  190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
                   1785: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
                   1786: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
                   1787: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
                   1788: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
                   1789: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
                   1790:  0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
                   1791: ? lllint(m)
                   1792:
                   1793: [-420 -420 840 630 -1092 -83 2982]
                   1794:
                   1795: [-210 -280 630 504 -876 70 2415]
                   1796:
                   1797: [-140 -210 504 420 -749 137 2050]
                   1798:
                   1799: [-105 -168 420 360 -658 169 1785]
                   1800:
                   1801: [-84 -140 360 315 -588 184 1582]
                   1802:
                   1803: [-70 -120 315 280 -532 190 1421]
                   1804:
                   1805: [-60 -105 280 252 -486 191 1290]
                   1806:
                   1807: ? lllintpartial(m)
                   1808:
                   1809: [-420 -420 -630 840 1092 2982 -83]
                   1810:
                   1811: [-210 -280 -504 630 876 2415 70]
                   1812:
                   1813: [-140 -210 -420 504 749 2050 137]
                   1814:
                   1815: [-105 -168 -360 420 658 1785 169]
                   1816:
                   1817: [-84 -140 -315 360 588 1582 184]
                   1818:
                   1819: [-70 -120 -280 315 532 1421 190]
                   1820:
                   1821: [-60 -105 -252 280 486 1290 191]
                   1822:
                   1823: ? lllkerim(mp)
                   1824: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
                   1825: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
                   1826:  169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
                   1827:  190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
                   1828: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
                   1829: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
                   1830: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
                   1831: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
                   1832: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
                   1833:  0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
                   1834: ? lllrat(m)
                   1835:
                   1836: [-420 -420 840 630 -1092 -83 2982]
                   1837:
                   1838: [-210 -280 630 504 -876 70 2415]
                   1839:
                   1840: [-140 -210 504 420 -749 137 2050]
                   1841:
                   1842: [-105 -168 420 360 -658 169 1785]
                   1843:
                   1844: [-84 -140 360 315 -588 184 1582]
                   1845:
                   1846: [-70 -120 315 280 -532 190 1421]
                   1847:
                   1848: [-60 -105 280 252 -486 191 1290]
                   1849:
                   1850: ? \precision=96
                   1851:    realprecision = 96 significant digits
                   1852: ? ln(2)
                   1853: 0.69314718055994530941723212145817656807550013436025525412068000949339362196
                   1854: 9694715605863326996418
                   1855: ? lngamma(10^50*i)
                   1856: -157079632679489661923132169163975144209858469968811.93673753887608474948977
                   1857: 0941153418951907406847 - 2.5258126069288717421377720813802613884088088474975
                   1858: 8842763772207531866369674037379004058787354391*I
                   1859: ? \precision=2000
                   1860:    realprecision = 2003 significant digits (2000 digits displayed)
                   1861: ? log(2)
                   1862: 0.69314718055994530941723212145817656807550013436025525412068000949339362196
                   1863: 9694715605863326996418687542001481020570685733685520235758130557032670751635
                   1864: 0759619307275708283714351903070386238916734711233501153644979552391204751726
                   1865: 8157493206515552473413952588295045300709532636664265410423915781495204374043
                   1866: 0385500801944170641671518644712839968171784546957026271631064546150257207402
                   1867: 4816377733896385506952606683411372738737229289564935470257626520988596932019
                   1868: 6505855476470330679365443254763274495125040606943814710468994650622016772042
                   1869: 4524529612687946546193165174681392672504103802546259656869144192871608293803
                   1870: 1727143677826548775664850856740776484514644399404614226031930967354025744460
                   1871: 7030809608504748663852313818167675143866747664789088143714198549423151997354
                   1872: 8803751658612753529166100071053558249879414729509293113897155998205654392871
                   1873: 7000721808576102523688921324497138932037843935308877482597017155910708823683
                   1874: 6275898425891853530243634214367061189236789192372314672321720534016492568727
                   1875: 4778234453534764811494186423867767744060695626573796008670762571991847340226
                   1876: 5146283790488306203306114463007371948900274364396500258093651944304119115060
                   1877: 8094879306786515887090060520346842973619384128965255653968602219412292420757
                   1878: 4321757489097706752687115817051137009158942665478595964890653058460258668382
                   1879: 9400228330053820740056770530467870018416240441883323279838634900156312188956
                   1880: 0650553151272199398332030751408426091479001265168243443893572472788205486271
                   1881: 5527418772430024897945401961872339808608316648114909306675193393128904316413
                   1882: 7068139777649817697486890388778999129650361927071088926410523092478391737350
                   1883: 1229842420499568935992206602204654941510613918788574424557751020683703086661
                   1884: 9480896412186807790208181588580001688115973056186676199187395200766719214592
                   1885: 2367206025395954365416553112951759899400560003665135675690512459268257439464
                   1886: 8316833262490180382424082423145230614096380570070255138770268178516306902551
                   1887: 3703234053802145019015374029509942262995779647427138157363801729873940704242
                   1888: 17997226696297993931270693
                   1889: ? logagm(2)
                   1890: 0.69314718055994530941723212145817656807550013436025525412068000949339362196
                   1891: 9694715605863326996418687542001481020570685733685520235758130557032670751635
                   1892: 0759619307275708283714351903070386238916734711233501153644979552391204751726
                   1893: 8157493206515552473413952588295045300709532636664265410423915781495204374043
                   1894: 0385500801944170641671518644712839968171784546957026271631064546150257207402
                   1895: 4816377733896385506952606683411372738737229289564935470257626520988596932019
                   1896: 6505855476470330679365443254763274495125040606943814710468994650622016772042
                   1897: 4524529612687946546193165174681392672504103802546259656869144192871608293803
                   1898: 1727143677826548775664850856740776484514644399404614226031930967354025744460
                   1899: 7030809608504748663852313818167675143866747664789088143714198549423151997354
                   1900: 8803751658612753529166100071053558249879414729509293113897155998205654392871
                   1901: 7000721808576102523688921324497138932037843935308877482597017155910708823683
                   1902: 6275898425891853530243634214367061189236789192372314672321720534016492568727
                   1903: 4778234453534764811494186423867767744060695626573796008670762571991847340226
                   1904: 5146283790488306203306114463007371948900274364396500258093651944304119115060
                   1905: 8094879306786515887090060520346842973619384128965255653968602219412292420757
                   1906: 4321757489097706752687115817051137009158942665478595964890653058460258668382
                   1907: 9400228330053820740056770530467870018416240441883323279838634900156312188956
                   1908: 0650553151272199398332030751408426091479001265168243443893572472788205486271
                   1909: 5527418772430024897945401961872339808608316648114909306675193393128904316413
                   1910: 7068139777649817697486890388778999129650361927071088926410523092478391737350
                   1911: 1229842420499568935992206602204654941510613918788574424557751020683703086661
                   1912: 9480896412186807790208181588580001688115973056186676199187395200766719214592
                   1913: 2367206025395954365416553112951759899400560003665135675690512459268257439464
                   1914: 8316833262490180382424082423145230614096380570070255138770268178516306902551
                   1915: 3703234053802145019015374029509942262995779647427138157363801729873940704242
                   1916: 17997226696297993931270693
                   1917: ? \precision=19
                   1918:    realprecision = 19 significant digits
                   1919: ? bcurve=initell([0,0,0,-3,0])
                   1920: [0, 0, 0, -3, 0, 0, -6, 0, -9, 144, 0, 1728, 1728, [1.732050807568877293, 0.
                   1921: E-19, -1.732050807568877293]~, 1.992332899583490707, 1.992332899583490708*I,
                   1922:  -0.7884206134041560682, -2.365261840212468204*I, 3.969390382762759668]
                   1923: ? localred(bcurve,2)
                   1924: [6, 2, [1, 1, 1, 0], 1]
                   1925: ? ccurve=initell([0,0,-1,-1,0])
                   1926: [0, 0, -1, -1, 0, 0, -2, 1, -1, 48, -216, 37, 110592/37, [0.8375654352833230
                   1927: 353, 0.2695944364054445582, -1.107159871688767593]~, 2.993458646231959630, 2
                   1928: .451389381986790061*I, -0.4713192779568114757, -1.435456518668684318*I, 7.33
                   1929: 8132740789576742]
                   1930: ? l=lseriesell(ccurve,2,-37,1)
                   1931: 0.3815754082607112111
                   1932: ? lseriesell(ccurve,2,-37,1.2)-l
                   1933: -1.084202172485504434 E-19
                   1934: ? sbnf=smallbuchinit(x^3-x^2-14*x-1)
                   1935: [x^3 - x^2 - 14*x - 1, 3, 10889, [1, x, x^2], [-3.233732695981516673, -0.071
                   1936: 82350902743636344, 4.305556205008953036], [10889, 5698, 3794; 0, 1, 0; 0, 0,
                   1937:  1], mat(2), mat([0, 1, 1, 1, 0, 1, 1, 1]), [9, 15, 16, 17, 10, 33, 69, 39,
                   1938: 57], [2, [-1, 0, 0]~], [[0, 1, 0]~, [-4, 2, 1]~], [-4, -3, -1, 2, 3, 1, 11,
                   1939: -1, -7; 1, -1, 1, 1, 0, 1, 2, -4, -2; 0, 0, 0, 0, 0, 0, -1, -1, 0]]
                   1940: ? makebigbnf(sbnf)
                   1941: [mat(2), mat([0, 1, 1, 1, 0, 1, 1, 1]), [1.173637103435061715 + 3.1415926535
                   1942: 89793238*I, -4.562279014988837901 + 3.141592653589793238*I; -2.6335434327389
                   1943: 76049 + 3.141592653589793238*I, 1.420330600779487358 + 3.141592653589793238*
                   1944: I; 1.459906329303914334, 3.141948414209350543], [1.246346989334819161 + 3.14
                   1945: 1592653589793238*I, -1.990056445584799713, 0.5404006376129469727 + 3.1415926
                   1946: 53589793238*I, -0.6926391142471042845 + 3.141592653589793238*I, 0.E-96, 0.00
                   1947: 4375616572659815402 + 3.141592653589793238*I, 0.3677262014027817705 + 3.1415
                   1948: 92653589793238*I, -0.8305625946607188639, -1.977791147836553953 + 3.14159265
                   1949: 3589793238*I; 0.6716827432867392935 + 3.141592653589793238*I, 0.537900567109
                   1950: 2853266 + 3.141592653589793238*I, -0.8333219883742404172 + 3.141592653589793
                   1951: 238*I, -0.2461086674077943078, 0.E-96, -0.8738318043071131265, 0.97290631883
                   1952: 16092378, -1.552661549868775853 + 3.141592653589793238*I, 0.5774919091398324
                   1953: 092 + 3.141592653589793238*I; -1.918029732621558454, 1.452155878475514386 +
                   1954: 3.141592653589793238*I, 0.2929213507612934444, 0.9387477816548985923, 0.E-96
                   1955: , 0.8694561877344533111, -1.340632520234391008, 2.383224144529494717 + 3.141
                   1956: 592653589793238*I, 1.400299238696721544 + 3.141592653589793238*I], [[3, [-1,
                   1957:  1, 0]~, 1, 1, [1, 0, 1]~], [5, [3, 1, 0]~, 1, 1, [-2, 1, 1]~], [5, [-1, 1,
                   1958: 0]~, 1, 1, [1, 0, 1]~], [5, [2, 1, 0]~, 1, 1, [2, 2, 1]~], [3, [1, 0, 1]~, 1
                   1959: , 2, [-1, 1, 0]~], [11, [1, 1, 0]~, 1, 1, [-1, -2, 1]~], [23, [-10, 1, 0]~,
                   1960: 1, 1, [7, 9, 1]~], [13, [19, 1, 0]~, 1, 1, [2, 6, 1]~], [19, [-6, 1, 0]~, 1,
                   1961:  1, [-3, 5, 1]~]]~, [1, 2, 3, 4, 5, 6, 7, 8, 9]~, [x^3 - x^2 - 14*x - 1, [3,
                   1962:  0], 10889, 1, [[1, -3.233732695981516673, 10.45702714905988813; 1, -0.07182
                   1963: 350902743636344, 0.005158616449014232794; 1, 4.305556205008953036, 18.537814
                   1964: 23449109762], [1, 1, 1; -3.233732695981516673, -0.07182350902743636344, 4.30
                   1965: 5556205008953036; 10.45702714905988813, 0.005158616449014232794, 18.53781423
                   1966: 449109762], [3, 1.000000000000000000, 29.00000000000000000; 1.00000000000000
                   1967: 0000, 29.00000000000000000, 46.00000000000000000; 29.00000000000000000, 46.0
                   1968: 0000000000000000, 453.0000000000000000], [3, 1, 29; 1, 29, 46; 29, 46, 453],
                   1969:  [10889, 5698, 3794; 0, 1, 0; 0, 0, 1], [11021, 881, -795; 881, 518, -109; -
                   1970: 795, -109, 86], [10889, [1890, 5190, 1]~, 118570321]], [-3.23373269598151667
                   1971: 3, -0.07182350902743636344, 4.305556205008953036], [1, x, x^2], [1, 0, 0; 0,
                   1972:  1, 0; 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 1, 1; 0, 1, 0, 1, 0, 14, 0, 14, 15; 0
                   1973: , 0, 1, 0, 1, 1, 1, 1, 15]], [[2, [2], [[3, 2, 2; 0, 1, 0; 0, 0, 1]]], 10.34
                   1974: 800724602767998, 1.000000000000000000, [2, -1], [x, x^2 + 2*x - 4], 1000], [
                   1975: mat(1), mat(1), [[[3, 2, 2; 0, 1, 0; 0, 0, 1], [0, 0, 0]]]], 0]
                   1976: ? concat(mat(vector(4,x,x)~),vector(4,x,10+x)~)
                   1977:
                   1978: [1 11]
                   1979:
                   1980: [2 12]
                   1981:
                   1982: [3 13]
                   1983:
                   1984: [4 14]
                   1985:
                   1986: ? matextract(matrix(15,15,x,y,x+y),vector(5,x,3*x),vector(3,y,3*y))
                   1987:
                   1988: [6 9 12]
                   1989:
                   1990: [9 12 15]
                   1991:
                   1992: [12 15 18]
                   1993:
                   1994: [15 18 21]
                   1995:
                   1996: [18 21 24]
                   1997:
                   1998: ? ma=mathell(mcurve,mpoints)
                   1999:
                   2000: [1.172183098700697010 0.4476973883408951692]
                   2001:
                   2002: [0.4476973883408951692 1.755026016172950713]
                   2003:
                   2004: ? gauss(ma,mhbi)
                   2005: [-1.000000000000000000, 1.000000000000000000]~
                   2006: ? (1.*hilbert(7))^(-1)
                   2007:
                   2008: [48.99999999999354616 -1175.999999999759026 8819.999999997789586 -29399.9999
                   2009: 9999171836 48509.99999998526254 -38807.99999998756766 12011.99999999599856]
                   2010:
                   2011: [-1175.999999999756499 37631.99999999093860 -317519.9999999170483 1128959.99
                   2012: 9999689868 -1940399.999999448886 1596671.999999535762 -504503.9999998507690]
                   2013:
                   2014: [8819.999999997745604 -317519.9999999163090 2857679.999999235184 -10583999.9
                   2015: 9999714478 18710999.99999493212 -15717239.99999573533 5045039.999998630382]
                   2016:
                   2017: [-29399.99999999149442 1128959.999999684822 -10583999.99999712372 40319999.9
                   2018: 9998927448 -72764999.99998098063 62092799.99998400783 -20180159.99999486766]
                   2019:
                   2020: [48509.99999998476962 -1940399.999999436456 18710999.99999486299 -72764999.9
                   2021: 9998086196 133402499.9999660890 -115259759.9999715052 37837799.99999086044]
                   2022:
                   2023: [-38807.99999998708779 1596671.999999522805 -15717239.99999565420 62092799.9
                   2024: 9998382209 -115259759.9999713525 100590335.9999759413 -33297263.99999228701]
                   2025:
                   2026: [12011.99999999582671 -504503.9999998459239 5045039.999998597949 -20180159.9
                   2027: 9999478405 37837799.99999076882 -33297263.99999225112 11099087.99999751679]
                   2028:
                   2029: ? matsize([1,2;3,4;5,6])
                   2030: [3, 2]
                   2031: ? matrix(5,5,x,y,gcd(x,y))
                   2032:
                   2033: [1 1 1 1 1]
                   2034:
                   2035: [1 2 1 2 1]
                   2036:
                   2037: [1 1 3 1 1]
                   2038:
                   2039: [1 2 1 4 1]
                   2040:
                   2041: [1 1 1 1 5]
                   2042:
                   2043: ? matrixqz([1,3;3,5;5,7],0)
                   2044:
                   2045: [1 1]
                   2046:
                   2047: [3 2]
                   2048:
                   2049: [5 3]
                   2050:
                   2051: ? matrixqz2([1/3,1/4,1/6;1/2,1/4,-1/4;1/3,1,0])
                   2052:
                   2053: [19 12 2]
                   2054:
                   2055: [0 1 0]
                   2056:
                   2057: [0 0 1]
                   2058:
                   2059: ? matrixqz3([1,3;3,5;5,7])
                   2060:
                   2061: [2 -1]
                   2062:
                   2063: [1 0]
                   2064:
                   2065: [0 1]
                   2066:
                   2067: ? max(2,3)
                   2068: 3
                   2069: ? min(2,3)
                   2070: 2
                   2071: ? minim([2,1;1,2],4,6)
                   2072: [6, 2, [0, -1, 1; 1, 1, 0]]
                   2073: ? mod(-12,7)
                   2074: mod(2, 7)
                   2075: ? modp(-12,7)
                   2076: mod(2, 7)
                   2077: ? mod(10873,49649)^-1
                   2078:   ***   impossible inverse modulo: mod(131, 49649).
                   2079:
                   2080: ? modreverse(mod(x^2+1,x^3-x-1))
                   2081: mod(x^2 - 3*x + 2, x^3 - 5*x^2 + 8*x - 5)
                   2082: ? move(0,243,583);cursor(0)
                   2083: ? mu(3*5*7*11*13)
                   2084: -1
                   2085: ? newtonpoly(x^4+3*x^3+27*x^2+9*x+81,3)
                   2086: [2, 2/3, 2/3, 2/3]
                   2087: ? nextprime(100000000000000000000000)
                   2088: 100000000000000000000117
                   2089: ? setrand(1);a=matrix(3,5,j,k,vvector(5,l,random()\10^8))
                   2090:
                   2091: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~ [0, 16, 4, 2, 0]~
                   2092:  [17, 19, 17, 1, 14]~]
                   2093:
                   2094: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~ [6, 1, 8, 17, 21
                   2095: ]~ [18, 17, 9, 10, 13]~]
                   2096:
                   2097: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~ [19, 21, 2, 4,
                   2098: 5]~ [14, 16, 6, 20, 14]~]
                   2099:
                   2100: ? aid=[idx,idy,idz,idmat(5),idx]
                   2101: [[3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]
                   2102: , [5, 0, 0, 2, 0; 0, 5, 0, 0, 0; 0, 0, 5, 2, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 5
                   2103: ], [15, 5, 10, 12, 10; 0, 5, 0, 0, 0; 0, 0, 5, 2, 0; 0, 0, 0, 1, 0; 0, 0, 0,
                   2104:  0, 5], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0
                   2105: , 0, 1], [3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0,
                   2106: 0, 0, 1]]
                   2107: ? bb=algtobasis(nf,mod(x^3+x,nfpol))
                   2108: [1, 1, 1, 3, 0]~
                   2109: ? da=nfdetint(nf,[a,aid])
                   2110:
                   2111: [30 5 25 27 10]
                   2112:
                   2113: [0 5 0 0 0]
                   2114:
                   2115: [0 0 5 2 0]
                   2116:
                   2117: [0 0 0 1 0]
                   2118:
                   2119: [0 0 0 0 5]
                   2120:
                   2121: ? nfdiv(nf,ba,bb)
                   2122: [755/373, -152/373, 159/373, 120/373, -264/373]~
                   2123: ? nfdiveuc(nf,ba,bb)
                   2124: [2, 0, 0, 0, -1]~
                   2125: ? nfdivres(nf,ba,bb)
                   2126: [[2, 0, 0, 0, -1]~, [-12, -7, 0, 9, 5]~]
                   2127: ? nfhermite(nf,[a,aid])
                   2128: [[[1, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [1
                   2129: , 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [1, 0,
                   2130:  0, 0, 0]~], [[2, 1, 1, 1, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0
                   2131: , 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
                   2132: 0, 0, 0, 0, 1], [3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
                   2133:  0, 0, 0, 0, 1]]]
                   2134: ? nfhermitemod(nf,[a,aid],da)
                   2135: [[[1, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [1
                   2136: , 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~; [0, 0, 0, 0, 0]~, [0, 0, 0, 0, 0]~, [1, 0,
                   2137:  0, 0, 0]~], [[2, 1, 1, 1, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0
                   2138: , 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
                   2139: 0, 0, 0, 0, 1], [3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0;
                   2140:  0, 0, 0, 0, 1]]]
                   2141: ? nfmod(nf,ba,bb)
                   2142: [-12, -7, 0, 9, 5]~
                   2143: ? nfmul(nf,ba,bb)
                   2144: [-25, -50, -30, 15, 90]~
                   2145: ? nfpow(nf,bb,5)
                   2146: [23455, 156370, 115855, 74190, -294375]~
                   2147: ? nfreduce(nf,ba,idx)
                   2148: [1, 0, 0, 0, 0]~
                   2149: ? setrand(1);as=matrix(3,3,j,k,vvector(5,l,random()\10^8))
                   2150:
                   2151: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~]
                   2152:
                   2153: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~]
                   2154:
                   2155: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~]
                   2156:
                   2157: ? vaid=[idx,idy,idmat(5)]
                   2158: [[3, 1, 2, 2, 2; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]
                   2159: , [5, 0, 0, 2, 0; 0, 5, 0, 0, 0; 0, 0, 5, 2, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 5
                   2160: ], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0,
                   2161: 1]]
                   2162: ? haid=[idmat(5),idmat(5),idmat(5)]
                   2163: [[1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]
                   2164: , [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1
                   2165: ], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0,
                   2166: 1]]
                   2167: ? nfsmith(nf,[as,haid,vaid])
                   2168: [[10951073973332888246310, 5442457637639729109215, 2693780223637146570055, 3
                   2169: 910837124677073032737, 3754666252923836621170; 0, 5, 0, 0, 0; 0, 0, 5, 2, 0;
                   2170:  0, 0, 0, 1, 0; 0, 0, 0, 0, 5], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0, 0
                   2171: ; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1], [1, 0, 0, 0, 0; 0, 1, 0, 0, 0; 0, 0, 1, 0,
                   2172: 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1]]
                   2173: ? nfval(nf,ba,vp)
                   2174: 0
                   2175: ? norm(1+i)
                   2176: 2
                   2177: ? norm(mod(x+5,x^3+x+1))
                   2178: 129
                   2179: ? norml2(vector(10,x,x))
                   2180: 385
                   2181: ? nucomp(qfi(2,1,9),qfi(4,3,5),3)
                   2182: qfi(2, -1, 9)
                   2183: ? form=qfi(2,1,9);nucomp(form,form,3)
                   2184: qfi(4, -3, 5)
                   2185: ? numdiv(2^99*3^49)
                   2186: 5000
                   2187: ? numer((x+1)/(x-1))
                   2188: x + 1
                   2189: ? nupow(form,111)
                   2190: qfi(2, -1, 9)
                   2191: ? 1/(1+x)+o(x^20)
                   2192: 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 -
                   2193:  x^13 + x^14 - x^15 + x^16 - x^17 + x^18 - x^19 + O(x^20)
                   2194: ? omega(100!)
                   2195: 25
                   2196: ? ordell(acurve,1)
                   2197: [8, 3]
                   2198: ? order(mod(33,2^16+1))
                   2199: 2048
                   2200: ? tcurve=initell([1,0,1,-19,26]);
                   2201: ? orderell(tcurve,[1,2])
                   2202: 6
                   2203: ? ordred(x^3-12*x+45*x-1)
                   2204: [x - 1, x^3 - 363*x - 2663, x^3 + 33*x - 1]
                   2205: ? padicprec(padicno,127)
                   2206: 5
                   2207: ? pascal(8)
                   2208:
                   2209: [1 0 0 0 0 0 0 0 0]
                   2210:
                   2211: [1 1 0 0 0 0 0 0 0]
                   2212:
                   2213: [1 2 1 0 0 0 0 0 0]
                   2214:
                   2215: [1 3 3 1 0 0 0 0 0]
                   2216:
                   2217: [1 4 6 4 1 0 0 0 0]
                   2218:
                   2219: [1 5 10 10 5 1 0 0 0]
                   2220:
                   2221: [1 6 15 20 15 6 1 0 0]
                   2222:
                   2223: [1 7 21 35 35 21 7 1 0]
                   2224:
                   2225: [1 8 28 56 70 56 28 8 1]
                   2226:
                   2227: ? perf([2,0,1;0,2,1;1,1,2])
                   2228: 6
                   2229: ? permutation(7,1035)
                   2230: [4, 7, 1, 6, 3, 5, 2]
                   2231: ? permutation2num([4,7,1,6,3,5,2])
                   2232: 1035
                   2233: ? pf(-44,3)
                   2234: qfi(3, 2, 4)
                   2235: ? phi(257^2)
                   2236: 65792
                   2237: ? pi
                   2238: 3.141592653589793238
                   2239: ? plot(x=-5,5,sin(x))
                   2240:
                   2241: 0.9995545 x""x_''''''''''''''''''''''''''''''''''_x""x'''''''''''''''''''|
                   2242:           |    x                                _     "_                 |
                   2243:           |     x                              _        _                |
                   2244:           |      x                            _                          |
                   2245:           |       _                                      "               |
                   2246:           |                                  "            x              |
                   2247:           |        x                        _                            |
                   2248:           |                                                "             |
                   2249:           |         "                      x                _            |
                   2250:           |          _                                                   |
                   2251:           |                               "                  x           |
                   2252:           ````````````x``````````````````_````````````````````````````````
                   2253:           |                                                   "          |
                   2254:           |            "                x                      _         |
                   2255:           |             _                                                |
                   2256:           |                            "                        x        |
                   2257:           |              x            _                                  |
                   2258:           |               _                                      "       |
                   2259:           |                          "                            x      |
                   2260:           |                "        "                              x     |
                   2261:           |                 "_     "                                x    |
                   2262: -0.999555 |...................x__x".................................."x__x
                   2263:           -5                                                             5
                   2264: ? pnqn([2,6,10,14,18,22,26])
                   2265:
                   2266: [19318376 741721]
                   2267:
                   2268: [8927353 342762]
                   2269:
                   2270: ? pnqn([1,1,1,1,1,1,1,1;1,1,1,1,1,1,1,1])
                   2271:
                   2272: [34 21]
                   2273:
                   2274: [21 13]
                   2275:
                   2276: ? point(0,225,334)
                   2277: ? points(0,vector(10,k,10*k),vector(10,k,5*k*k))
                   2278: ? pointell(acurve,zell(acurve,apoint))
                   2279: [0.9999999999999999986 + 0.E-19*I, 2.999999999999999998 + 0.E-18*I]
                   2280: ? polint([0,2,3],[0,4,9],5)
                   2281: 25
                   2282: ? polred(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
                   2283: [x - 1, x^5 - x^4 - 6*x^3 + 6*x^2 + 13*x - 5, x^5 - x^4 + 2*x^3 - 4*x^2 + x
                   2284: - 1, x^5 - x^4 + 4*x^3 - 2*x^2 + x - 1, x^5 + 4*x^3 - 4*x^2 + 8*x - 8]
                   2285: ? polred2(x^4-28*x^3-458*x^2+9156*x-25321)
                   2286:
                   2287: [1 x - 1]
                   2288:
                   2289: [1/115*x^2 - 14/115*x - 327/115 x^2 - 10]
                   2290:
                   2291: [3/1495*x^3 - 63/1495*x^2 - 1607/1495*x + 13307/1495 x^4 - 32*x^2 + 216]
                   2292:
                   2293: [1/4485*x^3 - 7/1495*x^2 - 1034/4485*x + 7924/4485 x^4 - 8*x^2 + 6]
                   2294:
                   2295: ? polredabs(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
                   2296: x^5 - x^4 + 2*x^3 - 4*x^2 + x - 1
                   2297: ? polredabs2(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
                   2298: [x^5 - x^4 + 2*x^3 - 4*x^2 + x - 1, mod(2*x^4 - x^3 + 3*x^2 - 3*x - 1, x^5 -
                   2299:  x^4 + 2*x^3 - 4*x^2 + x - 1)]
                   2300: ? polsym(x^17-1,17)
                   2301: [17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17]~
                   2302: ? polvar(name^4-other)
                   2303: name
                   2304: ? poly(sin(x),x)
                   2305: -1/1307674368000*x^15 + 1/6227020800*x^13 - 1/39916800*x^11 + 1/362880*x^9 -
                   2306:  1/5040*x^7 + 1/120*x^5 - 1/6*x^3 + x
                   2307: ? polylog(5,0.5)
                   2308: 0.5084005792422687065
                   2309: ? polylog(-4,t)
                   2310: (t^4 + 11*t^3 + 11*t^2 + t)/(-t^5 + 5*t^4 - 10*t^3 + 10*t^2 - 5*t + 1)
                   2311: ? polylogd(5,0.5)
                   2312: 1.033792745541689061
                   2313: ? polylogdold(5,0.5)
                   2314: 1.034459423449010483
                   2315: ? polylogp(5,0.5)
                   2316: 0.9495693489964922581
                   2317: ? poly([1,2,3,4,5],x)
                   2318: x^4 + 2*x^3 + 3*x^2 + 4*x + 5
                   2319: ? polyrev([1,2,3,4,5],x)
                   2320: 5*x^4 + 4*x^3 + 3*x^2 + 2*x + 1
                   2321: ? polzag(6,3)
                   2322: 4608*x^6 - 13824*x^5 + 46144/3*x^4 - 23168/3*x^3 + 5032/3*x^2 - 120*x + 1
                   2323: ? postdraw([0,20,20])
                   2324: ? postploth(x=-5,5,sin(x))
                   2325: [-5.000000000000000000, 5.000000000000000000, -0.9999964107564721649, 0.9999
                   2326: 964107564721649]
                   2327: ? postploth2(t=0,2*pi,[sin(5*t),sin(7*t)])
                   2328: [-0.9999994509568810308, 0.9999994509568810308, -0.9999994509568810308, 0.99
                   2329: 99994509568810308]
                   2330: ? postplothraw(vector(100,k,k),vector(100,k,k*k/100))
                   2331: [1.000000000000000000, 100.0000000000000000, 0.01000000000000000020, 100.000
                   2332: 0000000000000]
                   2333: ? powell(acurve,apoint,10)
                   2334: [-28919032218753260057646013785951999/292736325329248127651484680640160000,
                   2335: 478051489392386968218136375373985436596569736643531551/158385319626308443937
                   2336: 475969221994173751192384064000000]
                   2337: ? cmcurve=initell([0,-3/4,0,-2,-1])
                   2338: [0, -3/4, 0, -2, -1, -3, -4, -4, -1, 105, 1323, -343, -3375, [2.000000000000
                   2339: 000000, -0.6249999999999999999 + 0.3307189138830738238*I, -0.624999999999999
                   2340: 9999 - 0.3307189138830738238*I]~, 1.933311705616811546, 0.966655852808405773
                   2341: 3 + 2.557530989916099474*I, -0.8558486330998558525 - 4.598829819117624524 E-
                   2342: 20*I, -0.4279243165499279261 - 2.757161217166147204*I, 4.944504600282546727]
                   2343: ? powell(cmcurve,[x,y],quadgen(-7))
                   2344: [((-2 + 3*w)*x^2 + (6 - w))/((-2 - 5*w)*x + (-4 - 2*w)), ((34 - 11*w)*x^3 +
                   2345: (40 - 28*w)*x^2 + (22 + 23*w)*x)/((-90 - w)*x^2 + (-136 + 44*w)*x + (-40 + 2
                   2346: 8*w))]
                   2347: ? powrealraw(qfr(5,3,-1,0.),3)
                   2348: qfr(125, 23, 1, 0.E-18)
                   2349: ? pprint((x-12*y)/(y+13*x));
                   2350: (-(11 /14))
                   2351: ? pprint([1,2;3,4])
                   2352:
                   2353: [1 2]
                   2354:
                   2355: [3 4]
                   2356:
                   2357: ? pprint1(x+y);pprint(x+y);
                   2358: (2 x)(2 x)
                   2359: ? \precision=96
                   2360:    realprecision = 96 significant digits
                   2361: ? pi
                   2362: 3.14159265358979323846264338327950288419716939937510582097494459230781640628
                   2363: 620899862803482534211
                   2364: ? prec(pi,20)
                   2365: 3.14159265358979323846264338327950288419528635800000000000000000000000000000
                   2366: 000000000000000000000
                   2367: ? precision(cmcurve)
                   2368: 19
                   2369: ? \precision=38
                   2370:    realprecision = 38 significant digits
                   2371: ? prime(100)
                   2372: 541
                   2373: ? primedec(nf,2)
                   2374: [[2, [3, 1, 0, 0, 0]~, 1, 1, [1, 1, 0, 1, 1]~], [2, [-3, -5, -4, 3, 15]~, 1,
                   2375:  4, [1, 1, 0, 0, 0]~]]
                   2376: ? primedec(nf,3)
                   2377: [[3, [1, 1, 0, 0, 0]~, 1, 1, [1, -1, -1, 0, 0]~], [3, [-1, 1, -1, 0, 1]~, 2,
                   2378:  2, [1, 2, 3, 1, 0]~]]
                   2379: ? primedec(nf,11)
                   2380: [[11, [11, 0, 0, 0, 0]~, 1, 5, [1, 0, 0, 0, 0]~]]
                   2381: ? primes(100)
                   2382: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
                   2383:  73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
                   2384: 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 2
                   2385: 39, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 33
                   2386: 1, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421
                   2387: , 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,
                   2388:  521, 523, 541]
                   2389: ? forprime(p=2,100,print(p," ",lift(primroot(p))))
                   2390: 2 1
                   2391: 3 2
                   2392: 5 2
                   2393: 7 3
                   2394: 11 2
                   2395: 13 2
                   2396: 17 3
                   2397: 19 2
                   2398: 23 5
                   2399: 29 2
                   2400: 31 3
                   2401: 37 2
                   2402: 41 6
                   2403: 43 3
                   2404: 47 5
                   2405: 53 2
                   2406: 59 2
                   2407: 61 2
                   2408: 67 2
                   2409: 71 7
                   2410: 73 5
                   2411: 79 3
                   2412: 83 2
                   2413: 89 3
                   2414: 97 5
                   2415: ? principalideal(nf,mod(x^3+5,nfpol))
                   2416:
                   2417: [6]
                   2418:
                   2419: [0]
                   2420:
                   2421: [1]
                   2422:
                   2423: [3]
                   2424:
                   2425: [0]
                   2426:
                   2427: ? principalidele(nf,mod(x^3+5,nfpol))
                   2428: [[6; 0; 1; 3; 0], [2.2324480827796254080981385584384939684 + 3.1415926535897
                   2429: 932384626433832795028842*I, 5.0387659675158716386435353106610489968 + 1.5851
                   2430: 760343512250049897278861965702423*I, 4.2664040272651028743625910797589683173
                   2431:  - 0.0083630478144368246110910258645462996191*I]]
                   2432: ? print((x-12*y)/(y+13*x));
                   2433: -11/14
                   2434: ? print([1,2;3,4])
                   2435: [1, 2; 3, 4]
                   2436: ? print1(x+y);print1(" equals ");print(x+y);
                   2437: 2*x equals 2*x
                   2438: ? prod(1,k=1,10,1+1/k!)
                   2439: 3335784368058308553334783/905932868585678438400000
                   2440: ? prod(1.,k=1,10,1+1/k!)
                   2441: 3.6821540356142043935732308433185262945
                   2442: ? pi^2/6*prodeuler(p=2,10000,1-p^-2)
                   2443: 1.0000098157493066238697591433298145174
                   2444: ? prodinf(n=0,(1+2^-n)/(1+2^(-n+1)))
                   2445: 0.33333333333333333333333333333333333320
                   2446: ? prodinf1(n=0,-2^-n/(1+2^(-n+1)))
                   2447: 0.33333333333333333333333333333333333320
                   2448: ? psi(1)
                   2449: -0.57721566490153286060651209008240243102
                   2450: ? quaddisc(-252)
                   2451: -7
                   2452: ? quadgen(-11)
                   2453: w
                   2454: ? quadpoly(-11)
                   2455: x^2 - x + 3
                   2456: ? rank(matrix(5,5,x,y,x+y))
                   2457: 2
                   2458: ? rayclassno(bnf,[[5,3;0,1],[1,0]])
                   2459: 12
                   2460: ? rayclassnolist(bnf,lu)
                   2461: [[3], [], [3, 3], [3], [6, 6], [], [], [], [3, 3, 3], [], [3, 3], [3, 3], []
                   2462: , [], [12, 6, 6, 12], [3], [3, 3], [], [9, 9], [6, 6], [], [], [], [], [6, 1
                   2463: 2, 6], [], [3, 3, 3, 3], [], [], [], [], [], [3, 6, 6, 3], [], [], [9, 3, 9]
                   2464: , [6, 6], [], [], [], [], [], [3, 3], [3, 3], [12, 12, 6, 6, 12, 12], [], []
                   2465: , [6, 6], [9], [], [3, 3, 3, 3], [], [3, 3], [], [6, 12, 12, 6]]
                   2466: ? move(0,50,50);rbox(0,50,50)
                   2467: ? print1("give a value for s? ");s=read();print(1/s)
                   2468: give a value for s? 37.
                   2469: 0.027027027027027027027027027027027027026
                   2470: ? real(5-7*i)
                   2471: 5
                   2472: ? recip(3*x^7-5*x^3+6*x-9)
                   2473: -9*x^7 + 6*x^6 - 5*x^4 + 3
                   2474: ? redimag(qfi(3,10,12))
                   2475: qfi(3, -2, 4)
                   2476: ? redreal(qfr(3,10,-20,1.5))
                   2477: qfr(3, 16, -7, 1.5000000000000000000000000000000000000)
                   2478: ? redrealnod(qfr(3,10,-20,1.5),18)
                   2479: qfr(3, 16, -7, 1.5000000000000000000000000000000000000)
                   2480: ? reduceddisc(x^3+4*x+12)
                   2481: [1036, 4, 1]
                   2482: ? regula(17)
                   2483: 2.0947125472611012942448228460655286534
                   2484: ? kill(y);print(x+y);reorder([x,y]);print(x+y);
                   2485: x + y
                   2486: x + y
                   2487: ? resultant(x^3-1,x^3+1)
                   2488: 8
                   2489: ? resultant2(x^3-1.,x^3+1.)
                   2490: 8.0000000000000000000000000000000000000
                   2491: ? reverse(tan(x))
                   2492: x - 1/3*x^3 + 1/5*x^5 - 1/7*x^7 + 1/9*x^9 - 1/11*x^11 + 1/13*x^13 - 1/15*x^1
                   2493: 5 + O(x^16)
                   2494: ? rhoreal(qfr(3,10,-20,1.5))
                   2495: qfr(-20, -10, 3, 2.1074451073987839947135880252731470615)
                   2496: ? rhorealnod(qfr(3,10,-20,1.5),18)
                   2497: qfr(-20, -10, 3, 1.5000000000000000000000000000000000000)
                   2498: ? rline(0,200,150)
                   2499: ? cursor(0)
                   2500: ? rmove(0,5,5);cursor(0)
                   2501: ? rndtoi(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
                   2502: x^17 - 1
                   2503: ? qpol=y^3-y-1;setrand(1);bnf2=buchinit(qpol);nf2=bnf2[7];
                   2504: ? un=mod(1,qpol);w=mod(y,qpol);p=un*(x^5-5*x+w)
                   2505: mod(1, y^3 - y - 1)*x^5 + mod(-5, y^3 - y - 1)*x + mod(y, y^3 - y - 1)
                   2506: ? aa=rnfpseudobasis(nf2,p)
                   2507: [[[1, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [-2, 0, 0]~, [11, 0, 0]~; [0, 0, 0]~,
                   2508: [1, 0, 0]~, [0, 0, 0]~, [2, 0, 0]~, [-8, 0, 0]~; [0, 0, 0]~, [0, 0, 0]~, [1,
                   2509:  0, 0]~, [1, 0, 0]~, [4, 0, 0]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [1, 0,
                   2510: 0]~, [-2, 0, 0]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [1, 0, 0]~
                   2511: ], [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1
                   2512: , 0; 0, 0, 1], [1, 0, 3/5; 0, 1, 2/5; 0, 0, 1/5], [1, 0, 8/25; 0, 1, 22/25;
                   2513: 0, 0, 1/25]], [416134375, 212940625, 388649575; 0, 3125, 550; 0, 0, 25], [-1
                   2514: 280, 5, 5]~]
                   2515: ? rnfbasis(bnf2,aa)
                   2516:
                   2517: [[1, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [4/5, -4/5, -2/5]~ [187/25, 208/25, -61/25
                   2518: ]~]
                   2519:
                   2520: [[0, 0, 0]~ [1, 0, 0]~ [0, 0, 0]~ [-4/5, 4/5, 2/5]~ [-196/25, -214/25, 88/25
                   2521: ]~]
                   2522:
                   2523: [[0, 0, 0]~ [0, 0, 0]~ [1, 0, 0]~ [-2/5, 2/5, 1/5]~ [-122/25, -123/25, 116/2
                   2524: 5]~]
                   2525:
                   2526: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [-2/5, 2/5, 1/5]~ [-104/25, -111/25, 62/25
                   2527: ]~]
                   2528:
                   2529: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [-3/25, -2/25, 9/25]~]
                   2530:
                   2531: ? rnfdiscf(nf2,p)
                   2532: [[416134375, 212940625, 388649575; 0, 3125, 550; 0, 0, 25], [-1280, 5, 5]~]
                   2533: ? rnfequation(nf2,p)
                   2534: x^15 - 15*x^11 + 75*x^7 - x^5 - 125*x^3 + 5*x + 1
                   2535: ? rnfequation2(nf2,p)
                   2536: [x^15 - 15*x^11 + 75*x^7 - x^5 - 125*x^3 + 5*x + 1, mod(-x^5 + 5*x, x^15 - 1
                   2537: 5*x^11 + 75*x^7 - x^5 - 125*x^3 + 5*x + 1), 0]
                   2538: ? rnfhermitebasis(bnf2,aa)
                   2539:
                   2540: [[1, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [-2/5, 2/5, -4/5]~ [11/25, 99/25, -33/25]~
                   2541: ]
                   2542:
                   2543: [[0, 0, 0]~ [1, 0, 0]~ [0, 0, 0]~ [2/5, -2/5, 4/5]~ [-8/25, -72/25, 24/25]~]
                   2544:
                   2545: [[0, 0, 0]~ [0, 0, 0]~ [1, 0, 0]~ [1/5, -1/5, 2/5]~ [4/25, 36/25, -12/25]~]
                   2546:
                   2547: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [1/5, -1/5, 2/5]~ [-2/25, -18/25, 6/25]~]
                   2548:
                   2549: [[0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [0, 0, 0]~ [1/25, 9/25, -3/25]~]
                   2550:
                   2551: ? rnfisfree(bnf2,aa)
                   2552: 1
                   2553: ? rnfsteinitz(nf2,aa)
                   2554: [[[1, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [4/5, -4/5, -2/5]~, [39/125, 11/125, 1
                   2555: 1/125]~; [0, 0, 0]~, [1, 0, 0]~, [0, 0, 0]~, [-4/5, 4/5, 2/5]~, [-42/125, -8
                   2556: /125, -8/125]~; [0, 0, 0]~, [0, 0, 0]~, [1, 0, 0]~, [-2/5, 2/5, 1/5]~, [-29/
                   2557: 125, 4/125, 4/125]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [-2/5, 2/5, 1/5]~,
                   2558: [-23/125, -2/125, -2/125]~; [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~, [0, 0, 0]~,
                   2559: [-1/125, 1/125, 1/125]~], [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0
                   2560: , 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 0, 0; 0, 1, 0; 0, 0, 1], [125, 0,
                   2561: 108; 0, 125, 22; 0, 0, 1]], [416134375, 212940625, 388649575; 0, 3125, 550;
                   2562: 0, 0, 25], [-1280, 5, 5]~]
                   2563: ? rootmod(x^16-1,41)
                   2564: [mod(1, 41), mod(3, 41), mod(9, 41), mod(14, 41), mod(27, 41), mod(32, 41),
                   2565: mod(38, 41), mod(40, 41)]~
                   2566: ? rootpadic(x^4+1,41,6)
                   2567: [3 + 22*41 + 27*41^2 + 15*41^3 + 27*41^4 + 33*41^5 + O(41^6), 14 + 20*41 + 2
                   2568: 5*41^2 + 24*41^3 + 4*41^4 + 18*41^5 + O(41^6), 27 + 20*41 + 15*41^2 + 16*41^
                   2569: 3 + 36*41^4 + 22*41^5 + O(41^6), 38 + 18*41 + 13*41^2 + 25*41^3 + 13*41^4 +
                   2570: 7*41^5 + O(41^6)]~
                   2571: ? roots(x^5-5*x^2-5*x-5)
                   2572: [2.0509134529831982130058170163696514536 + 0.E-38*I, -0.67063790319207539268
                   2573: 663382582902335603 + 0.84813118358634026680538906224199030917*I, -0.67063790
                   2574: 319207539268663382582902335603 - 0.84813118358634026680538906224199030917*I,
                   2575:  -0.35481882329952371381627468235580237077 + 1.39980287391035466982975228340
                   2576: 62081964*I, -0.35481882329952371381627468235580237077 - 1.399802873910354669
                   2577: 8297522834062081964*I]~
                   2578: ? rootsold(x^4-1000000000000000000000)
                   2579: [-177827.94100389228012254211951926848447 + 0.E-38*I, 177827.941003892280122
                   2580: 54211951926848447 + 0.E-38*I, 6.7178761075670887517909655889502271295 E-139
                   2581: + 177827.94100389228012254211951926848447*I, 6.71787610756708875179096558895
                   2582: 02271295 E-139 - 177827.94100389228012254211951926848447*I]~
                   2583: ? round(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
                   2584: x^17 - 1
                   2585: ? rounderror(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
                   2586: -35
                   2587: ? rpoint(0,20,20)
                   2588: ? initrect(3,600,600);scale(3,-7,7,-2,2);cursor(3)
                   2589: ? q*series(anell(acurve,100),q)
                   2590: q - 2*q^2 - 3*q^3 + 2*q^4 - 2*q^5 + 6*q^6 - q^7 + 6*q^9 + 4*q^10 - 5*q^11 -
                   2591: 6*q^12 - 2*q^13 + 2*q^14 + 6*q^15 - 4*q^16 - 12*q^18 - 4*q^20 + 3*q^21 + 10*
                   2592: q^22 + 2*q^23 - q^25 + 4*q^26 - 9*q^27 - 2*q^28 + 6*q^29 - 12*q^30 - 4*q^31
                   2593: + 8*q^32 + 15*q^33 + 2*q^35 + 12*q^36 - q^37 + 6*q^39 - 9*q^41 - 6*q^42 + 2*
                   2594: q^43 - 10*q^44 - 12*q^45 - 4*q^46 - 9*q^47 + 12*q^48 - 6*q^49 + 2*q^50 - 4*q
                   2595: ^52 + q^53 + 18*q^54 + 10*q^55 - 12*q^58 + 8*q^59 + 12*q^60 - 8*q^61 + 8*q^6
                   2596: 2 - 6*q^63 - 8*q^64 + 4*q^65 - 30*q^66 + 8*q^67 - 6*q^69 - 4*q^70 + 9*q^71 -
                   2597:  q^73 + 2*q^74 + 3*q^75 + 5*q^77 - 12*q^78 + 4*q^79 + 8*q^80 + 9*q^81 + 18*q
                   2598: ^82 - 15*q^83 + 6*q^84 - 4*q^86 - 18*q^87 + 4*q^89 + 24*q^90 + 2*q^91 + 4*q^
                   2599: 92 + 12*q^93 + 18*q^94 - 24*q^96 + 4*q^97 + 12*q^98 - 30*q^99 - 2*q^100 + O(
                   2600: q^101)
                   2601: ? aset=set([5,-2,7,3,5,1])
                   2602: ["-2", "1", "3", "5", "7"]
                   2603: ? bset=set([7,5,-5,7,2])
                   2604: ["-5", "2", "5", "7"]
                   2605: ? setintersect(aset,bset)
                   2606: ["5", "7"]
                   2607: ? setminus(aset,bset)
                   2608: ["-2", "1", "3"]
                   2609: ? setprecision(28)
                   2610: 38
                   2611: ? setrand(10)
                   2612: 10
                   2613: ? setsearch(aset,3)
                   2614: 3
                   2615: ? setsearch(bset,3)
                   2616: 0
                   2617: ? setserieslength(12)
                   2618: 16
                   2619: ? setunion(aset,bset)
                   2620: ["-2", "-5", "1", "2", "3", "5", "7"]
                   2621: ? arat=(x^3+x+1)/x^3;settype(arat,14)
                   2622: (x^3 + x + 1)/x^3
                   2623: ? shift(1,50)
                   2624: 1125899906842624
                   2625: ? shift([3,4,-11,-12],-2)
                   2626: [0, 1, -2, -3]
                   2627: ? shiftmul([3,4,-11,-12],-2)
                   2628: [3/4, 1, -11/4, -3]
                   2629: ? sigma(100)
                   2630: 217
                   2631: ? sigmak(2,100)
                   2632: 13671
                   2633: ? sigmak(-3,100)
                   2634: 1149823/1000000
                   2635: ? sign(-1)
                   2636: -1
                   2637: ? sign(0)
                   2638: 0
                   2639: ? sign(0.)
                   2640: 0
                   2641: ? signat(hilbert(5)-0.11*idmat(5))
                   2642: [2, 3]
                   2643: ? signunit(bnf)
                   2644:
                   2645: [-1]
                   2646:
                   2647: [1]
                   2648:
                   2649: ? simplefactmod(x^11+1,7)
                   2650:
                   2651: [1 1]
                   2652:
                   2653: [10 1]
                   2654:
                   2655: ? simplify(((x+i+1)^2-x^2-2*x*(i+1))^2)
                   2656: -4
                   2657: ? sin(pi/6)
                   2658: 0.5000000000000000000000000000
                   2659: ? sinh(1)
                   2660: 1.175201193643801456882381850
                   2661: ? size([1.3*10^5,2*i*pi*exp(4*pi)])
                   2662: 7
                   2663: ? smallbasis(x^3+4*x+12)
                   2664: [1, x, 1/2*x^2]
                   2665: ? smalldiscf(x^3+4*x+12)
                   2666: -1036
                   2667: ? smallfact(100!+1)
                   2668:
                   2669: [101 1]
                   2670:
                   2671: [14303 1]
                   2672:
                   2673: [149239 1]
                   2674:
                   2675: [432885273849892962613071800918658949059679308685024481795740765527568493010
                   2676: 727023757461397498800981521440877813288657839195622497225621499427628453 1]
                   2677:
                   2678: ? smallinitell([0,0,0,-17,0])
                   2679: [0, 0, 0, -17, 0, 0, -34, 0, -289, 816, 0, 314432, 1728]
                   2680: ? smallpolred(x^4+576)
                   2681: [x - 1, x^2 - x + 1, x^2 + 1, x^4 - x^2 + 1]
                   2682: ? smallpolred2(x^4+576)
                   2683:
                   2684: [1 x - 1]
                   2685:
                   2686: [1/192*x^3 + 1/8*x + 1/2 x^2 - x + 1]
                   2687:
                   2688: [-1/24*x^2 x^2 + 1]
                   2689:
                   2690: [-1/192*x^3 + 1/48*x^2 + 1/8*x x^4 - x^2 + 1]
                   2691:
                   2692: ? smith(matrix(5,5,j,k,random()))
                   2693: [434644616238830047700451328, 2147483648, 2147483648, 1, 1]
                   2694: ? smith(1/hilbert(6))
                   2695: [27720, 2520, 2520, 840, 210, 6]
                   2696: ? smithpol(x*idmat(5)-matrix(5,5,j,k,1))
                   2697: [x^2 - 5*x, x, x, x, 1]
                   2698: ? solve(x=1,4,sin(x))
                   2699: 3.141592653589793238462643383
                   2700: ? sort(vector(17,x,5*x%17))
                   2701: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
                   2702: ? sqr(1+o(2))
                   2703: 1 + O(2^3)
                   2704: ? sqred(hilbert(5))
                   2705:
                   2706: [1 1/2 1/3 1/4 1/5]
                   2707:
                   2708: [0 1/12 1 9/10 4/5]
                   2709:
                   2710: [0 0 1/180 3/2 12/7]
                   2711:
                   2712: [0 0 0 1/2800 2]
                   2713:
                   2714: [0 0 0 0 1/44100]
                   2715:
                   2716: ? sqrt(13+o(127^12))
                   2717: 34 + 125*127 + 83*127^2 + 107*127^3 + 53*127^4 + 42*127^5 + 22*127^6 + 98*12
                   2718: 7^7 + 127^8 + 23*127^9 + 122*127^10 + 79*127^11 + O(127^12)
                   2719: ? srgcd(x^10-1,x^15-1)
                   2720: x^5 - 1
                   2721: ? move(0,100,100);string(0,pi)
                   2722: ? move(0,200,200);string(0,"(0,0)")
                   2723: ? postdraw([0,10,10])
                   2724: ? apol=0.3+legendre(10)
                   2725: 46189/256*x^10 - 109395/256*x^8 + 45045/128*x^6 - 15015/128*x^4 + 3465/256*x
                   2726: ^2 + 0.05390625000000000000000000000
                   2727: ? sturm(apol)
                   2728: 4
                   2729: ? sturmpart(apol,0.91,1)
                   2730: 1
                   2731: ? subcyclo(31,5)
                   2732: x^5 + x^4 - 12*x^3 - 21*x^2 + x + 5
                   2733: ? subell(initell([0,0,0,-17,0]),[-1,4],[-4,2])
                   2734: [9, -24]
                   2735: ? subst(sin(x),x,y)
                   2736: y - 1/6*y^3 + 1/120*y^5 - 1/5040*y^7 + 1/362880*y^9 - 1/39916800*y^11 + O(y^
                   2737: 12)
                   2738: ? subst(sin(x),x,x+x^2)
                   2739: x + x^2 - 1/6*x^3 - 1/2*x^4 - 59/120*x^5 - 1/8*x^6 + 419/5040*x^7 + 59/720*x
                   2740: ^8 + 13609/362880*x^9 + 19/13440*x^10 - 273241/39916800*x^11 + O(x^12)
                   2741: ? sum(0,k=1,10,2^-k)
                   2742: 1023/1024
                   2743: ? sum(0.,k=1,10,2^-k)
                   2744: 0.9990234375000000000000000000
                   2745: ? sylvestermatrix(a2*x^2+a1*x+a0,b1*x+b0)
                   2746:
                   2747: [a2 b1 0]
                   2748:
                   2749: [a1 b0 b1]
                   2750:
                   2751: [a0 0 b0]
                   2752:
                   2753: ? \precision=38
                   2754:    realprecision = 38 significant digits
                   2755: ? 4*sumalt(n=0,(-1)^n/(2*n+1))
                   2756: 3.1415926535897932384626433832795028841
                   2757: ? 4*sumalt2(n=0,(-1)^n/(2*n+1))
                   2758: 3.1415926535897932384626433832795028842
                   2759: ? suminf(n=1,2.^-n)
                   2760: 0.99999999999999999999999999999999999999
                   2761: ? 6/pi^2*sumpos(n=1,n^-2)
                   2762: 0.99999999999999999999999999999999999999
                   2763: ? supplement([1,3;2,4;3,6])
                   2764:
                   2765: [1 3 0]
                   2766:
                   2767: [2 4 0]
                   2768:
                   2769: [3 6 1]
                   2770:
                   2771: ? sqr(tan(pi/3))
                   2772: 2.9999999999999999999999999999999999999
                   2773: ? tanh(1)
                   2774: 0.76159415595576488811945828260479359041
                   2775: ? taniyama(bcurve)
                   2776: [x^-2 - x^2 + 3*x^6 - 2*x^10 + O(x^11), -x^-3 + 3*x - 3*x^5 + 8*x^9 + O(x^10
                   2777: )]
                   2778: ? taylor(y/(x-y),y)
                   2779: (O(y^12)*x^11 + y*x^10 + y^2*x^9 + y^3*x^8 + y^4*x^7 + y^5*x^6 + y^6*x^5 + y
                   2780: ^7*x^4 + y^8*x^3 + y^9*x^2 + y^10*x + y^11)/x^11
                   2781: ? tchebi(10)
                   2782: 512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1
                   2783: ? teich(7+o(127^12))
                   2784: 7 + 57*127 + 58*127^2 + 83*127^3 + 52*127^4 + 109*127^5 + 74*127^6 + 16*127^
                   2785: 7 + 60*127^8 + 47*127^9 + 65*127^10 + 5*127^11 + O(127^12)
                   2786: ? texprint((x+y)^3/(x-y)^2)
                   2787: {{x^{3} + {{3}y}x^{2} + {{3}y^{2}}x + {y^{3}}}\over{x^{2} - {{2}y}x + {y^{2}
                   2788: }}}
                   2789: ? theta(0.5,3)
                   2790: 0.080806418251894691299871683210466298535
                   2791: ? thetanullk(0.5,7)
                   2792: -804.63037320243369422783730584965684022
                   2793: ? torsell(tcurve)
                   2794: [12, [6, 2], [[-2, 8], [3, -2]]]
                   2795: ? trace(1+i)
                   2796: 2
                   2797: ? trace(mod(x+5,x^3+x+1))
                   2798: 15
                   2799: ? trans(vector(2,x,x))
                   2800: [1, 2]~
                   2801: ? %*%~
                   2802:
                   2803: [1 2]
                   2804:
                   2805: [2 4]
                   2806:
                   2807: ? trunc(-2.7)
                   2808: -2
                   2809: ? trunc(sin(x^2))
                   2810: 1/120*x^10 - 1/6*x^6 + x^2
                   2811: ? tschirnhaus(x^5-x-1)
                   2812: x^5 - 8*x^3 + 16*x - 32
                   2813: ? type(mod(x,x^2+1))
                   2814: 9
                   2815: ? unit(17)
                   2816: 3 + 2*w
                   2817: ? n=33;until(n==1,print1(n," ");if(n%2,n=3*n+1,n=n/2));print(1)
                   2818: 33 100 50 25 76 38 19 58 29 88 44 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
                   2819: ? valuation(6^10000-1,5)
                   2820: 5
                   2821: ? vec(sin(x))
                   2822: [1, 0, -1/6, 0, 1/120, 0, -1/5040, 0, 1/362880, 0, -1/39916800]
                   2823: ? vecmax([-3,7,-2,11])
                   2824: 11
                   2825: ? vecmin([-3,7,-2,11])
                   2826: -3
                   2827: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],2)
                   2828: [[2, 5, 8], [3, 6, -6], [4, 8, 6], [1, 8, 5]]
                   2829: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],[2,1])
                   2830: [[2, 5, 8], [3, 6, -6], [1, 8, 5], [4, 8, 6]]
                   2831: ? weipell(acurve)
                   2832: x^-2 + 1/5*x^2 - 1/28*x^4 + 1/75*x^6 - 3/1540*x^8 + 1943/3822000*x^10 - 1/11
                   2833: 550*x^12 + 193/10510500*x^14 - 1269/392392000*x^16 + 21859/34684650000*x^18
                   2834: - 1087/9669660000*x^20 + O(x^22)
                   2835: ? wf(i)
                   2836: 1.1892071150027210667174999705604759152 - 1.17549435082228750796065619400000
                   2837: 00000 E-38*I
                   2838: ? wf2(i)
                   2839: 1.0905077326652576592070106557607079789 + 0.E-58*I
                   2840: ? m=5;while(m<20,print1(m," ");m=m+1);print()
                   2841: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
                   2842: ? zell(acurve,apoint)
                   2843: 0.72491221490962306778878739838332384646 + 0.E-77*I
                   2844: ? zeta(3)
                   2845: 1.2020569031595942853997381615114499907
                   2846: ? zeta(0.5+14.1347251*i)
                   2847: 0.0000000052043097453468479398562848599419244555 - 0.00000003269063986978698
                   2848: 2176409251733800562846*I
                   2849: ? zetak(nfz,-3)
                   2850: 0.091666666666666666666666666666666666666
                   2851: ? zetak(nfz,1.5+3*i)
                   2852: 0.88324345992059326405525724366416928890 - 0.2067536250233895222724230899142
                   2853: 7938845*I
                   2854: ? zidealstar(nf2,54)
                   2855: [132678, [1638, 9, 9], [[-27, 2, -27]~, [1, -24, 0]~, [1, 0, -24]~]]
                   2856: ? bid=zidealstarinit(nf2,54)
                   2857: [[[54, 0, 0; 0, 54, 0; 0, 0, 54], [0]], [132678, [1638, 9, 9]], [[2, [2, 0,
                   2858: 0]~, 1, 3, [1, 0, 0]~], 1; [3, [3, 0, 0]~, 1, 3, [1, 0, 0]~], 3], [[[[7], [[
                   2859: 0, 1, 0]~], [[-26, -27, 0]~], [[]~], 1]], [[[26], [[0, 2, 0]~], [[-27, 2, 0]
                   2860: ~], [[]~], 1], [[3, 3, 3], [[1, 3, 0]~, [1, 0, 3]~, [4, 0, 0]~], [[1, -24, 0
                   2861: ]~, [1, 0, -24]~, [-23, 0, 0]~], [[]~, []~, []~], [0, 1/3, 0; 0, 0, 1/3; 1/3
                   2862: , 0, 0]], [[3, 3, 3], [[1, 9, 0]~, [1, 0, 9]~, [10, 0, 0]~], [[1, -18, 0]~,
                   2863: [1, 0, -18]~, [-17, 0, 0]~], [[]~, []~, []~], [0, 1/9, 0; 0, 0, 1/9; 1/9, 0,
                   2864:  0]]], [[], [], [;]]], [468, 469, 0, 0, -48776, 0, 0, -36582; 0, 0, 1, 0, -7
                   2865: , -6, 0, -3; 0, 0, 0, 1, -3, 0, -6, 0]]
                   2866: ? zideallog(nf2,w,bid)
                   2867: [1574, 8, 6]~
                   2868: ? znstar(3120)
                   2869: [768, [12, 4, 4, 2, 2], [mod(67, 3120), mod(2341, 3120), mod(1847, 3120), mo
                   2870: d(391, 3120), mod(2081, 3120)]]
                   2871: ? getstack()
                   2872: 0
                   2873: ? getheap()
                   2874: [625, 112388]
                   2875: ? print("Total time spent: ",gettime());
                   2876: Total time spent: 8426
                   2877: ? \q

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>