[BACK]Return to linear CVS log [TXT][DIR] Up to [local] / OpenXM_contrib / pari / src / test / 64

Annotation of OpenXM_contrib/pari/src/test/64/linear, Revision 1.1.1.1

1.1       maekawa     1:    echo = 1 (on)
                      2: ? algdep(2*cos(2*Pi/13),6)
                      3: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
                      4: ? algdep(2*cos(2*Pi/13),6,15)
                      5: x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1
                      6: ? charpoly([1,2;3,4],z)
                      7: z^2 - 5*z - 2
                      8: ? charpoly(Mod(x^2+x+1,x^3+5*x+1),z)
                      9: z^3 + 7*z^2 + 16*z - 19
                     10: ? charpoly([1,2;3,4],z,1)
                     11: z^2 - 5*z - 2
                     12: ? charpoly(Mod(1,8191)*[1,2;3,4],z,2)
                     13: Mod(1, 8191)*z^2 + Mod(8186, 8191)*z + Mod(8189, 8191)
                     14: ? lindep(Mod(1,7)*[2,-1;1,3],-1)
                     15: [Mod(6, 7), Mod(5, 7)]~
                     16: ? lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)])
                     17: [-3, -3, 9, -2, 6]
                     18: ? lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)],14)
                     19: [-3, -3, 9, -2, 6]
                     20: ? matadjoint([1,2;3,4])
                     21:
                     22: [4 -2]
                     23:
                     24: [-3 1]
                     25:
                     26: ? matcompanion(x^5-12*x^3+0.0005)
                     27:
                     28: [0 0 0 0 -0.00049999999999999999999999999999999999999]
                     29:
                     30: [1 0 0 0 0]
                     31:
                     32: [0 1 0 0 0]
                     33:
                     34: [0 0 1 0 12]
                     35:
                     36: [0 0 0 1 0]
                     37:
                     38: ? matdet([1,2,3;1,5,6;9,8,7])
                     39: -30
                     40: ? matdet([1,2,3;1,5,6;9,8,7],1)
                     41: -30
                     42: ? matdetint([1,2,3;4,5,6])
                     43: 3
                     44: ? matdiagonal([2,4,6])
                     45:
                     46: [2 0 0]
                     47:
                     48: [0 4 0]
                     49:
                     50: [0 0 6]
                     51:
                     52: ? mateigen([1,2,3;4,5,6;7,8,9])
                     53:
                     54: [-1.2833494518006402717978106547571267252 1 0.283349451800640271797810654757
                     55: 12672521]
                     56:
                     57: [-0.14167472590032013589890532737856336261 -2 0.6416747259003201358989053273
                     58: 7856336260]
                     59:
                     60: [1 1 1]
                     61:
                     62: ? mathess(mathilbert(7))
                     63:
                     64: [1 90281/58800 -1919947/4344340 4858466341/1095033030 -77651417539/819678732
                     65: 6 3386888964/106615355 1/2]
                     66:
                     67: [1/3 43/48 38789/5585580 268214641/109503303 -581330123627/126464718744 4365
                     68: 450643/274153770 1/4]
                     69:
                     70: [0 217/2880 442223/7447440 53953931/292008808 -32242849453/168619624992 1475
                     71: 457901/1827691800 1/80]
                     72:
                     73: [0 0 1604444/264539275 24208141/149362505292 847880210129/47916076768560 -45
                     74: 44407141/103873817300 -29/40920]
                     75:
                     76: [0 0 0 9773092581/35395807550620 -24363634138919/107305824577186620 72118203
                     77: 606917/60481351061158500 55899/3088554700]
                     78:
                     79: [0 0 0 0 67201501179065/8543442888354179988 -9970556426629/74082861999267660
                     80: 0 -3229/13661312210]
                     81:
                     82: [0 0 0 0 0 -258198800769/9279048099409000 -13183/38381527800]
                     83:
                     84: ? mathilbert(5)
                     85:
                     86: [1 1/2 1/3 1/4 1/5]
                     87:
                     88: [1/2 1/3 1/4 1/5 1/6]
                     89:
                     90: [1/3 1/4 1/5 1/6 1/7]
                     91:
                     92: [1/4 1/5 1/6 1/7 1/8]
                     93:
                     94: [1/5 1/6 1/7 1/8 1/9]
                     95:
                     96: ? amat=1/mathilbert(7)
                     97:
                     98: [49 -1176 8820 -29400 48510 -38808 12012]
                     99:
                    100: [-1176 37632 -317520 1128960 -1940400 1596672 -504504]
                    101:
                    102: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040]
                    103:
                    104: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160]
                    105:
                    106: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800]
                    107:
                    108: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264]
                    109:
                    110: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088]
                    111:
                    112: ? mathnf(amat)
                    113:
                    114: [420 0 0 0 210 168 175]
                    115:
                    116: [0 840 0 0 0 0 504]
                    117:
                    118: [0 0 2520 0 0 0 1260]
                    119:
                    120: [0 0 0 2520 0 0 840]
                    121:
                    122: [0 0 0 0 13860 0 6930]
                    123:
                    124: [0 0 0 0 0 5544 0]
                    125:
                    126: [0 0 0 0 0 0 12012]
                    127:
                    128: ? mathnf(amat,1)
                    129: [[420, 0, 0, 0, 210, 168, 175; 0, 840, 0, 0, 0, 0, 504; 0, 0, 2520, 0, 0, 0,
                    130:  1260; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 13860, 0, 6930; 0, 0, 0, 0, 0,
                    131: 5544, 0; 0, 0, 0, 0, 0, 0, 12012], [420, 420, 840, 630, 2982, 1092, 4159; 21
                    132: 0, 280, 630, 504, 2415, 876, 3395; 140, 210, 504, 420, 2050, 749, 2901; 105,
                    133:  168, 420, 360, 1785, 658, 2542; 84, 140, 360, 315, 1582, 588, 2266; 70, 120
                    134: , 315, 280, 1421, 532, 2046; 60, 105, 280, 252, 1290, 486, 1866]]
                    135: ? mathnf(amat,2)
                    136: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
                    137: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
                    138: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
                    139: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
                    140: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
                    141: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
                    142: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
                    143: ? mathnf(amat,3)
                    144: [[360360, 0, 0, 0, 0, 144144, 300300; 0, 27720, 0, 0, 0, 0, 22176; 0, 0, 277
                    145: 20, 0, 0, 0, 6930; 0, 0, 0, 2520, 0, 0, 840; 0, 0, 0, 0, 2520, 0, 1260; 0, 0
                    146: , 0, 0, 0, 168, 0; 0, 0, 0, 0, 0, 0, 7], [51480, 4620, 5544, 630, 840, 20676
                    147: , 48619; 45045, 3960, 4620, 504, 630, 18074, 42347; 40040, 3465, 3960, 420,
                    148: 504, 16058, 37523; 36036, 3080, 3465, 360, 420, 14448, 33692; 32760, 2772, 3
                    149: 080, 315, 360, 13132, 30574; 30030, 2520, 2772, 280, 315, 12036, 27986; 2772
                    150: 0, 2310, 2520, 252, 280, 11109, 25803], [7, 6, 5, 4, 3, 2, 1]]
                    151: ? mathnfmod(amat,matdetint(amat))
                    152:
                    153: [420 0 0 0 210 168 175]
                    154:
                    155: [0 840 0 0 0 0 504]
                    156:
                    157: [0 0 2520 0 0 0 1260]
                    158:
                    159: [0 0 0 2520 0 0 840]
                    160:
                    161: [0 0 0 0 13860 0 6930]
                    162:
                    163: [0 0 0 0 0 5544 0]
                    164:
                    165: [0 0 0 0 0 0 12012]
                    166:
                    167: ? mathnfmodid(amat,123456789*10^100)
                    168:
                    169: [60 0 0 0 30 24 35]
                    170:
                    171: [0 120 0 0 0 0 24]
                    172:
                    173: [0 0 360 0 0 0 180]
                    174:
                    175: [0 0 0 360 0 0 240]
                    176:
                    177: [0 0 0 0 180 0 90]
                    178:
                    179: [0 0 0 0 0 72 0]
                    180:
                    181: [0 0 0 0 0 0 12]
                    182:
                    183: ? matid(5)
                    184:
                    185: [1 0 0 0 0]
                    186:
                    187: [0 1 0 0 0]
                    188:
                    189: [0 0 1 0 0]
                    190:
                    191: [0 0 0 1 0]
                    192:
                    193: [0 0 0 0 1]
                    194:
                    195: ? matimage([1,3,5;2,4,6;3,5,7])
                    196:
                    197: [1 3]
                    198:
                    199: [2 4]
                    200:
                    201: [3 5]
                    202:
                    203: ? matimage([1,3,5;2,4,6;3,5,7],1)
                    204:
                    205: [3 5]
                    206:
                    207: [4 6]
                    208:
                    209: [5 7]
                    210:
                    211: ? matimage(Pi*[1,3,5;2,4,6;3,5,7])
                    212:
                    213: [3.1415926535897932384626433832795028841 9.424777960769379715387930149838508
                    214: 6525]
                    215:
                    216: [6.2831853071795864769252867665590057683 12.56637061435917295385057353311801
                    217: 1536]
                    218:
                    219: [9.4247779607693797153879301498385086525 15.70796326794896619231321691639751
                    220: 4420]
                    221:
                    222: ? matimagecompl([1,3,5;2,4,6;3,5,7])
                    223: [3]
                    224: ? matimagecompl(Pi*[1,3,5;2,4,6;3,5,7])
                    225: [3]
                    226: ? matindexrank([1,1,1;1,1,1;1,1,2])
                    227: [[1, 3], [1, 3]]
                    228: ? matintersect([1,2;3,4;5,6],[2,3;7,8;8,9])
                    229:
                    230: [-1]
                    231:
                    232: [-1]
                    233:
                    234: [-1]
                    235:
                    236: ? matinverseimage([1,1;2,3;5,7],[2,2,6]~)
                    237: [4, -2]~
                    238: ? matisdiagonal([1,0,0;0,5,0;0,0,0])
                    239: 1
                    240: ? matker(matrix(4,4,x,y,x/y))
                    241:
                    242: [-1/2 -1/3 -1/4]
                    243:
                    244: [1 0 0]
                    245:
                    246: [0 1 0]
                    247:
                    248: [0 0 1]
                    249:
                    250: ? matker(matrix(4,4,x,y,sin(x+y)))
                    251:
                    252: [1.0000000000000000000000000000000000000 1.080604611736279434801873214885953
                    253: 2074]
                    254:
                    255: [-1.0806046117362794348018732148859532074 -0.1677063269057152260048635409984
                    256: 7562046]
                    257:
                    258: [1 0]
                    259:
                    260: [0 1]
                    261:
                    262: ? matker(matrix(4,4,x,y,x+y),1)
                    263:
                    264: [1 2]
                    265:
                    266: [-2 -3]
                    267:
                    268: [1 0]
                    269:
                    270: [0 1]
                    271:
                    272: ? matkerint(matrix(4,4,x,y,x*y))
                    273:
                    274: [-1 -1 -1]
                    275:
                    276: [-1 0 1]
                    277:
                    278: [1 -1 1]
                    279:
                    280: [0 1 -1]
                    281:
                    282: ? matkerint(matrix(4,4,x,y,x*y),1)
                    283:
                    284: [-1 -1 -1]
                    285:
                    286: [-1 0 1]
                    287:
                    288: [1 -1 1]
                    289:
                    290: [0 1 -1]
                    291:
                    292: ? matkerint(matrix(4,6,x,y,2520/(x+y)),2)
                    293:
                    294: [3 1]
                    295:
                    296: [-30 -15]
                    297:
                    298: [70 70]
                    299:
                    300: [0 -140]
                    301:
                    302: [-126 126]
                    303:
                    304: [84 -42]
                    305:
                    306: ? matmuldiagonal(amat,[1,2,3,4,5,6,7])
                    307:
                    308: [49 -2352 26460 -117600 242550 -232848 84084]
                    309:
                    310: [-1176 75264 -952560 4515840 -9702000 9580032 -3531528]
                    311:
                    312: [8820 -635040 8573040 -42336000 93555000 -94303440 35315280]
                    313:
                    314: [-29400 2257920 -31752000 161280000 -363825000 372556800 -141261120]
                    315:
                    316: [48510 -3880800 56133000 -291060000 667012500 -691558560 264864600]
                    317:
                    318: [-38808 3193344 -47151720 248371200 -576298800 603542016 -233080848]
                    319:
                    320: [12012 -1009008 15135120 -80720640 189189000 -199783584 77693616]
                    321:
                    322: ? matmultodiagonal(amat^-1,%)
                    323:
                    324: [1 0 0 0 0 0 0]
                    325:
                    326: [0 2 0 0 0 0 0]
                    327:
                    328: [0 0 3 0 0 0 0]
                    329:
                    330: [0 0 0 4 0 0 0]
                    331:
                    332: [0 0 0 0 5 0 0]
                    333:
                    334: [0 0 0 0 0 6 0]
                    335:
                    336: [0 0 0 0 0 0 7]
                    337:
                    338: ? matpascal(8)
                    339:
                    340: [1 0 0 0 0 0 0 0 0]
                    341:
                    342: [1 1 0 0 0 0 0 0 0]
                    343:
                    344: [1 2 1 0 0 0 0 0 0]
                    345:
                    346: [1 3 3 1 0 0 0 0 0]
                    347:
                    348: [1 4 6 4 1 0 0 0 0]
                    349:
                    350: [1 5 10 10 5 1 0 0 0]
                    351:
                    352: [1 6 15 20 15 6 1 0 0]
                    353:
                    354: [1 7 21 35 35 21 7 1 0]
                    355:
                    356: [1 8 28 56 70 56 28 8 1]
                    357:
                    358: ? matrank(matrix(5,5,x,y,x+y))
                    359: 2
                    360: ? matrix(5,5,x,y,gcd(x,y))
                    361:
                    362: [1 1 1 1 1]
                    363:
                    364: [1 2 1 2 1]
                    365:
                    366: [1 1 3 1 1]
                    367:
                    368: [1 2 1 4 1]
                    369:
                    370: [1 1 1 1 5]
                    371:
                    372: ? matrixqz([1,3;3,5;5,7],0)
                    373:
                    374: [1 1]
                    375:
                    376: [3 2]
                    377:
                    378: [5 3]
                    379:
                    380: ? matrixqz([1/3,1/4,1/6;1/2,1/4,-1/4;1/3,1,0],-1)
                    381:
                    382: [19 12 2]
                    383:
                    384: [0 1 0]
                    385:
                    386: [0 0 1]
                    387:
                    388: ? matrixqz([1,3;3,5;5,7],-2)
                    389:
                    390: [2 -1]
                    391:
                    392: [1 0]
                    393:
                    394: [0 1]
                    395:
                    396: ? matsize([1,2;3,4;5,6])
                    397: [3, 2]
                    398: ? matsnf(matrix(5,5,j,k,random))
                    399: [741799239614624774584532992, 2147483648, 2147483648, 1, 1]
                    400: ? matsnf(1/mathilbert(6))
                    401: [27720, 2520, 2520, 840, 210, 6]
                    402: ? matsnf(x*matid(5)-matrix(5,5,j,k,1),2)
                    403: [x^2 - 5*x, x, x, x, 1]
                    404: ? matsolve(mathilbert(10),[1,2,3,4,5,6,7,8,9,0]~)
                    405: [9236800, -831303990, 18288515520, -170691240720, 832112321040, -23298940665
                    406: 00, 3883123564320, -3803844432960, 2020775945760, -449057772020]~
                    407: ? matsolvemod([2,3;5,4],[7,11],[1,4]~)
                    408: [-5, -1]~
                    409: ? matsolvemod([2,3;5,4],[7,11],[1,4]~,1)
                    410: [[-5, -1]~, [-77, 723; 0, 1]]
                    411: ? matsupplement([1,3;2,4;3,6])
                    412:
                    413: [1 3 0]
                    414:
                    415: [2 4 0]
                    416:
                    417: [3 6 1]
                    418:
                    419: ? mattranspose(vector(2,x,x))
                    420: [1, 2]~
                    421: ? %*%~
                    422:
                    423: [1 2]
                    424:
                    425: [2 4]
                    426:
                    427: ? norml2(vector(10,x,x))
                    428: 385
                    429: ? qfgaussred(mathilbert(5))
                    430:
                    431: [1 1/2 1/3 1/4 1/5]
                    432:
                    433: [0 1/12 1 9/10 4/5]
                    434:
                    435: [0 0 1/180 3/2 12/7]
                    436:
                    437: [0 0 0 1/2800 2]
                    438:
                    439: [0 0 0 0 1/44100]
                    440:
                    441: ? qfjacobi(mathilbert(6))
                    442: [[1.6188998589243390969705881471257800712, 0.2423608705752095521357284158507
                    443: 0114077, 0.000012570757122625194922982397996498755027, 0.0000001082799484565
                    444: 5497685388772372251711485, 0.016321521319875822124345079564191505890, 0.0006
                    445: 1574835418265769764919938428527140264]~, [0.74871921887909485900280109200517
                    446: 845109, -0.61454482829258676899320019644273870645, 0.01114432093072471053067
                    447: 8340374220998541, -0.0012481940840821751169398163046387834473, 0.24032536934
                    448: 252330399154228873240534568, -0.062226588150197681775152126611810492910; 0.4
                    449: 4071750324351206127160083580231701801, 0.21108248167867048675227675845247769
                    450: 095, -0.17973275724076003758776897803740640964, 0.03560664294428763526612284
                    451: 8131812048466, -0.69765137527737012296208335046678265583, 0.4908392097109243
                    452: 6297498316169060044997; 0.32069686982225190106359024326699463106, 0.36589360
                    453: 730302614149086554211117169622, 0.60421220675295973004426567844103062241, -0
                    454: .24067907958842295837736719558855679285, -0.23138937333290388042251363554209
                    455: 048309, -0.53547692162107486593474491750949545456; 0.25431138634047419251788
                    456: 312792590944672, 0.39470677609501756783094636145991581708, -0.44357471627623
                    457: 954554460416705180105301, 0.62546038654922724457753441039459331059, 0.132863
                    458: 15850933553530333839628101576050, -0.41703769221897886840494514780771076439;
                    459:  0.21153084007896524664213667673977991959, 0.3881904338738864286311144882599
                    460: 2418973, -0.44153664101228966222143649752977203423, -0.689807199293836684198
                    461: 01738006926829419, 0.36271492146487147525299457604461742111, 0.0470340189331
                    462: 15649705614518466541243873; 0.18144297664876947372217005457727093715, 0.3706
                    463: 9590776736280861775501084807394603, 0.45911481681642960284551392793050866602
                    464: , 0.27160545336631286930015536176213647001, 0.502762866757515384892605663686
                    465: 47786272, 0.54068156310385293880022293448123782121]]
                    466: ? m=1/mathilbert(7)
                    467:
                    468: [49 -1176 8820 -29400 48510 -38808 12012]
                    469:
                    470: [-1176 37632 -317520 1128960 -1940400 1596672 -504504]
                    471:
                    472: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040]
                    473:
                    474: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160]
                    475:
                    476: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800]
                    477:
                    478: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264]
                    479:
                    480: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088]
                    481:
                    482: ? mp=concat(m,matid(7))
                    483:
                    484: [49 -1176 8820 -29400 48510 -38808 12012 1 0 0 0 0 0 0]
                    485:
                    486: [-1176 37632 -317520 1128960 -1940400 1596672 -504504 0 1 0 0 0 0 0]
                    487:
                    488: [8820 -317520 2857680 -10584000 18711000 -15717240 5045040 0 0 1 0 0 0 0]
                    489:
                    490: [-29400 1128960 -10584000 40320000 -72765000 62092800 -20180160 0 0 0 1 0 0
                    491: 0]
                    492:
                    493: [48510 -1940400 18711000 -72765000 133402500 -115259760 37837800 0 0 0 0 1 0
                    494:  0]
                    495:
                    496: [-38808 1596672 -15717240 62092800 -115259760 100590336 -33297264 0 0 0 0 0
                    497: 1 0]
                    498:
                    499: [12012 -504504 5045040 -20180160 37837800 -33297264 11099088 0 0 0 0 0 0 1]
                    500:
                    501: ? qflll(m)
                    502:
                    503: [-420 -420 840 630 -1092 -83 2562]
                    504:
                    505: [-210 -280 630 504 -876 70 2205]
                    506:
                    507: [-140 -210 504 420 -749 137 1910]
                    508:
                    509: [-105 -168 420 360 -658 169 1680]
                    510:
                    511: [-84 -140 360 315 -588 184 1498]
                    512:
                    513: [-70 -120 315 280 -532 190 1351]
                    514:
                    515: [-60 -105 280 252 -486 191 1230]
                    516:
                    517: ? qflll(m,7)
                    518:
                    519: [-420 -420 840 630 -1092 -83 2562]
                    520:
                    521: [-210 -280 630 504 -876 70 2205]
                    522:
                    523: [-140 -210 504 420 -749 137 1910]
                    524:
                    525: [-105 -168 420 360 -658 169 1680]
                    526:
                    527: [-84 -140 360 315 -588 184 1498]
                    528:
                    529: [-70 -120 315 280 -532 190 1351]
                    530:
                    531: [-60 -105 280 252 -486 191 1230]
                    532:
                    533: ? qflllgram(m)
                    534:
                    535: [1 1 27 -27 69 0 141]
                    536:
                    537: [0 1 4 -22 34 -24 49]
                    538:
                    539: [0 1 3 -21 18 -24 23]
                    540:
                    541: [0 1 3 -20 10 -19 13]
                    542:
                    543: [0 1 3 -19 6 -14 8]
                    544:
                    545: [0 1 3 -18 4 -10 5]
                    546:
                    547: [0 1 3 -17 3 -7 3]
                    548:
                    549: ? qflllgram(m,7)
                    550:
                    551: [1 1 27 -27 69 0 141]
                    552:
                    553: [0 1 4 -22 34 -24 49]
                    554:
                    555: [0 1 3 -21 18 -24 23]
                    556:
                    557: [0 1 3 -20 10 -19 13]
                    558:
                    559: [0 1 3 -19 6 -14 8]
                    560:
                    561: [0 1 3 -18 4 -10 5]
                    562:
                    563: [0 1 3 -17 3 -7 3]
                    564:
                    565: ? qflllgram(m,1)
                    566:
                    567: [1 1 27 -27 69 0 141]
                    568:
                    569: [0 1 4 -23 34 -24 91]
                    570:
                    571: [0 1 3 -22 18 -24 65]
                    572:
                    573: [0 1 3 -21 10 -19 49]
                    574:
                    575: [0 1 3 -20 6 -14 38]
                    576:
                    577: [0 1 3 -19 4 -10 30]
                    578:
                    579: [0 1 3 -18 3 -7 24]
                    580:
                    581: ? qflllgram(mp~*mp,4)
                    582: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
                    583: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
                    584:  169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
                    585:  190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
                    586: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
                    587: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
                    588: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
                    589: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
                    590: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
                    591:  0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
                    592: ? qflll(m,1)
                    593:
                    594: [-420 -420 840 630 -1092 -83 2982]
                    595:
                    596: [-210 -280 630 504 -876 70 2415]
                    597:
                    598: [-140 -210 504 420 -749 137 2050]
                    599:
                    600: [-105 -168 420 360 -658 169 1785]
                    601:
                    602: [-84 -140 360 315 -588 184 1582]
                    603:
                    604: [-70 -120 315 280 -532 190 1421]
                    605:
                    606: [-60 -105 280 252 -486 191 1290]
                    607:
                    608: ? qflll(m,2)
                    609:
                    610: [-420 -420 -630 840 1092 2982 -83]
                    611:
                    612: [-210 -280 -504 630 876 2415 70]
                    613:
                    614: [-140 -210 -420 504 749 2050 137]
                    615:
                    616: [-105 -168 -360 420 658 1785 169]
                    617:
                    618: [-84 -140 -315 360 588 1582 184]
                    619:
                    620: [-70 -120 -280 315 532 1421 190]
                    621:
                    622: [-60 -105 -252 280 486 1290 191]
                    623:
                    624: ? qflll(mp,4)
                    625: [[-420, -420, 840, 630, 2982, -1092, -83; -210, -280, 630, 504, 2415, -876,
                    626: 70; -140, -210, 504, 420, 2050, -749, 137; -105, -168, 420, 360, 1785, -658,
                    627:  169; -84, -140, 360, 315, 1582, -588, 184; -70, -120, 315, 280, 1421, -532,
                    628:  190; -60, -105, 280, 252, 1290, -486, 191; 420, 0, 0, 0, -210, 168, 35; 0,
                    629: 840, 0, 0, 0, 0, 336; 0, 0, -2520, 0, 0, 0, 1260; 0, 0, 0, -2520, 0, 0, -840
                    630: ; 0, 0, 0, 0, -13860, 0, 6930; 0, 0, 0, 0, 0, 5544, 0; 0, 0, 0, 0, 0, 0, -12
                    631: 012], [0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0,
                    632: 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0
                    633: ; 1, 0, 0, 0, 0, 0, 0; 0, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1,
                    634:  0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]]
                    635: ? qflll(m,3)
                    636:
                    637: [-420 -420 840 630 -1092 -83 2982]
                    638:
                    639: [-210 -280 630 504 -876 70 2415]
                    640:
                    641: [-140 -210 504 420 -749 137 2050]
                    642:
                    643: [-105 -168 420 360 -658 169 1785]
                    644:
                    645: [-84 -140 360 315 -588 184 1582]
                    646:
                    647: [-70 -120 315 280 -532 190 1421]
                    648:
                    649: [-60 -105 280 252 -486 191 1290]
                    650:
                    651: ? qfminim([2,1;1,2],4,6)
                    652: [6, 2, [0, -1, 1; 1, 1, 0]]
                    653: ? qfperfection([2,0,1;0,2,1;1,1,2])
                    654: 6
                    655: ? qfsign(mathilbert(5)-0.11*matid(5))
                    656: [2, 3]
                    657: ? aset=Set([5,-2,7,3,5,1])
                    658: ["-2", "1", "3", "5", "7"]
                    659: ? bset=Set([7,5,-5,7,2])
                    660: ["-5", "2", "5", "7"]
                    661: ? setintersect(aset,bset)
                    662: ["5", "7"]
                    663: ? setisset([-3,5,7,7])
                    664: 0
                    665: ? setminus(aset,bset)
                    666: ["-2", "1", "3"]
                    667: ? setsearch(aset,3)
                    668: 3
                    669: ? setsearch(bset,3)
                    670: 0
                    671: ? setunion(aset,bset)
                    672: ["-2", "-5", "1", "2", "3", "5", "7"]
                    673: ? trace(1+I)
                    674: 2
                    675: ? trace(Mod(x+5,x^3+x+1))
                    676: 15
                    677: ? Vec(sin(x))
                    678: [1, 0, -1/6, 0, 1/120, 0, -1/5040, 0, 1/362880, 0, -1/39916800, 0, 1/6227020
                    679: 800, 0, -1/1307674368000]
                    680: ? vecmax([-3,7,-2,11])
                    681: 11
                    682: ? vecmin([-3,7,-2,11])
                    683: -3
                    684: ? concat([1,2],[3,4])
                    685: [1, 2, 3, 4]
                    686: ? concat(Mat(vector(4,x,x)~),vector(4,x,10+x)~)
                    687:
                    688: [1 11]
                    689:
                    690: [2 12]
                    691:
                    692: [3 13]
                    693:
                    694: [4 14]
                    695:
                    696: ? vecextract([1,2,3,4,5,6,7,8,9,10],1000)
                    697: [4, 6, 7, 8, 9, 10]
                    698: ? vecextract(matrix(15,15,x,y,x+y),vector(5,x,3*x),vector(3,y,3*y))
                    699:
                    700: [6 9 12]
                    701:
                    702: [9 12 15]
                    703:
                    704: [12 15 18]
                    705:
                    706: [15 18 21]
                    707:
                    708: [18 21 24]
                    709:
                    710: ? (1.*mathilbert(7))^(-1)
                    711:
                    712: [49.000000000000000000000000000000103566 -1176.00000000000000000000000000000
                    713: 42824 8820.0000000000000000000000000000421424 -29400.00000000000000000000000
                    714: 0000165821 48510.000000000000000000000000000306324 -38808.000000000000000000
                    715: 000000000266339 12012.000000000000000000000000000087656]
                    716:
                    717: [-1176.0000000000000000000000000000027736 37632.0000000000000000000000000001
                    718: 15103 -317520.00000000000000000000000000113213 1128960.000000000000000000000
                    719: 0000044496 -1940400.0000000000000000000000000082054 1596672.0000000000000000
                    720: 000000000071127 -504504.00000000000000000000000000233826]
                    721:
                    722: [8820.0000000000000000000000000000173507 -317520.000000000000000000000000000
                    723: 72412 2857680.0000000000000000000000000071262 -10584000.00000000000000000000
                    724: 0000027962 18711000.000000000000000000000000051435 -15717240.000000000000000
                    725: 000000000044456 5045040.0000000000000000000000000145745]
                    726:
                    727: [-29400.000000000000000000000000000039976 1128960.00000000000000000000000000
                    728: 16881 -10584000.000000000000000000000000016643 40320000.00000000000000000000
                    729: 0000065137 -72765000.000000000000000000000000119284 62092800.000000000000000
                    730: 000000000102568 -20180160.000000000000000000000000033446]
                    731:
                    732: [48510.000000000000000000000000000033880 -1940400.00000000000000000000000000
                    733: 14801 18711000.000000000000000000000000014677 -72765000.00000000000000000000
                    734: 0000057076 133402500.00000000000000000000000010330 -115259760.00000000000000
                    735: 000000000008758 37837800.000000000000000000000000028140]
                    736:
                    737: [-38808.000000000000000000000000000001890 1596672.00000000000000000000000000
                    738: 01577 -15717240.000000000000000000000000001694 62092800.00000000000000000000
                    739: 0000006074 -115259760.00000000000000000000000000925 100590336.00000000000000
                    740: 000000000000604 -33297264.000000000000000000000000001319]
                    741:
                    742: [12011.999999999999999999999999999993228 -504503.999999999999999999999999999
                    743: 74929 5045039.9999999999999999999999999975933 -20180159.99999999999999999999
                    744: 9999990337 37837799.999999999999999999999999981476 -33297263.999999999999999
                    745: 999999999983224 11099087.999999999999999999999999994238]
                    746:
                    747: ? vecsort([8,7,6,5],,1)
                    748: [4, 3, 2, 1]
                    749: ? vecsort([[1,5],[2,4],[1,5,1],[1,4,2]],,2)
                    750: [[1, 4, 2], [1, 5], [1, 5, 1], [2, 4]]
                    751: ? vecsort(vector(17,x,5*x%17))
                    752: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
                    753: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],2)
                    754: [[2, 5, 8], [3, 6, -6], [4, 8, 6], [1, 8, 5]]
                    755: ? vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],[2,1])
                    756: [[2, 5, 8], [3, 6, -6], [1, 8, 5], [4, 8, 6]]
                    757: ? vector(10,x,1/x)
                    758: [1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10]
                    759: ? setrand(1);a=matrix(3,5,j,k,vectorv(5,l,random\10^8))
                    760:
                    761: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~ [0, 16, 4, 2, 0]~
                    762:  [17, 19, 17, 1, 14]~]
                    763:
                    764: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~ [6, 1, 8, 17, 21
                    765: ]~ [18, 17, 9, 10, 13]~]
                    766:
                    767: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~ [19, 21, 2, 4,
                    768: 5]~ [14, 16, 6, 20, 14]~]
                    769:
                    770: ? setrand(1);as=matrix(3,3,j,k,vectorv(5,l,random\10^8))
                    771:
                    772: [[10, 7, 8, 7, 18]~ [17, 0, 9, 20, 10]~ [5, 4, 7, 18, 20]~]
                    773:
                    774: [[17, 16, 6, 3, 6]~ [17, 13, 9, 19, 6]~ [1, 14, 12, 20, 8]~]
                    775:
                    776: [[4, 13, 3, 17, 14]~ [14, 16, 11, 5, 4]~ [9, 11, 13, 7, 15]~]
                    777:
                    778: ? getheap
                    779: [111, 12130]
                    780: ? print("Total time spent: ",gettime);
                    781: Total time spent: 154
                    782: ? \q

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>