Annotation of OpenXM_contrib/pari/src/test/64/objets, Revision 1.1.1.1
1.1 maekawa 1: echo = 1 (on)
2: ? +3
3: 3
4: ? -5
5: -5
6: ? 5+3
7: 8
8: ? 5-3
9: 2
10: ? 5/3
11: 5/3
12: ? 5\3
13: 1
14: ? 5\/3
15: 2
16: ? 5%3
17: 2
18: ? 5^3
19: 125
20: ? binary(65537)
21: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
22: ? bittest(10^100,100)
23: 1
24: ? ceil(-2.5)
25: -2
26: ? centerlift(Mod(456,555))
27: -99
28: ? component(1+O(7^4),3)
29: 1
30: ? conj(1+I)
31: 1 - I
32: ? conjvec(Mod(x^2+x+1,x^3-x-1))
33: [4.0795956234914387860104177508366260325, 0.46020218825428060699479112458168
34: 698369 + 0.18258225455744299269398828369501930573*I, 0.460202188254280606994
35: 79112458168698369 - 0.18258225455744299269398828369501930573*I]~
36: ? truncate(1.7,&e)
37: 1
38: ? e
39: -1
40: ? denominator(12345/54321)
41: 18107
42: ? divrem(345,123)
43: [2, 99]~
44: ? divrem(x^7-1,x^5+1)
45: [x^2, -x^2 - 1]~
46: ? floor(-1/2)
47: -1
48: ? floor(-2.5)
49: -3
50: ? frac(-2.7)
51: 0.30000000000000000000000000000000000000
52: ? I^2
53: -1
54: ? imag(2+3*I)
55: 3
56: ? lex([1,3],[1,3,5])
57: -1
58: ? max(2,3)
59: 3
60: ? min(2,3)
61: 2
62: ? Mod(-12,7)
63: Mod(2, 7)
64: ? Mod(-12,7,1)
65: Mod(2, 7)
66: ? Mod(10873,49649)^-1
67: *** impossible inverse modulo: Mod(131, 49649).
68:
69: ? norm(1+I)
70: 2
71: ? norm(Mod(x+5,x^3+x+1))
72: 129
73: ? numerator((x+1)/(x-1))
74: x + 1
75: ? 1/(1+x)+O(x^20)
76: 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 -
77: x^13 + x^14 - x^15 + x^16 - x^17 + x^18 - x^19 + O(x^20)
78: ? numtoperm(7,1035)
79: [4, 7, 1, 6, 3, 5, 2]
80: ? permtonum([4,7,1,6,3,5,2])
81: 1035
82: ? 37.
83: 37.000000000000000000000000000000000000
84: ? real(5-7*I)
85: 5
86: ? arat=(x^3+x+1)/x^3;type(arat,14)
87: (x^3 + x + 1)/x^3
88: ? shift(1,50)
89: 1125899906842624
90: ? shift([3,4,-11,-12],-2)
91: [0, 1, -2, -3]
92: ? shiftmul([3,4,-11,-12],-2)
93: [3/4, 1, -11/4, -3]
94: ? sign(-1)
95: -1
96: ? sign(0)
97: 0
98: ? sign(0.)
99: 0
100: ? simplify(((x+I+1)^2-x^2-2*x*(I+1))^2)
101: -4
102: ? sizedigit([1.3*10^5,2*I*Pi*exp(4*Pi)])
103: 7
104: ? truncate(-2.7)
105: -2
106: ? truncate(sin(x^2))
107: -1/5040*x^14 + 1/120*x^10 - 1/6*x^6 + x^2
108: ? type(Mod(x,x^2+1))
109: "t_POLMOD"
110: ? valuation(6^10000-1,5)
111: 5
112: ? \p57
113: realprecision = 57 significant digits
114: ? Pi
115: 3.14159265358979323846264338327950288419716939937510582097
116: ? \p38
117: realprecision = 38 significant digits
118: ? O(x^12)
119: O(x^12)
120: ? padicno=(5/3)*127+O(127^5)
121: 44*127 + 42*127^2 + 42*127^3 + 42*127^4 + O(127^5)
122: ? padicprec(padicno,127)
123: 5
124: ? length(divisors(1000))
125: 16
126: ? getheap
127: [65, 894]
128: ? print("Total time spent: ",gettime);
129: Total time spent: 28
130: ? \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>