Annotation of OpenXM_contrib/pari/src/test/64/linear, Revision 1.1
1.1 ! maekawa 1: echo = 1 (on)
! 2: ? algdep(2*cos(2*Pi/13),6)
! 3: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
! 4: ? algdep(2*cos(2*Pi/13),6,15)
! 5: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
! 6: ? charpoly([1,2;3,4],z)
! 7: z^2 - 5*z - 2
! 8: ? charpoly(Mod(x^2+x+1,x^3+5*x+1),z)
! 9: z^3 + 7*z^2 + 16*z - 19
! 10: ? charpoly([1,2;3,4],z,1)
! 11: z^2 - 5*z - 2
! 12: ? charpoly(Mod(1,8191)*[1,2;3,4],z,2)
! 13: Mod(1, 8191)*z^2 + Mod(8186, 8191)*z + Mod(8189, 8191)
! 14: ? lindep(Mod(1,7)*[2,-1;1,3],-1)
! 15: [Mod(6, 7), Mod(5, 7)]~
! 16: ? lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)])
! 17: [-3, -3, 9, -2, 6]
! 18: ? lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)],14)
! 19: [-3, -3, 9, -2, 6]
! 20: ? matadjoint([1,2;3,4])
! 21:
! 22: [4 -2]
! 23:
! 24: [-3 1]
! 25:
! 26: ? matcompanion(x^5-12*x^3+0.0005)
! 27:
! 28: [0 0 0 0 -0.00049999999999999999999999999999999999999]
! 29:
! 30: [1 0 0 0 0]
! 31:
! 32: [0 1 0 0 0]
! 33:
! 34: [0 0 1 0 12]
! 35:
! 36: [0 0 0 1 0]
! 37:
! 38: ? matdet([1,2,3;1,5,6;9,8,7])
! 39: -30
! 40: ? matdet([1,2,3;1,5,6;9,8,7],1)
! 41: -30
! 42: ? matdetint([1,2,3;4,5,6])
! 43: 3
! 44: ? matdiagonal([2,4,6])
! 45:
! 46: [2 0 0]
! 47:
! 48: [0 4 0]
! 49:
! 50: [0 0 6]
! 51:
! 52: ? mateigen([1,2,3;4,5,6;7,8,9])
! 53:
! 54: [-1.2833494518006402717978106547571267252 1 0.283349451800640271797810654757
! 55: 12672521]
! 56:
! 57: [-0.14167472590032013589890532737856336261 -2 0.6416747259003201358989053273
! 58: 7856336260]
! 59:
! 60: [1 1 1]
! 61:
! 62: ? mathess(mathilbert(7))
! 63:
! 64: [1 90281/58800 -1919947/4344340 4858466341/1095033030 -77651417539/819678732
! 65: 6 3386888964/106615355 1/2]
! 66:
! 67: [1/3 43/48 38789/5585580 268214641/109503303 -581330123627/126464718744 4365
! 68: 450643/274153770 1/4]
! 69:
! 70: [0 217/2880 442223/7447440 53953931/292008808 -32242849453/168619624992 1475
! 71: 457901/1827691800 1/80]
! 72:
! 73: [0 0 1604444/264539275 24208141/149362505292 847880210129/47916076768560 -45
! 74: 44407141/103873817300 -29/40920]
! 75:
! 76: [0 0 0 9773092581/35395807550620 -24363634138919/107305824577186620 72118203
! 77: 606917/60481351061158500 55899/3088554700]
! 78:
! 79: [0 0 0 0 67201501179065/8543442888354179988 -9970556426629/74082861999267660
! 80: 0 -3229/13661312210]
! 81:
! 82: [0 0 0 0 0 -258198800769/9279048099409000 -13183/38381527800]
! 83:
! 84: ? mathilbert(5)
! 85:
! 86: [1 1/2 1/3 1/4 1/5]
! 87:
! 88: [1/2 1/3 1/4 1/5 1/6]
! 89:
! 90: [1/3 1/4 1/5 1/6 1/7]
! 91:
! 92: [1/4 1/5 1/6 1/7 1/8]
! 93:
! 94: [1/5 1/6 1/7 1/8 1/9]
! 95:
! 96: ? amat=1/mathilbert(7)
! 97:
! 98: [49 -1176 8820 -29400 48510 -38808 12012]
! 99:
! 100: [-1176 37632 -317520 1128960 -1940400 1596672 -504504]
! 101:
! 102: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040]
! 103:
! 104: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160]
! 105:
! 106: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800]
! 107:
! 108: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264]
! 109:
! 110: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088]
! 111:
! 112: ? mathnf(amat)
! 113:
! 114: [420 0 0 0 210 168 175]
! 115:
! 116: [0 840 0 0 0 0 504]
! 117:
! 118: [0 0 2520 0 0 0 1260]
! 119:
! 120: [0 0 0 2520 0 0 840]
! 121:
! 122: [0 0 0 0 13860 0 6930]
! 123:
! 124: [0 0 0 0 0 5544 0]
! 125:
! 126: [0 0 0 0 0 0 12012]
! 127:
! 128: ? mathnf(amat,1)
! 129: [[420, 0, 0, 0, 210, 168, 175; 0, 840, 0, 0, 0, 0, 504; 0, 0, 2520, 0, 0, 0,
! 130: 1260; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 13860, 0, 6930; 0, 0, 0, 0, 0,
! 131: 5544, 0; 0, 0, 0, 0, 0, 0, 12012], [420, 420, 840, 630, 2982, 1092, 4159; 21
! 132: 0, 280, 630, 504, 2415, 876, 3395; 140, 210, 504, 420, 2050, 749, 2901; 105,
! 133: 168, 420, 360, 1785, 658, 2542; 84, 140, 360, 315, 1582, 588, 2266; 70, 120
! 134: , 315, 280, 1421, 532, 2046; 60, 105, 280, 252, 1290, 486, 1866]]
! 135: ? mathnf(amat,2)
! 136: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
! 137: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
! 138: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
! 139: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
! 140: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
! 141: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
! 142: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
! 143: ? mathnf(amat,3)
! 144: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
! 145: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
! 146: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
! 147: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
! 148: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
! 149: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
! 150: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
! 151: ? mathnfmod(amat,matdetint(amat))
! 152:
! 153: [420 0 0 0 210 168 175]
! 154:
! 155: [0 840 0 0 0 0 504]
! 156:
! 157: [0 0 2520 0 0 0 1260]
! 158:
! 159: [0 0 0 2520 0 0 840]
! 160:
! 161: [0 0 0 0 13860 0 6930]
! 162:
! 163: [0 0 0 0 0 5544 0]
! 164:
! 165: [0 0 0 0 0 0 12012]
! 166:
! 167: ? mathnfmodid(amat,123456789*10^100)
! 168:
! 169: [60 0 0 0 30 24 35]
! 170:
! 171: [0 120 0 0 0 0 24]
! 172:
! 173: [0 0 360 0 0 0 180]
! 174:
! 175: [0 0 0 360 0 0 240]
! 176:
! 177: [0 0 0 0 180 0 90]
! 178:
! 179: [0 0 0 0 0 72 0]
! 180:
! 181: [0 0 0 0 0 0 12]
! 182:
! 183: ? matid(5)
! 184:
! 185: [1 0 0 0 0]
! 186:
! 187: [0 1 0 0 0]
! 188:
! 189: [0 0 1 0 0]
! 190:
! 191: [0 0 0 1 0]
! 192:
! 193: [0 0 0 0 1]
! 194:
! 195: ? matimage([1,3,5;2,4,6;3,5,7])
! 196:
! 197: [1 3]
! 198:
! 199: [2 4]
! 200:
! 201: [3 5]
! 202:
! 203: ? matimage([1,3,5;2,4,6;3,5,7],1)
! 204:
! 205: [3 5]
! 206:
! 207: [4 6]
! 208:
! 209: [5 7]
! 210:
! 211: ? matimage(Pi*[1,3,5;2,4,6;3,5,7])
! 212:
! 213: [3.1415926535897932384626433832795028841 9.424777960769379715387930149838508
! 214: 6525]
! 215:
! 216: [6.2831853071795864769252867665590057683 12.56637061435917295385057353311801
! 217: 1536]
! 218:
! 219: [9.4247779607693797153879301498385086525 15.70796326794896619231321691639751
! 220: 4420]
! 221:
! 222: ? matimagecompl([1,3,5;2,4,6;3,5,7])
! 223: [3]
! 224: ? matimagecompl(Pi*[1,3,5;2,4,6;3,5,7])
! 225: [3]
! 226: ? matindexrank([1,1,1;1,1,1;1,1,2])
! 227: [[1, 3], [1, 3]]
! 228: ? matintersect([1,2;3,4;5,6],[2,3;7,8;8,9])
! 229:
! 230: [-1]
! 231:
! 232: [-1]
! 233:
! 234: [-1]
! 235:
! 236: ? matinverseimage([1,1;2,3;5,7],[2,2,6]~)
! 237: [4, -2]~
! 238: ? matisdiagonal([1,0,0;0,5,0;0,0,0])
! 239: 1
! 240: ? matker(matrix(4,4,x,y,x/y))
! 241:
! 242: [-1/2 -1/3 -1/4]
! 243:
! 244: [1 0 0]
! 245:
! 246: [0 1 0]
! 247:
! 248: [0 0 1]
! 249:
! 250: ? matker(matrix(4,4,x,y,sin(x+y)))
! 251:
! 252: [1.0000000000000000000000000000000000000 1.080604611736279434801873214885953
! 253: 2074]
! 254:
! 255: [-1.0806046117362794348018732148859532074 -0.1677063269057152260048635409984
! 256: 7562046]
! 257:
! 258: [1 0]
! 259:
! 260: [0 1]
! 261:
! 262: ? matker(matrix(4,4,x,y,x+y),1)
! 263:
! 264: [1 2]
! 265:
! 266: [-2 -3]
! 267:
! 268: [1 0]
! 269:
! 270: [0 1]
! 271:
! 272: ? matkerint(matrix(4,4,x,y,x*y))
! 273:
! 274: [-1 -1 -1]
! 275:
! 276: [-1 0 1]
! 277:
! 278: [1 -1 1]
! 279:
! 280: [0 1 -1]
! 281:
! 282: ? matkerint(matrix(4,4,x,y,x*y),1)
! 283:
! 284: [-1 -1 -1]
! 285:
! 286: [-1 0 1]
! 287:
! 288: [1 -1 1]
! 289:
! 290: [0 1 -1]
! 291:
! 292: ? matkerint(matrix(4,6,x,y,2520/(x+y)),2)
! 293:
! 294: [3 1]
! 295:
! 296: [-30 -15]
! 297:
! 298: [70 70]
! 299:
! 300: [0 -140]
! 301:
! 302: [-126 126]
! 303:
! 304: [84 -42]
! 305:
! 306: ? matmuldiagonal(amat,[1,2,3,4,5,6,7])
! 307:
! 308: [49 -2352 26460 -117600 242550 -232848 84084]
! 309:
! 310: [-1176 75264 -952560 4515840 -9702000 9580032 -3531528]
! 311:
! 312: [8820 -635040 8573040 -42336000 93555000 -94303440 35315280]
! 313:
! 314: [-29400 2257920 -31752000 161280000 -363825000 372556800 -141261120]
! 315:
! 316: [48510 -3880800 56133000 -291060000 667012500 -691558560 264864600]
! 317:
! 318: [-38808 3193344 -47151720 248371200 -576298800 603542016 -233080848]
! 319:
! 320: [12012 -1009008 15135120 -80720640 189189000 -199783584 77693616]
! 321:
! 322: ? matmultodiagonal(amat^-1,%)
! 323:
! 324: [1 0 0 0 0 0 0]
! 325:
! 326: [0 2 0 0 0 0 0]
! 327:
! 328: [0 0 3 0 0 0 0]
! 329:
! 330: [0 0 0 4 0 0 0]
! 331:
! 332: [0 0 0 0 5 0 0]
! 333:
! 334: [0 0 0 0 0 6 0]
! 335:
! 336: [0 0 0 0 0 0 7]
! 337:
! 338: ? matpascal(8)
! 339:
! 340: [1 0 0 0 0 0 0 0 0]
! 341:
! 342: [1 1 0 0 0 0 0 0 0]
! 343:
! 344: [1 2 1 0 0 0 0 0 0]
! 345:
! 346: [1 3 3 1 0 0 0 0 0]
! 347:
! 348: [1 4 6 4 1 0 0 0 0]
! 349:
! 350: [1 5 10 10 5 1 0 0 0]
! 351:
! 352: [1 6 15 20 15 6 1 0 0]
! 353:
! 354: [1 7 21 35 35 21 7 1 0]
! 355:
! 356: [1 8 28 56 70 56 28 8 1]
! 357:
! 358: ? matrank(matrix(5,5,x,y,x+y))
! 359: 2
! 360: ? matrix(5,5,x,y,gcd(x,y))
! 361:
! 362: [1 1 1 1 1]
! 363:
! 364: [1 2 1 2 1]
! 365:
! 366: [1 1 3 1 1]
! 367:
! 368: [1 2 1 4 1]
! 369:
! 370: [1 1 1 1 5]
! 371:
! 372: ? matrixqz([1,3;3,5;5,7],0)
! 373:
! 374: [1 1]
! 375:
! 376: [3 2]
! 377:
! 378: [5 3]
! 379:
! 380: ? matrixqz([1/3,1/4,1/6;1/2,1/4,-1/4;1/3,1,0],-1)
! 381:
! 382: [19 12 2]
! 383:
! 384: [0 1 0]
! 385:
! 386: [0 0 1]
! 387:
! 388: ? matrixqz([1,3;3,5;5,7],-2)
! 389:
! 390: [2 -1]
! 391:
! 392: [1 0]
! 393:
! 394: [0 1]
! 395:
! 396: ? matsize([1,2;3,4;5,6])
! 397: [3, 2]
! 398: ? matsnf(matrix(5,5,j,k,random))
! 399: [741799239614624774584532992, 2147483648, 2147483648, 1, 1]
! 400: ? matsnf(1/mathilbert(6))
! 401: [27720, 2520, 2520, 840, 210, 6]
! 402: ? matsnf(x*matid(5)-matrix(5,5,j,k,1),2)
! 403: [x^2 - 5*x, x, x, x, 1]
! 404: ? matsolve(mathilbert(10),[1,2,3,4,5,6,7,8,9,0]~)
! 405: [9236800, -831303990, 18288515520, -170691240720, 832112321040, -23298940665
! 406: 00, 3883123564320, -3803844432960, 2020775945760, -449057772020]~
! 407: ? matsolvemod([2,3;5,4],[7,11],[1,4]~)
! 408: [-5, -1]~
! 409: ? matsolvemod([2,3;5,4],[7,11],[1,4]~,1)
! 410: [[-5, -1]~, [-77, 723; 0, 1]]
! 411: ? matsupplement([1,3;2,4;3,6])
! 412:
! 413: [1 3 0]
! 414:
! 415: [2 4 0]
! 416:
! 417: [3 6 1]
! 418:
! 419: ? mattranspose(vector(2,x,x))
! 420: [1, 2]~
! 421: ? %*%~
! 422:
! 423: [1 2]
! 424:
! 425: [2 4]
! 426:
! 427: ? norml2(vector(10,x,x))
! 428: 385
! 429: ? qfgaussred(mathilbert(5))
! 430:
! 431: [1 1/2 1/3 1/4 1/5]
! 432:
! 433: [0 1/12 1 9/10 4/5]
! 434:
! 435: [0 0 1/180 3/2 12/7]
! 436:
! 437: [0 0 0 1/2800 2]
! 438:
! 439: [0 0 0 0 1/44100]
! 440:
! 441: ? qfjacobi(mathilbert(6))
! 442: [[1.6188998589243390969705881471257800712, 0.2423608705752095521357284158507
! 443: 0114077, 0.000012570757122625194922982397996498755027, 0.0000001082799484565
! 444: 5497685388772372251711485, 0.016321521319875822124345079564191505890, 0.0006
! 445: 1574835418265769764919938428527140264]~, [0.74871921887909485900280109200517
! 446: 845109, -0.61454482829258676899320019644273870645, 0.01114432093072471053067
! 447: 8340374220998541, -0.0012481940840821751169398163046387834473, 0.24032536934
! 448: 252330399154228873240534568, -0.062226588150197681775152126611810492910; 0.4
! 449: 4071750324351206127160083580231701801, 0.21108248167867048675227675845247769
! 450: 095, -0.17973275724076003758776897803740640964, 0.03560664294428763526612284
! 451: 8131812048466, -0.69765137527737012296208335046678265583, 0.4908392097109243
! 452: 6297498316169060044997; 0.32069686982225190106359024326699463106, 0.36589360
! 453: 730302614149086554211117169622, 0.60421220675295973004426567844103062241, -0
! 454: .24067907958842295837736719558855679285, -0.23138937333290388042251363554209
! 455: 048309, -0.53547692162107486593474491750949545456; 0.25431138634047419251788
! 456: 312792590944672, 0.39470677609501756783094636145991581708, -0.44357471627623
! 457: 954554460416705180105301, 0.62546038654922724457753441039459331059, 0.132863
! 458: 15850933553530333839628101576050, -0.41703769221897886840494514780771076439;
! 459: 0.21153084007896524664213667673977991959, 0.3881904338738864286311144882599
! 460: 2418973, -0.44153664101228966222143649752977203423, -0.689807199293836684198
! 461: 01738006926829419, 0.36271492146487147525299457604461742111, 0.0470340189331
! 462: 15649705614518466541243873; 0.18144297664876947372217005457727093715, 0.3706
! 463: 9590776736280861775501084807394603, 0.45911481681642960284551392793050866602
! 464: , 0.27160545336631286930015536176213647001, 0.502762866757515384892605663686
! 465: 47786272, 0.54068156310385293880022293448123782121]]
! 466: ? m=1/mathilbert(7)
! 467:
! 468: [49 -1176 8820 -29400 48510 -38808 12012]
! 469:
! 470: [-1176 37632 -317520 1128960 -1940400 1596672 -504504]
! 471:
! 472: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040]
! 473:
! 474: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160]
! 475:
! 476: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800]
! 477:
! 478: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264]
! 479:
! 480: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088]
! 481:
! 482: ? mp=concat(m,matid(7))
! 483:
! 484: [49 -1176 8820 -29400 48510 -38808 12012 1 0 0 0 0 0 0]
! 485:
! 486: [-1176 37632 -317520 1128960 -1940400 1596672 -504504 0 1 0 0 0 0 0]
! 487:
! 488: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040 0 0 1 0 0 0 0]
! 489:
! 490: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160 0 0 0 1 0 0
! 491: 0]
! 492:
! 493: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800 0 0 0 0 1 0
! 494: 0]
! 495:
! 496: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264 0 0 0 0 0
! 497: 1 0]
! 498:
! 499: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088 0 0 0 0 0 0 1]
! 500:
! 501: ? qflll(m)
! 502:
! 503: [-420 -420 840 630 -1092 -83 2562]
! 504:
! 505: [-210 -280 630 504 -876 70 2205]
! 506:
! 507: [-140 -210 504 420 -749 137 1910]
! 508:
! 509: [-105 -168 420 360 -658 169 1680]
! 510:
! 511: [-84 -140 360 315 -588 184 1498]
! 512:
! 513: [-70 -120 315 280 -532 190 1351]
! 514:
! 515: [-60 -105 280 252 -486 191 1230]
! 516:
! 517: ? qflll(m,7)
! 518:
! 519: [-420 -420 840 630 -1092 -83 2562]
! 520:
! 521: [-210 -280 630 504 -876 70 2205]
! 522:
! 523: [-140 -210 504 420 -749 137 1910]
! 524:
! 525: [-105 -168 420 360 -658 169 1680]
! 526:
! 527: [-84 -140 360 315 -588 184 1498]
! 528:
! 529: [-70 -120 315 280 -532 190 1351]
! 530:
! 531: [-60 -105 280 252 -486 191 1230]
! 532:
! 533: ? qflllgram(m)
! 534:
! 535: [1 1 27 -27 69 0 141]
! 536:
! 537: [0 1 4 -22 34 -24 49]
! 538:
! 539: [0 1 3 -21 18 -24 23]
! 540:
! 541: [0 1 3 -20 10 -19 13]
! 542:
! 543: [0 1 3 -19 6 -14 8]
! 544:
! 545: [0 1 3 -18 4 -10 5]
! 546:
! 547: [0 1 3 -17 3 -7 3]
! 548:
! 549: ? qflllgram(m,7)
! 550:
! 551: [1 1 27 -27 69 0 141]
! 552:
! 553: [0 1 4 -22 34 -24 49]
! 554:
! 555: [0 1 3 -21 18 -24 23]
! 556:
! 557: [0 1 3 -20 10 -19 13]
! 558:
! 559: [0 1 3 -19 6 -14 8]
! 560:
! 561: [0 1 3 -18 4 -10 5]
! 562:
! 563: [0 1 3 -17 3 -7 3]
! 564:
! 565: ? qflllgram(m,1)
! 566:
! 567: [1 1 27 -27 69 0 141]
! 568:
! 569: [0 1 4 -23 34 -24 91]
! 570:
! 571: [0 1 3 -22 18 -24 65]
! 572:
! 573: [0 1 3 -21 10 -19 49]
! 574:
! 575: [0 1 3 -20 6 -14 38]
! 576:
! 577: [0 1 3 -19 4 -10 30]
! 578:
! 579: [0 1 3 -18 3 -7 24]
! 580:
! 581: ? qflllgram(mp~*mp,4)
! 582: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
! 583: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
! 584: 169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
! 585: 190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
! 586: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
! 587: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
! 588: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
! 589: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
! 590: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
! 591: 0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
! 592: ? qflll(m,1)
! 593:
! 594: [-420 -420 840 630 -1092 -83 2982]
! 595:
! 596: [-210 -280 630 504 -876 70 2415]
! 597:
! 598: [-140 -210 504 420 -749 137 2050]
! 599:
! 600: [-105 -168 420 360 -658 169 1785]
! 601:
! 602: [-84 -140 360 315 -588 184 1582]
! 603:
! 604: [-70 -120 315 280 -532 190 1421]
! 605:
! 606: [-60 -105 280 252 -486 191 1290]
! 607:
! 608: ? qflll(m,2)
! 609:
! 610: [-420 -420 -630 840 1092 2982 -83]
! 611:
! 612: [-210 -280 -504 630 876 2415 70]
! 613:
! 614: [-140 -210 -420 504 749 2050 137]
! 615:
! 616: [-105 -168 -360 420 658 1785 169]
! 617:
! 618: [-84 -140 -315 360 588 1582 184]
! 619:
! 620: [-70 -120 -280 315 532 1421 190]
! 621:
! 622: [-60 -105 -252 280 486 1290 191]
! 623:
! 624: ? qflll(mp,4)
! 625: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
! 626: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
! 627: 169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
! 628: 190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
! 629: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
! 630: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
! 631: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
! 632: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
! 633: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
! 634: 0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
! 635: ? qflll(m,3)
! 636:
! 637: [-420 -420 840 630 -1092 -83 2982]
! 638:
! 639: [-210 -280 630 504 -876 70 2415]
! 640:
! 641: [-140 -210 504 420 -749 137 2050]
! 642:
! 643: [-105 -168 420 360 -658 169 1785]
! 644:
! 645: [-84 -140 360 315 -588 184 1582]
! 646:
! 647: [-70 -120 315 280 -532 190 1421]
! 648:
! 649: [-60 -105 280 252 -486 191 1290]
! 650:
! 651: ? qfminim([2,1;1,2],4,6)
! 652: [6, 2, [0, -1, 1; 1, 1, 0]]
! 653: ? qfperfection([2,0,1;0,2,1;1,1,2])
! 654: 6
! 655: ? qfsign(mathilbert(5)-0.11*matid(5))
! 656: [2, 3]
! 657: ? aset=Set([5,-2,7,3,5,1])
! 658: ["-2", "1", "3", "5", "7"]
! 659: ? bset=Set([7,5,-5,7,2])
! 660: ["-5", "2", "5", "7"]
! 661: ? setintersect(aset,bset)
! 662: ["5", "7"]
! 663: ? setisset([-3,5,7,7])
! 664: 0
! 665: ? setminus(aset,bset)
! 666: ["-2", "1", "3"]
! 667: ? setsearch(aset,3)
! 668: 3
! 669: ? setsearch(bset,3)
! 670: 0
! 671: ? setunion(aset,bset)
! 672: ["-2", "-5", "1", "2", "3", "5", "7"]
! 673: ? trace(1+I)
! 674: 2
! 675: ? trace(Mod(x+5,x^3+x+1))
! 676: 15
! 677: ? Vec(sin(x))
! 678: [1, 0, -1/6, 0, 1/120, 0, -1/5040, 0, 1/362880, 0, -1/39916800, 0, 1/6227020
! 679: 800, 0, -1/1307674368000]
! 680: ? vecmax([-3,7,-2,11])
! 681: 11
! 682: ? vecmin([-3,7,-2,11])
! 683: -3
! 684: ? concat([1,2],[3,4])
! 685: [1, 2, 3, 4]
! 686: ? concat(Mat(vector(4,x,x)~),vector(4,x,10+x)~)
! 687:
! 688: [1 11]
! 689:
! 690: [2 12]
! 691:
! 692: [3 13]
! 693:
! 694: [4 14]
! 695:
! 696: ? vecextract([1,2,3,4,5,6,7,8,9,10],1000)
! 697: [4, 6, 7, 8, 9, 10]
! 698: ? vecextract(matrix(15,15,x,y,x+y),vector(5,x,3*x),vector(3,y,3*y))
! 699:
! 700: [6 9 12]
! 701:
! 702: [9 12 15]
! 703:
! 704: [12 15 18]
! 705:
! 706: [15 18 21]
! 707:
! 708: [18 21 24]
! 709:
! 710: ? (1.*mathilbert(7))^(-1)
! 711:
! 712: [49.000000000000000000000000000000103566 -1176.00000000000000000000000000000
! 713: 42824 8820.0000000000000000000000000000421424 -29400.00000000000000000000000
! 714: 0000165821 48510.000000000000000000000000000306324 -38808.000000000000000000
! 715: 000000000266339 12012.000000000000000000000000000087656]
! 716:
! 717: [-1176.0000000000000000000000000000027736 37632.0000000000000000000000000001
! 718: 15103 -317520.00000000000000000000000000113213 1128960.000000000000000000000
! 719: 0000044496 -1940400.0000000000000000000000000082054 1596672.0000000000000000
! 720: 000000000071127 -504504.00000000000000000000000000233826]
! 721:
! 722: [8820.0000000000000000000000000000173507 -317520.000000000000000000000000000
! 723: 72412 2857680.0000000000000000000000000071262 -10584000.00000000000000000000
! 724: 0000027962 18711000.000000000000000000000000051435 -15717240.000000000000000
! 725: 000000000044456 5045040.0000000000000000000000000145745]
! 726:
! 727: [-29400.000000000000000000000000000039976 1128960.00000000000000000000000000
! 728: 16881 -10584000.000000000000000000000000016643 40320000.00000000000000000000
! 729: 0000065137 -72765000.000000000000000000000000119284 62092800.000000000000000
! 730: 000000000102568 -20180160.000000000000000000000000033446]
! 731:
! 732: [48510.000000000000000000000000000033880 -1940400.00000000000000000000000000
! 733: 14801 18711000.000000000000000000000000014677 -72765000.00000000000000000000
! 734: 0000057076 133402500.00000000000000000000000010330 -115259760.00000000000000
! 735: 000000000008758 37837800.000000000000000000000000028140]
! 736:
! 737: [-38808.000000000000000000000000000001890 1596672.00000000000000000000000000
! 738: 01577 -15717240.000000000000000000000000001694 62092800.00000000000000000000
! 739: 0000006074 -115259760.00000000000000000000000000925 100590336.00000000000000
! 740: 000000000000604 -33297264.000000000000000000000000001319]
! 741:
! 742: [12011.999999999999999999999999999993228 -504503.999999999999999999999999999
! 743: 74929 5045039.9999999999999999999999999975933 -20180159.99999999999999999999
! 744: 9999990337 37837799.999999999999999999999999981476 -33297263.999999999999999
! 745: 999999999983224 11099087.999999999999999999999999994238]
! 746:
! 747: ? vecsort([8,7,6,5],,1)
! 748: [4, 3, 2, 1]
! 749: ? vecsort([[1,5],[2,4],[1,5,1],[1,4,2]],,2)
! 750: [[1, 4, 2], [1, 5], [1, 5, 1], [2, 4]]
! 751: ? vecsort(vector(17,x,5*x%17))
! 752: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
! 753: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],2)
! 754: [[2, 5, 8], [3, 6, -6], [4, 8, 6], [1, 8, 5]]
! 755: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],[2,1])
! 756: [[2, 5, 8], [3, 6, -6], [1, 8, 5], [4, 8, 6]]
! 757: ? vector(10,x,1/x)
! 758: [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10]
! 759: ? setrand(1);a=matrix(3,5,j,k,vectorv(5,l,random\10^8))
! 760:
! 761: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~ [0, 16, 4, 2, 0]~
! 762: [17, 19, 17, 1, 14]~]
! 763:
! 764: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~ [6, 1, 8, 17, 21
! 765: ]~ [18, 17, 9, 10, 13]~]
! 766:
! 767: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~ [19, 21, 2, 4,
! 768: 5]~ [14, 16, 6, 20, 14]~]
! 769:
! 770: ? setrand(1);as=matrix(3,3,j,k,vectorv(5,l,random\10^8))
! 771:
! 772: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~]
! 773:
! 774: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~]
! 775:
! 776: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~]
! 777:
! 778: ? getheap
! 779: [111, 12130]
! 780: ? print("Total time spent: ",gettime);
! 781: Total time spent: 154
! 782: ? \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>