Annotation of OpenXM_contrib/pari/src/test/64/objets, Revision 1.1
1.1 ! maekawa 1: echo = 1 (on)
! 2: ? +3
! 3: 3
! 4: ? -5
! 5: -5
! 6: ? 5+3
! 7: 8
! 8: ? 5-3
! 9: 2
! 10: ? 5/3
! 11: 5/3
! 12: ? 5\3
! 13: 1
! 14: ? 5\/3
! 15: 2
! 16: ? 5%3
! 17: 2
! 18: ? 5^3
! 19: 125
! 20: ? binary(65537)
! 21: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
! 22: ? bittest(10^100,100)
! 23: 1
! 24: ? ceil(-2.5)
! 25: -2
! 26: ? centerlift(Mod(456,555))
! 27: -99
! 28: ? component(1+O(7^4),3)
! 29: 1
! 30: ? conj(1+I)
! 31: 1 - I
! 32: ? conjvec(Mod(x^2+x+1,x^3-x-1))
! 33: [4.0795956234914387860104177508366260325, 0.46020218825428060699479112458168
! 34: 698369 + 0.18258225455744299269398828369501930573*I, 0.460202188254280606994
! 35: 79112458168698369 - 0.18258225455744299269398828369501930573*I]~
! 36: ? truncate(1.7,&e)
! 37: 1
! 38: ? e
! 39: -1
! 40: ? denominator(12345/54321)
! 41: 18107
! 42: ? divrem(345,123)
! 43: [2, 99]~
! 44: ? divrem(x^7-1,x^5+1)
! 45: [x^2, -x^2 - 1]~
! 46: ? floor(-1/2)
! 47: -1
! 48: ? floor(-2.5)
! 49: -3
! 50: ? frac(-2.7)
! 51: 0.30000000000000000000000000000000000000
! 52: ? I^2
! 53: -1
! 54: ? imag(2+3*I)
! 55: 3
! 56: ? lex([1,3],[1,3,5])
! 57: -1
! 58: ? max(2,3)
! 59: 3
! 60: ? min(2,3)
! 61: 2
! 62: ? Mod(-12,7)
! 63: Mod(2, 7)
! 64: ? Mod(-12,7,1)
! 65: Mod(2, 7)
! 66: ? Mod(10873,49649)^-1
! 67: *** impossible inverse modulo: Mod(131, 49649).
! 68:
! 69: ? norm(1+I)
! 70: 2
! 71: ? norm(Mod(x+5,x^3+x+1))
! 72: 129
! 73: ? numerator((x+1)/(x-1))
! 74: x + 1
! 75: ? 1/(1+x)+O(x^20)
! 76: 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 -
! 77: x^13 + x^14 - x^15 + x^16 - x^17 + x^18 - x^19 + O(x^20)
! 78: ? numtoperm(7,1035)
! 79: [4, 7, 1, 6, 3, 5, 2]
! 80: ? permtonum([4,7,1,6,3,5,2])
! 81: 1035
! 82: ? 37.
! 83: 37.000000000000000000000000000000000000
! 84: ? real(5-7*I)
! 85: 5
! 86: ? arat=(x^3+x+1)/x^3;type(arat,14)
! 87: (x^3 + x + 1)/x^3
! 88: ? shift(1,50)
! 89: 1125899906842624
! 90: ? shift([3,4,-11,-12],-2)
! 91: [0, 1, -2, -3]
! 92: ? shiftmul([3,4,-11,-12],-2)
! 93: [3/4, 1, -11/4, -3]
! 94: ? sign(-1)
! 95: -1
! 96: ? sign(0)
! 97: 0
! 98: ? sign(0.)
! 99: 0
! 100: ? simplify(((x+I+1)^2-x^2-2*x*(I+1))^2)
! 101: -4
! 102: ? sizedigit([1.3*10^5,2*I*Pi*exp(4*Pi)])
! 103: 7
! 104: ? truncate(-2.7)
! 105: -2
! 106: ? truncate(sin(x^2))
! 107: -1/5040*x^14 + 1/120*x^10 - 1/6*x^6 + x^2
! 108: ? type(Mod(x,x^2+1))
! 109: "t_POLMOD"
! 110: ? valuation(6^10000-1,5)
! 111: 5
! 112: ? \p57
! 113: realprecision = 57 significant digits
! 114: ? Pi
! 115: 3.14159265358979323846264338327950288419716939937510582097
! 116: ? \p38
! 117: realprecision = 38 significant digits
! 118: ? O(x^12)
! 119: O(x^12)
! 120: ? padicno=(5/3)*127+O(127^5)
! 121: 44*127 + 42*127^2 + 42*127^3 + 42*127^4 + O(127^5)
! 122: ? padicprec(padicno,127)
! 123: 5
! 124: ? length(divisors(1000))
! 125: 16
! 126: ? getheap
! 127: [65, 894]
! 128: ? print("Total time spent: ",gettime);
! 129: Total time spent: 28
! 130: ? \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>