Annotation of OpenXM_contrib/pari/src/test/64/linear, Revision 1.1.1.1
1.1 maekawa 1: echo = 1 (on)
2: ? algdep(2*cos(2*Pi/13),6)
3: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
4: ? algdep(2*cos(2*Pi/13),6,15)
5: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
6: ? charpoly([1,2;3,4],z)
7: z^2 - 5*z - 2
8: ? charpoly(Mod(x^2+x+1,x^3+5*x+1),z)
9: z^3 + 7*z^2 + 16*z - 19
10: ? charpoly([1,2;3,4],z,1)
11: z^2 - 5*z - 2
12: ? charpoly(Mod(1,8191)*[1,2;3,4],z,2)
13: Mod(1, 8191)*z^2 + Mod(8186, 8191)*z + Mod(8189, 8191)
14: ? lindep(Mod(1,7)*[2,-1;1,3],-1)
15: [Mod(6, 7), Mod(5, 7)]~
16: ? lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)])
17: [-3, -3, 9, -2, 6]
18: ? lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)],14)
19: [-3, -3, 9, -2, 6]
20: ? matadjoint([1,2;3,4])
21:
22: [4 -2]
23:
24: [-3 1]
25:
26: ? matcompanion(x^5-12*x^3+0.0005)
27:
28: [0 0 0 0 -0.00049999999999999999999999999999999999999]
29:
30: [1 0 0 0 0]
31:
32: [0 1 0 0 0]
33:
34: [0 0 1 0 12]
35:
36: [0 0 0 1 0]
37:
38: ? matdet([1,2,3;1,5,6;9,8,7])
39: -30
40: ? matdet([1,2,3;1,5,6;9,8,7],1)
41: -30
42: ? matdetint([1,2,3;4,5,6])
43: 3
44: ? matdiagonal([2,4,6])
45:
46: [2 0 0]
47:
48: [0 4 0]
49:
50: [0 0 6]
51:
52: ? mateigen([1,2,3;4,5,6;7,8,9])
53:
54: [-1.2833494518006402717978106547571267252 1 0.283349451800640271797810654757
55: 12672521]
56:
57: [-0.14167472590032013589890532737856336261 -2 0.6416747259003201358989053273
58: 7856336260]
59:
60: [1 1 1]
61:
62: ? mathess(mathilbert(7))
63:
64: [1 90281/58800 -1919947/4344340 4858466341/1095033030 -77651417539/819678732
65: 6 3386888964/106615355 1/2]
66:
67: [1/3 43/48 38789/5585580 268214641/109503303 -581330123627/126464718744 4365
68: 450643/274153770 1/4]
69:
70: [0 217/2880 442223/7447440 53953931/292008808 -32242849453/168619624992 1475
71: 457901/1827691800 1/80]
72:
73: [0 0 1604444/264539275 24208141/149362505292 847880210129/47916076768560 -45
74: 44407141/103873817300 -29/40920]
75:
76: [0 0 0 9773092581/35395807550620 -24363634138919/107305824577186620 72118203
77: 606917/60481351061158500 55899/3088554700]
78:
79: [0 0 0 0 67201501179065/8543442888354179988 -9970556426629/74082861999267660
80: 0 -3229/13661312210]
81:
82: [0 0 0 0 0 -258198800769/9279048099409000 -13183/38381527800]
83:
84: ? mathilbert(5)
85:
86: [1 1/2 1/3 1/4 1/5]
87:
88: [1/2 1/3 1/4 1/5 1/6]
89:
90: [1/3 1/4 1/5 1/6 1/7]
91:
92: [1/4 1/5 1/6 1/7 1/8]
93:
94: [1/5 1/6 1/7 1/8 1/9]
95:
96: ? amat=1/mathilbert(7)
97:
98: [49 -1176 8820 -29400 48510 -38808 12012]
99:
100: [-1176 37632 -317520 1128960 -1940400 1596672 -504504]
101:
102: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040]
103:
104: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160]
105:
106: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800]
107:
108: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264]
109:
110: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088]
111:
112: ? mathnf(amat)
113:
114: [420 0 0 0 210 168 175]
115:
116: [0 840 0 0 0 0 504]
117:
118: [0 0 2520 0 0 0 1260]
119:
120: [0 0 0 2520 0 0 840]
121:
122: [0 0 0 0 13860 0 6930]
123:
124: [0 0 0 0 0 5544 0]
125:
126: [0 0 0 0 0 0 12012]
127:
128: ? mathnf(amat,1)
129: [[420, 0, 0, 0, 210, 168, 175; 0, 840, 0, 0, 0, 0, 504; 0, 0, 2520, 0, 0, 0,
130: 1260; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 13860, 0, 6930; 0, 0, 0, 0, 0,
131: 5544, 0; 0, 0, 0, 0, 0, 0, 12012], [420, 420, 840, 630, 2982, 1092, 4159; 21
132: 0, 280, 630, 504, 2415, 876, 3395; 140, 210, 504, 420, 2050, 749, 2901; 105,
133: 168, 420, 360, 1785, 658, 2542; 84, 140, 360, 315, 1582, 588, 2266; 70, 120
134: , 315, 280, 1421, 532, 2046; 60, 105, 280, 252, 1290, 486, 1866]]
135: ? mathnf(amat,2)
136: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
137: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
138: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
139: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
140: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
141: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
142: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
143: ? mathnf(amat,3)
144: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
145: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
146: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
147: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
148: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
149: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
150: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
151: ? mathnfmod(amat,matdetint(amat))
152:
153: [420 0 0 0 210 168 175]
154:
155: [0 840 0 0 0 0 504]
156:
157: [0 0 2520 0 0 0 1260]
158:
159: [0 0 0 2520 0 0 840]
160:
161: [0 0 0 0 13860 0 6930]
162:
163: [0 0 0 0 0 5544 0]
164:
165: [0 0 0 0 0 0 12012]
166:
167: ? mathnfmodid(amat,123456789*10^100)
168:
169: [60 0 0 0 30 24 35]
170:
171: [0 120 0 0 0 0 24]
172:
173: [0 0 360 0 0 0 180]
174:
175: [0 0 0 360 0 0 240]
176:
177: [0 0 0 0 180 0 90]
178:
179: [0 0 0 0 0 72 0]
180:
181: [0 0 0 0 0 0 12]
182:
183: ? matid(5)
184:
185: [1 0 0 0 0]
186:
187: [0 1 0 0 0]
188:
189: [0 0 1 0 0]
190:
191: [0 0 0 1 0]
192:
193: [0 0 0 0 1]
194:
195: ? matimage([1,3,5;2,4,6;3,5,7])
196:
197: [1 3]
198:
199: [2 4]
200:
201: [3 5]
202:
203: ? matimage([1,3,5;2,4,6;3,5,7],1)
204:
205: [3 5]
206:
207: [4 6]
208:
209: [5 7]
210:
211: ? matimage(Pi*[1,3,5;2,4,6;3,5,7])
212:
213: [3.1415926535897932384626433832795028841 9.424777960769379715387930149838508
214: 6525]
215:
216: [6.2831853071795864769252867665590057683 12.56637061435917295385057353311801
217: 1536]
218:
219: [9.4247779607693797153879301498385086525 15.70796326794896619231321691639751
220: 4420]
221:
222: ? matimagecompl([1,3,5;2,4,6;3,5,7])
223: [3]
224: ? matimagecompl(Pi*[1,3,5;2,4,6;3,5,7])
225: [3]
226: ? matindexrank([1,1,1;1,1,1;1,1,2])
227: [[1, 3], [1, 3]]
228: ? matintersect([1,2;3,4;5,6],[2,3;7,8;8,9])
229:
230: [-1]
231:
232: [-1]
233:
234: [-1]
235:
236: ? matinverseimage([1,1;2,3;5,7],[2,2,6]~)
237: [4, -2]~
238: ? matisdiagonal([1,0,0;0,5,0;0,0,0])
239: 1
240: ? matker(matrix(4,4,x,y,x/y))
241:
242: [-1/2 -1/3 -1/4]
243:
244: [1 0 0]
245:
246: [0 1 0]
247:
248: [0 0 1]
249:
250: ? matker(matrix(4,4,x,y,sin(x+y)))
251:
252: [1.0000000000000000000000000000000000000 1.080604611736279434801873214885953
253: 2074]
254:
255: [-1.0806046117362794348018732148859532074 -0.1677063269057152260048635409984
256: 7562046]
257:
258: [1 0]
259:
260: [0 1]
261:
262: ? matker(matrix(4,4,x,y,x+y),1)
263:
264: [1 2]
265:
266: [-2 -3]
267:
268: [1 0]
269:
270: [0 1]
271:
272: ? matkerint(matrix(4,4,x,y,x*y))
273:
274: [-1 -1 -1]
275:
276: [-1 0 1]
277:
278: [1 -1 1]
279:
280: [0 1 -1]
281:
282: ? matkerint(matrix(4,4,x,y,x*y),1)
283:
284: [-1 -1 -1]
285:
286: [-1 0 1]
287:
288: [1 -1 1]
289:
290: [0 1 -1]
291:
292: ? matkerint(matrix(4,6,x,y,2520/(x+y)),2)
293:
294: [3 1]
295:
296: [-30 -15]
297:
298: [70 70]
299:
300: [0 -140]
301:
302: [-126 126]
303:
304: [84 -42]
305:
306: ? matmuldiagonal(amat,[1,2,3,4,5,6,7])
307:
308: [49 -2352 26460 -117600 242550 -232848 84084]
309:
310: [-1176 75264 -952560 4515840 -9702000 9580032 -3531528]
311:
312: [8820 -635040 8573040 -42336000 93555000 -94303440 35315280]
313:
314: [-29400 2257920 -31752000 161280000 -363825000 372556800 -141261120]
315:
316: [48510 -3880800 56133000 -291060000 667012500 -691558560 264864600]
317:
318: [-38808 3193344 -47151720 248371200 -576298800 603542016 -233080848]
319:
320: [12012 -1009008 15135120 -80720640 189189000 -199783584 77693616]
321:
322: ? matmultodiagonal(amat^-1,%)
323:
324: [1 0 0 0 0 0 0]
325:
326: [0 2 0 0 0 0 0]
327:
328: [0 0 3 0 0 0 0]
329:
330: [0 0 0 4 0 0 0]
331:
332: [0 0 0 0 5 0 0]
333:
334: [0 0 0 0 0 6 0]
335:
336: [0 0 0 0 0 0 7]
337:
338: ? matpascal(8)
339:
340: [1 0 0 0 0 0 0 0 0]
341:
342: [1 1 0 0 0 0 0 0 0]
343:
344: [1 2 1 0 0 0 0 0 0]
345:
346: [1 3 3 1 0 0 0 0 0]
347:
348: [1 4 6 4 1 0 0 0 0]
349:
350: [1 5 10 10 5 1 0 0 0]
351:
352: [1 6 15 20 15 6 1 0 0]
353:
354: [1 7 21 35 35 21 7 1 0]
355:
356: [1 8 28 56 70 56 28 8 1]
357:
358: ? matrank(matrix(5,5,x,y,x+y))
359: 2
360: ? matrix(5,5,x,y,gcd(x,y))
361:
362: [1 1 1 1 1]
363:
364: [1 2 1 2 1]
365:
366: [1 1 3 1 1]
367:
368: [1 2 1 4 1]
369:
370: [1 1 1 1 5]
371:
372: ? matrixqz([1,3;3,5;5,7],0)
373:
374: [1 1]
375:
376: [3 2]
377:
378: [5 3]
379:
380: ? matrixqz([1/3,1/4,1/6;1/2,1/4,-1/4;1/3,1,0],-1)
381:
382: [19 12 2]
383:
384: [0 1 0]
385:
386: [0 0 1]
387:
388: ? matrixqz([1,3;3,5;5,7],-2)
389:
390: [2 -1]
391:
392: [1 0]
393:
394: [0 1]
395:
396: ? matsize([1,2;3,4;5,6])
397: [3, 2]
398: ? matsnf(matrix(5,5,j,k,random))
399: [741799239614624774584532992, 2147483648, 2147483648, 1, 1]
400: ? matsnf(1/mathilbert(6))
401: [27720, 2520, 2520, 840, 210, 6]
402: ? matsnf(x*matid(5)-matrix(5,5,j,k,1),2)
403: [x^2 - 5*x, x, x, x, 1]
404: ? matsolve(mathilbert(10),[1,2,3,4,5,6,7,8,9,0]~)
405: [9236800, -831303990, 18288515520, -170691240720, 832112321040, -23298940665
406: 00, 3883123564320, -3803844432960, 2020775945760, -449057772020]~
407: ? matsolvemod([2,3;5,4],[7,11],[1,4]~)
408: [-5, -1]~
409: ? matsolvemod([2,3;5,4],[7,11],[1,4]~,1)
410: [[-5, -1]~, [-77, 723; 0, 1]]
411: ? matsupplement([1,3;2,4;3,6])
412:
413: [1 3 0]
414:
415: [2 4 0]
416:
417: [3 6 1]
418:
419: ? mattranspose(vector(2,x,x))
420: [1, 2]~
421: ? %*%~
422:
423: [1 2]
424:
425: [2 4]
426:
427: ? norml2(vector(10,x,x))
428: 385
429: ? qfgaussred(mathilbert(5))
430:
431: [1 1/2 1/3 1/4 1/5]
432:
433: [0 1/12 1 9/10 4/5]
434:
435: [0 0 1/180 3/2 12/7]
436:
437: [0 0 0 1/2800 2]
438:
439: [0 0 0 0 1/44100]
440:
441: ? qfjacobi(mathilbert(6))
442: [[1.6188998589243390969705881471257800712, 0.2423608705752095521357284158507
443: 0114077, 0.000012570757122625194922982397996498755027, 0.0000001082799484565
444: 5497685388772372251711485, 0.016321521319875822124345079564191505890, 0.0006
445: 1574835418265769764919938428527140264]~, [0.74871921887909485900280109200517
446: 845109, -0.61454482829258676899320019644273870645, 0.01114432093072471053067
447: 8340374220998541, -0.0012481940840821751169398163046387834473, 0.24032536934
448: 252330399154228873240534568, -0.062226588150197681775152126611810492910; 0.4
449: 4071750324351206127160083580231701801, 0.21108248167867048675227675845247769
450: 095, -0.17973275724076003758776897803740640964, 0.03560664294428763526612284
451: 8131812048466, -0.69765137527737012296208335046678265583, 0.4908392097109243
452: 6297498316169060044997; 0.32069686982225190106359024326699463106, 0.36589360
453: 730302614149086554211117169622, 0.60421220675295973004426567844103062241, -0
454: .24067907958842295837736719558855679285, -0.23138937333290388042251363554209
455: 048309, -0.53547692162107486593474491750949545456; 0.25431138634047419251788
456: 312792590944672, 0.39470677609501756783094636145991581708, -0.44357471627623
457: 954554460416705180105301, 0.62546038654922724457753441039459331059, 0.132863
458: 15850933553530333839628101576050, -0.41703769221897886840494514780771076439;
459: 0.21153084007896524664213667673977991959, 0.3881904338738864286311144882599
460: 2418973, -0.44153664101228966222143649752977203423, -0.689807199293836684198
461: 01738006926829419, 0.36271492146487147525299457604461742111, 0.0470340189331
462: 15649705614518466541243873; 0.18144297664876947372217005457727093715, 0.3706
463: 9590776736280861775501084807394603, 0.45911481681642960284551392793050866602
464: , 0.27160545336631286930015536176213647001, 0.502762866757515384892605663686
465: 47786272, 0.54068156310385293880022293448123782121]]
466: ? m=1/mathilbert(7)
467:
468: [49 -1176 8820 -29400 48510 -38808 12012]
469:
470: [-1176 37632 -317520 1128960 -1940400 1596672 -504504]
471:
472: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040]
473:
474: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160]
475:
476: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800]
477:
478: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264]
479:
480: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088]
481:
482: ? mp=concat(m,matid(7))
483:
484: [49 -1176 8820 -29400 48510 -38808 12012 1 0 0 0 0 0 0]
485:
486: [-1176 37632 -317520 1128960 -1940400 1596672 -504504 0 1 0 0 0 0 0]
487:
488: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040 0 0 1 0 0 0 0]
489:
490: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160 0 0 0 1 0 0
491: 0]
492:
493: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800 0 0 0 0 1 0
494: 0]
495:
496: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264 0 0 0 0 0
497: 1 0]
498:
499: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088 0 0 0 0 0 0 1]
500:
501: ? qflll(m)
502:
503: [-420 -420 840 630 -1092 -83 2562]
504:
505: [-210 -280 630 504 -876 70 2205]
506:
507: [-140 -210 504 420 -749 137 1910]
508:
509: [-105 -168 420 360 -658 169 1680]
510:
511: [-84 -140 360 315 -588 184 1498]
512:
513: [-70 -120 315 280 -532 190 1351]
514:
515: [-60 -105 280 252 -486 191 1230]
516:
517: ? qflll(m,7)
518:
519: [-420 -420 840 630 -1092 -83 2562]
520:
521: [-210 -280 630 504 -876 70 2205]
522:
523: [-140 -210 504 420 -749 137 1910]
524:
525: [-105 -168 420 360 -658 169 1680]
526:
527: [-84 -140 360 315 -588 184 1498]
528:
529: [-70 -120 315 280 -532 190 1351]
530:
531: [-60 -105 280 252 -486 191 1230]
532:
533: ? qflllgram(m)
534:
535: [1 1 27 -27 69 0 141]
536:
537: [0 1 4 -22 34 -24 49]
538:
539: [0 1 3 -21 18 -24 23]
540:
541: [0 1 3 -20 10 -19 13]
542:
543: [0 1 3 -19 6 -14 8]
544:
545: [0 1 3 -18 4 -10 5]
546:
547: [0 1 3 -17 3 -7 3]
548:
549: ? qflllgram(m,7)
550:
551: [1 1 27 -27 69 0 141]
552:
553: [0 1 4 -22 34 -24 49]
554:
555: [0 1 3 -21 18 -24 23]
556:
557: [0 1 3 -20 10 -19 13]
558:
559: [0 1 3 -19 6 -14 8]
560:
561: [0 1 3 -18 4 -10 5]
562:
563: [0 1 3 -17 3 -7 3]
564:
565: ? qflllgram(m,1)
566:
567: [1 1 27 -27 69 0 141]
568:
569: [0 1 4 -23 34 -24 91]
570:
571: [0 1 3 -22 18 -24 65]
572:
573: [0 1 3 -21 10 -19 49]
574:
575: [0 1 3 -20 6 -14 38]
576:
577: [0 1 3 -19 4 -10 30]
578:
579: [0 1 3 -18 3 -7 24]
580:
581: ? qflllgram(mp~*mp,4)
582: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
583: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
584: 169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
585: 190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
586: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
587: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
588: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
589: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
590: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
591: 0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
592: ? qflll(m,1)
593:
594: [-420 -420 840 630 -1092 -83 2982]
595:
596: [-210 -280 630 504 -876 70 2415]
597:
598: [-140 -210 504 420 -749 137 2050]
599:
600: [-105 -168 420 360 -658 169 1785]
601:
602: [-84 -140 360 315 -588 184 1582]
603:
604: [-70 -120 315 280 -532 190 1421]
605:
606: [-60 -105 280 252 -486 191 1290]
607:
608: ? qflll(m,2)
609:
610: [-420 -420 -630 840 1092 2982 -83]
611:
612: [-210 -280 -504 630 876 2415 70]
613:
614: [-140 -210 -420 504 749 2050 137]
615:
616: [-105 -168 -360 420 658 1785 169]
617:
618: [-84 -140 -315 360 588 1582 184]
619:
620: [-70 -120 -280 315 532 1421 190]
621:
622: [-60 -105 -252 280 486 1290 191]
623:
624: ? qflll(mp,4)
625: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
626: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
627: 169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
628: 190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
629: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
630: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
631: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
632: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
633: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
634: 0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
635: ? qflll(m,3)
636:
637: [-420 -420 840 630 -1092 -83 2982]
638:
639: [-210 -280 630 504 -876 70 2415]
640:
641: [-140 -210 504 420 -749 137 2050]
642:
643: [-105 -168 420 360 -658 169 1785]
644:
645: [-84 -140 360 315 -588 184 1582]
646:
647: [-70 -120 315 280 -532 190 1421]
648:
649: [-60 -105 280 252 -486 191 1290]
650:
651: ? qfminim([2,1;1,2],4,6)
652: [6, 2, [0, -1, 1; 1, 1, 0]]
653: ? qfperfection([2,0,1;0,2,1;1,1,2])
654: 6
655: ? qfsign(mathilbert(5)-0.11*matid(5))
656: [2, 3]
657: ? aset=Set([5,-2,7,3,5,1])
658: ["-2", "1", "3", "5", "7"]
659: ? bset=Set([7,5,-5,7,2])
660: ["-5", "2", "5", "7"]
661: ? setintersect(aset,bset)
662: ["5", "7"]
663: ? setisset([-3,5,7,7])
664: 0
665: ? setminus(aset,bset)
666: ["-2", "1", "3"]
667: ? setsearch(aset,3)
668: 3
669: ? setsearch(bset,3)
670: 0
671: ? setunion(aset,bset)
672: ["-2", "-5", "1", "2", "3", "5", "7"]
673: ? trace(1+I)
674: 2
675: ? trace(Mod(x+5,x^3+x+1))
676: 15
677: ? Vec(sin(x))
678: [1, 0, -1/6, 0, 1/120, 0, -1/5040, 0, 1/362880, 0, -1/39916800, 0, 1/6227020
679: 800, 0, -1/1307674368000]
680: ? vecmax([-3,7,-2,11])
681: 11
682: ? vecmin([-3,7,-2,11])
683: -3
684: ? concat([1,2],[3,4])
685: [1, 2, 3, 4]
686: ? concat(Mat(vector(4,x,x)~),vector(4,x,10+x)~)
687:
688: [1 11]
689:
690: [2 12]
691:
692: [3 13]
693:
694: [4 14]
695:
696: ? vecextract([1,2,3,4,5,6,7,8,9,10],1000)
697: [4, 6, 7, 8, 9, 10]
698: ? vecextract(matrix(15,15,x,y,x+y),vector(5,x,3*x),vector(3,y,3*y))
699:
700: [6 9 12]
701:
702: [9 12 15]
703:
704: [12 15 18]
705:
706: [15 18 21]
707:
708: [18 21 24]
709:
710: ? (1.*mathilbert(7))^(-1)
711:
712: [49.000000000000000000000000000000103566 -1176.00000000000000000000000000000
713: 42824 8820.0000000000000000000000000000421424 -29400.00000000000000000000000
714: 0000165821 48510.000000000000000000000000000306324 -38808.000000000000000000
715: 000000000266339 12012.000000000000000000000000000087656]
716:
717: [-1176.0000000000000000000000000000027736 37632.0000000000000000000000000001
718: 15103 -317520.00000000000000000000000000113213 1128960.000000000000000000000
719: 0000044496 -1940400.0000000000000000000000000082054 1596672.0000000000000000
720: 000000000071127 -504504.00000000000000000000000000233826]
721:
722: [8820.0000000000000000000000000000173507 -317520.000000000000000000000000000
723: 72412 2857680.0000000000000000000000000071262 -10584000.00000000000000000000
724: 0000027962 18711000.000000000000000000000000051435 -15717240.000000000000000
725: 000000000044456 5045040.0000000000000000000000000145745]
726:
727: [-29400.000000000000000000000000000039976 1128960.00000000000000000000000000
728: 16881 -10584000.000000000000000000000000016643 40320000.00000000000000000000
729: 0000065137 -72765000.000000000000000000000000119284 62092800.000000000000000
730: 000000000102568 -20180160.000000000000000000000000033446]
731:
732: [48510.000000000000000000000000000033880 -1940400.00000000000000000000000000
733: 14801 18711000.000000000000000000000000014677 -72765000.00000000000000000000
734: 0000057076 133402500.00000000000000000000000010330 -115259760.00000000000000
735: 000000000008758 37837800.000000000000000000000000028140]
736:
737: [-38808.000000000000000000000000000001890 1596672.00000000000000000000000000
738: 01577 -15717240.000000000000000000000000001694 62092800.00000000000000000000
739: 0000006074 -115259760.00000000000000000000000000925 100590336.00000000000000
740: 000000000000604 -33297264.000000000000000000000000001319]
741:
742: [12011.999999999999999999999999999993228 -504503.999999999999999999999999999
743: 74929 5045039.9999999999999999999999999975933 -20180159.99999999999999999999
744: 9999990337 37837799.999999999999999999999999981476 -33297263.999999999999999
745: 999999999983224 11099087.999999999999999999999999994238]
746:
747: ? vecsort([8,7,6,5],,1)
748: [4, 3, 2, 1]
749: ? vecsort([[1,5],[2,4],[1,5,1],[1,4,2]],,2)
750: [[1, 4, 2], [1, 5], [1, 5, 1], [2, 4]]
751: ? vecsort(vector(17,x,5*x%17))
752: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
753: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],2)
754: [[2, 5, 8], [3, 6, -6], [4, 8, 6], [1, 8, 5]]
755: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],[2,1])
756: [[2, 5, 8], [3, 6, -6], [1, 8, 5], [4, 8, 6]]
757: ? vector(10,x,1/x)
758: [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10]
759: ? setrand(1);a=matrix(3,5,j,k,vectorv(5,l,random\10^8))
760:
761: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~ [0, 16, 4, 2, 0]~
762: [17, 19, 17, 1, 14]~]
763:
764: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~ [6, 1, 8, 17, 21
765: ]~ [18, 17, 9, 10, 13]~]
766:
767: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~ [19, 21, 2, 4,
768: 5]~ [14, 16, 6, 20, 14]~]
769:
770: ? setrand(1);as=matrix(3,3,j,k,vectorv(5,l,random\10^8))
771:
772: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~]
773:
774: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~]
775:
776: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~]
777:
778: ? getheap
779: [111, 12130]
780: ? print("Total time spent: ",gettime);
781: Total time spent: 154
782: ? \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>