Annotation of OpenXM_contrib/pari/src/test/64/number, Revision 1.1.1.1
1.1 maekawa 1: echo = 1 (on)
2: ? addprimes([nextprime(10^9),nextprime(10^10)])
3: [1000000007, 10000000019]
4: ? bestappr(Pi,10000)
5: 355/113
6: ? bezout(123456789,987654321)
7: [-8, 1, 9]
8: ? bigomega(12345678987654321)
9: 8
10: ? binomial(1.1,5)
11: -0.0045457499999999999999999999999999999997
12: ? chinese(Mod(7,15),Mod(13,21))
13: Mod(97, 105)
14: ? content([123,456,789,234])
15: 3
16: ? contfrac(Pi)
17: [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1
18: , 1, 15, 3, 13, 1, 4, 2, 6, 6]
19: ? contfrac(Pi,5)
20: [3, 7, 15, 1, 292]
21: ? contfrac((exp(1)-1)/(exp(1)+1),[1,3,5,7,9])
22: [0, 6, 10, 42, 30]
23: ? contfracpnqn([2,6,10,14,18,22,26])
24:
25: [19318376 741721]
26:
27: [8927353 342762]
28:
29: ? contfracpnqn([1,1,1,1,1,1,1,1;1,1,1,1,1,1,1,1])
30:
31: [34 21]
32:
33: [21 13]
34:
35: ? core(54713282649239)
36: 5471
37: ? core(54713282649239,1)
38: [5471, 100003]
39: ? coredisc(54713282649239)
40: 21884
41: ? coredisc(54713282649239,1)
42: [21884, 100003/2]
43: ? divisors(8!)
44: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32,
45: 35, 36, 40, 42, 45, 48, 56, 60, 63, 64, 70, 72, 80, 84, 90, 96, 105, 112, 12
46: 0, 126, 128, 140, 144, 160, 168, 180, 192, 210, 224, 240, 252, 280, 288, 315
47: , 320, 336, 360, 384, 420, 448, 480, 504, 560, 576, 630, 640, 672, 720, 840,
48: 896, 960, 1008, 1120, 1152, 1260, 1344, 1440, 1680, 1920, 2016, 2240, 2520,
49: 2688, 2880, 3360, 4032, 4480, 5040, 5760, 6720, 8064, 10080, 13440, 20160,
50: 40320]
51: ? eulerphi(257^2)
52: 65792
53: ? factor(17!+1)
54:
55: [661 1]
56:
57: [537913 1]
58:
59: [1000357 1]
60:
61: ? factor(100!+1,0)
62:
63: [101 1]
64:
65: [14303 1]
66:
67: [149239 1]
68:
69: [432885273849892962613071800918658949059679308685024481795740765527568493010
70: 727023757461397498800981521440877813288657839195622497225621499427628453 1]
71:
72: ? factor(40!+1,100000)
73:
74: [41 1]
75:
76: [59 1]
77:
78: [277 1]
79:
80: [1217669507565553887239873369513188900554127 1]
81:
82: ? factorback(factor(12354545545))
83: 12354545545
84: ? factorcantor(x^11+1,7)
85:
86: [Mod(1, 7)*x + Mod(1, 7) 1]
87:
88: [Mod(1, 7)*x^10 + Mod(6, 7)*x^9 + Mod(1, 7)*x^8 + Mod(6, 7)*x^7 + Mod(1, 7)*
89: x^6 + Mod(6, 7)*x^5 + Mod(1, 7)*x^4 + Mod(6, 7)*x^3 + Mod(1, 7)*x^2 + Mod(6,
90: 7)*x + Mod(1, 7) 1]
91:
92: ? centerlift(lift(factorff(x^3+x^2+x-1,3,t^3+t^2+t-1)))
93:
94: [x - t 1]
95:
96: [x + (t^2 + t - 1) 1]
97:
98: [x + (-t^2 - 1) 1]
99:
100: ? 10!
101: 3628800
102: ? factorial(10)
103: 3628800.0000000000000000000000000000000
104: ? factormod(x^11+1,7)
105:
106: [Mod(1, 7)*x + Mod(1, 7) 1]
107:
108: [Mod(1, 7)*x^10 + Mod(6, 7)*x^9 + Mod(1, 7)*x^8 + Mod(6, 7)*x^7 + Mod(1, 7)*
109: x^6 + Mod(6, 7)*x^5 + Mod(1, 7)*x^4 + Mod(6, 7)*x^3 + Mod(1, 7)*x^2 + Mod(6,
110: 7)*x + Mod(1, 7) 1]
111:
112: ? factormod(x^11+1,7,1)
113:
114: [1 1]
115:
116: [10 1]
117:
118: ? ffinit(2,11)
119: Mod(1, 2)*x^11 + Mod(1, 2)*x^2 + Mod(1, 2)
120: ? ffinit(7,4)
121: Mod(1, 7)*x^4 + Mod(1, 7)*x + Mod(1, 7)
122: ? fibonacci(100)
123: 354224848179261915075
124: ? gcd(12345678,87654321)
125: 9
126: ? gcd(x^10-1,x^15-1,2)
127: x^5 - 1
128: ? hilbert(2/3,3/4,5)
129: 1
130: ? hilbert(Mod(5,7),Mod(6,7))
131: 1
132: ? isfundamental(12345)
133: 1
134: ? isprime(12345678901234567)
135: 0
136: ? ispseudoprime(73!+1)
137: 1
138: ? issquare(12345678987654321)
139: 1
140: ? issquarefree(123456789876543219)
141: 0
142: ? kronecker(5,7)
143: -1
144: ? kronecker(3,18)
145: 0
146: ? lcm(15,-21)
147: 105
148: ? lift(chinese(Mod(7,15),Mod(4,21)))
149: 67
150: ? modreverse(Mod(x^2+1,x^3-x-1))
151: Mod(x^2 - 3*x + 2, x^3 - 5*x^2 + 8*x - 5)
152: ? moebius(3*5*7*11*13)
153: -1
154: ? nextprime(100000000000000000000000)
155: 100000000000000000000117
156: ? numdiv(2^99*3^49)
157: 5000
158: ? omega(100!)
159: 25
160: ? precprime(100000000000000000000000)
161: 99999999999999999999977
162: ? prime(100)
163: 541
164: ? primes(100)
165: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
166: 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
167: 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 2
168: 39, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 33
169: 1, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421
170: , 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509,
171: 521, 523, 541]
172: ? qfbclassno(-12391)
173: 63
174: ? qfbclassno(1345)
175: 6
176: ? qfbclassno(-12391,1)
177: 63
178: ? qfbclassno(1345,1)
179: 6
180: ? Qfb(2,1,3)*Qfb(2,1,3)
181: Qfb(2, -1, 3)
182: ? qfbcompraw(Qfb(5,3,-1,0.),Qfb(7,1,-1,0.))
183: Qfb(35, 43, 13, 0.E-38)
184: ? qfbhclassno(2000003)
185: 357
186: ? qfbnucomp(Qfb(2,1,9),Qfb(4,3,5),3)
187: Qfb(2, -1, 9)
188: ? form=Qfb(2,1,9);qfbnucomp(form,form,3)
189: Qfb(4, -3, 5)
190: ? qfbnupow(form,111)
191: Qfb(2, -1, 9)
192: ? qfbpowraw(Qfb(5,3,-1,0.),3)
193: Qfb(125, 23, 1, 0.E-38)
194: ? qfbprimeform(-44,3)
195: Qfb(3, 2, 4)
196: ? qfbred(Qfb(3,10,12),,-1)
197: Qfb(3, -2, 4)
198: ? qfbred(Qfb(3,10,-20,1.5))
199: Qfb(3, 16, -7, 1.5000000000000000000000000000000000000)
200: ? qfbred(Qfb(3,10,-20,1.5),2,,18)
201: Qfb(3, 16, -7, 1.5000000000000000000000000000000000000)
202: ? qfbred(Qfb(3,10,-20,1.5),1)
203: Qfb(-20, -10, 3, 2.1074451073987839947135880252731470615)
204: ? qfbred(Qfb(3,10,-20,1.5),3,,18)
205: Qfb(-20, -10, 3, 1.5000000000000000000000000000000000000)
206: ? quaddisc(-252)
207: -7
208: ? quadgen(-11)
209: w
210: ? quadpoly(-11)
211: x^2 - x + 3
212: ? quadregulator(17)
213: 2.0947125472611012942448228460655286534
214: ? quadunit(17)
215: 3 + 2*w
216: ? sigma(100)
217: 217
218: ? sigma(100,2)
219: 13671
220: ? sigma(100,-3)
221: 1149823/1000000
222: ? sqrtint(10!^2+1)
223: 3628800
224: ? znorder(Mod(33,2^16+1))
225: 2048
226: ? forprime(p=2,100,print(p," ",lift(znprimroot(p))))
227: 2 1
228: 3 2
229: 5 2
230: 7 3
231: 11 2
232: 13 2
233: 17 3
234: 19 2
235: 23 5
236: 29 2
237: 31 3
238: 37 2
239: 41 6
240: 43 3
241: 47 5
242: 53 2
243: 59 2
244: 61 2
245: 67 2
246: 71 7
247: 73 5
248: 79 3
249: 83 2
250: 89 3
251: 97 5
252: ? znstar(3120)
253: [768, [12, 4, 4, 2, 2], [Mod(67, 3120), Mod(2341, 3120), Mod(1847, 3120), Mo
254: d(391, 3120), Mod(2081, 3120)]]
255: ? getheap
256: [85, 2614]
257: ? print("Total time spent: ",gettime);
258: Total time spent: 579
259: ? \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>