Annotation of OpenXM_contrib/pari/src/test/in/compat, Revision 1.1
1.1 ! maekawa 1: \e
! 2: default(compatible,3)
! 3: +3
! 4: -5
! 5: 5+3
! 6: 5-3
! 7: 5/3
! 8: 5\3
! 9: 5\/3
! 10: 5%3
! 11: 5^3
! 12: \precision=57
! 13: pi
! 14: \precision=38
! 15: o(x^12)
! 16: padicno=(5/3)*127+O(127^5)
! 17: initrect(0,500,500)
! 18: \\ A
! 19: abs(-0.01)
! 20: acos(0.5)
! 21: acosh(3)
! 22: acurve=initell([0,0,1,-1,0])
! 23: apoint=[2,2]
! 24: isoncurve(acurve,apoint)
! 25: addell(acurve,apoint,apoint)
! 26: addprimes([nextprime(10^9),nextprime(10^10)])
! 27: adj([1,2;3,4])
! 28: agm(1,2)
! 29: agm(1+o(7^5),8+o(7^5))
! 30: algdep(2*cos(2*pi/13),6)
! 31: algdep2(2*cos(2*pi/13),6,15)
! 32: \\allocatemem(3000000)
! 33: akell(acurve,1000000007)
! 34: nfpol=x^5-5*x^3+5*x+25
! 35: nf=initalg(nfpol)
! 36: ba=algtobasis(nf,mod(x^3+5,nfpol))
! 37: anell(acurve,100)
! 38: apell(acurve,10007)
! 39: apell2(acurve,10007)
! 40: apol=x^3+5*x+1
! 41: apprpadic(apol,1+O(7^8))
! 42: apprpadic(x^3+5*x+1,mod(x*(1+O(7^8)),x^2+x-1))
! 43: 4*arg(3+3*i)
! 44: 3*asin(sqrt(3)/2)
! 45: asinh(0.5)
! 46: assmat(x^5-12*x^3+0.0005)
! 47: 3*atan(sqrt(3))
! 48: atanh(0.5)
! 49: \\ B
! 50: basis(x^3+4*x+5)
! 51: basis2(x^3+4*x+5)
! 52: basistoalg(nf,ba)
! 53: bernreal(12)
! 54: bernvec(6)
! 55: bestappr(pi,10000)
! 56: bezout(123456789,987654321)
! 57: bigomega(12345678987654321)
! 58: mcurve=initell([0,0,0,-17,0])
! 59: mpoints=[[-1,4],[-4,2]]~
! 60: mhbi=bilhell(mcurve,mpoints,[9,24])
! 61: bin(1.1,5)
! 62: binary(65537)
! 63: bittest(10^100,100)
! 64: boundcf(pi,5)
! 65: boundfact(40!+1,100000)
! 66: move(0,0,0);box(0,500,500)
! 67: setrand(1);buchimag(1-10^7,1,1)
! 68: setrand(1);bnf=buchinitfu(x^2-x-57,0.2,0.2)
! 69: buchcertify(bnf)
! 70: buchfu(bnf)
! 71: setrand(1);buchinitforcefu(x^2-x-100000)
! 72: setrand(1);bnf=buchinitfu(x^2-x-57,0.2,0.2)
! 73: setrand(1);buchreal(10^9-3,0,0.5,0.5)
! 74: setrand(1);buchgen(x^4-7,0.2,0.2)
! 75: setrand(1);buchgenfu(x^2-x-100000)
! 76: setrand(1);buchgenforcefu(x^2-x-100000)
! 77: setrand(1);buchgenfu(x^4+24*x^2+585*x+1791,0.1,0.1)
! 78: buchnarrow(bnf)
! 79: buchray(bnf,[[5,3;0,1],[1,0]])
! 80: bnr=buchrayinitgen(bnf,[[5,3;0,1],[1,0]])
! 81: bnr2=buchrayinitgen(bnf,[[25,13;0,1],[1,1]])
! 82: bytesize(%)
! 83: \\ C
! 84: ceil(-2.5)
! 85: centerlift(mod(456,555))
! 86: cf(pi)
! 87: cf2([1,3,5,7,9],(exp(1)-1)/(exp(1)+1))
! 88: changevar(x+y,[z,t])
! 89: char([1,2;3,4],z)
! 90: char(mod(x^2+x+1,x^3+5*x+1),z)
! 91: char1([1,2;3,4],z)
! 92: char2(mod(1,8191)*[1,2;3,4],z)
! 93: acurve=chell(acurve,[-1,1,2,3])
! 94: chinese(mod(7,15),mod(13,21))
! 95: apoint=chptell(apoint,[-1,1,2,3])
! 96: isoncurve(acurve,apoint)
! 97: classno(-12391)
! 98: classno(1345)
! 99: classno2(-12391)
! 100: classno2(1345)
! 101: coeff(sin(x),7)
! 102: compimag(qfi(2,1,3),qfi(2,1,3))
! 103: compo(1+o(7^4),3)
! 104: compositum(x^4-4*x+2,x^3-x-1)
! 105: compositum2(x^4-4*x+2,x^3-x-1)
! 106: comprealraw(qfr(5,3,-1,0.),qfr(7,1,-1,0.))
! 107: concat([1,2],[3,4])
! 108: conductor(bnf,[[25,13;0,1],[1,1]])
! 109: conductorofchar(bnr,[2])
! 110: conj(1+i)
! 111: conjvec(mod(x^2+x+1,x^3-x-1))
! 112: content([123,456,789,234])
! 113: convol(sin(x),x*cos(x))
! 114: core(54713282649239)
! 115: core2(54713282649239)
! 116: coredisc(54713282649239)
! 117: coredisc2(54713282649239)
! 118: cos(1)
! 119: cosh(1)
! 120: move(0,200,150)
! 121: cursor(0)
! 122: cvtoi(1.7)
! 123: cyclo(105)
! 124: \\ D
! 125: degree(x^3/(x-1))
! 126: denom(12345/54321)
! 127: deplin(mod(1,7)*[2,-1;1,3])
! 128: deriv((x+y)^5,y)
! 129: ((x+y)^5)'
! 130: det([1,2,3;1,5,6;9,8,7])
! 131: det2([1,2,3;1,5,6;9,8,7])
! 132: detint([1,2,3;4,5,6])
! 133: diagonal([2,4,6])
! 134: dilog(0.5)
! 135: dz=vector(30,k,1);dd=vector(30,k,k==1);dm=dirdiv(dd,dz)
! 136: deu=direuler(p=2,100,1/(1-apell(acurve,p)*x+if(acurve[12]%p,p,0)*x^2))
! 137: anell(acurve,100)==deu
! 138: dirmul(abs(dm),dz)
! 139: dirzetak(initalg(x^3-10*x+8),30)
! 140: disc(x^3+4*x+12)
! 141: discf(x^3+4*x+12)
! 142: discrayabs(bnr,mat(6))
! 143: discrayabs(bnr)
! 144: discrayabscond(bnr2)
! 145: lu=ideallistunitgen(bnf,55);discrayabslist(bnf,lu)
! 146: discrayabslistlong(bnf,20)
! 147: discrayrel(bnr,mat(6))
! 148: discrayrel(bnr)
! 149: discrayrelcond(bnr2)
! 150: divisors(8!)
! 151: divres(345,123)
! 152: divres(x^7-1,x^5+1)
! 153: divsum(8!,x,x)
! 154: \\draw([0,0,0])
! 155: postdraw([0,0,0])
! 156: \\ E
! 157: eigen([1,2,3;4,5,6;7,8,9])
! 158: eint1(2)
! 159: erfc(2)
! 160: eta(q)
! 161: euler
! 162: z=y;y=x;eval(z)
! 163: exp(1)
! 164: extract([1,2,3,4,5,6,7,8,9,10],1000)
! 165: \\ F
! 166: 10!
! 167: fact(10)
! 168: factcantor(x^11+1,7)
! 169: centerlift(lift(factfq(x^3+x^2+x-1,3,t^3+t^2+t-1)))
! 170: factmod(x^11+1,7)
! 171: factor(17!+1)
! 172: p=x^5+3021*x^4-786303*x^3-6826636057*x^2-546603588746*x+3853890514072057
! 173: fa=[11699,6;2392997,2;4987333019653,2]
! 174: factoredbasis(p,fa)
! 175: factoreddiscf(p,fa)
! 176: factoredpolred(p,fa)
! 177: factoredpolred2(p,fa)
! 178: factornf(x^3+x^2-2*x-1,t^3+t^2-2*t-1)
! 179: factorpadic(apol,7,8)
! 180: factorpadic2(apol,7,8)
! 181: factpol(x^15-1,3,1)
! 182: factpol(x^15-1,0,1)
! 183: factpol2(x^15-1,0)
! 184: fibo(100)
! 185: floor(-1/2)
! 186: floor(-2.5)
! 187: for(x=1,5,print(x!))
! 188: fordiv(10,x,print(x))
! 189: forprime(p=1,30,print(p))
! 190: forstep(x=0,pi,pi/12,print(sin(x)))
! 191: forvec(x=[[1,3],[-2,2]],print1([x[1],x[2]]," "));print(" ");
! 192: frac(-2.7)
! 193: \\ G
! 194: galois(x^6-3*x^2-1)
! 195: nf3=initalg(x^6+108);galoisconj(nf3)
! 196: galoisconjforce(nf3)
! 197: aut=%[2];galoisapply(nf3,aut,mod(x^5,x^6+108))
! 198: gamh(10)
! 199: gamma(10.5)
! 200: gauss(hilbert(10),[1,2,3,4,5,6,7,8,9,0]~)
! 201: gaussmodulo([2,3;5,4],[7,11],[1,4]~)
! 202: gaussmodulo2([2,3;5,4],[7,11],[1,4]~)
! 203: gcd(12345678,87654321)
! 204: getheap()
! 205: getrand()
! 206: getstack()
! 207: \\gettime()isattheend
! 208: globalred(acurve)
! 209: getstack()
! 210: \\ H
! 211: hclassno(2000003)
! 212: hell(acurve,apoint)
! 213: hell2(acurve,apoint)
! 214: hermite(amat=1/hilbert(7))
! 215: hermite2(amat)
! 216: hermitehavas(amat)
! 217: hermitemod(amat,detint(amat))
! 218: hermiteperm(amat)
! 219: hess(hilbert(7))
! 220: hilb(2/3,3/4,5)
! 221: hilbert(5)
! 222: hilbp(mod(5,7),mod(6,7))
! 223: hvector(10,x,1/x)
! 224: hyperu(1,1,1)
! 225: \\ I
! 226: i^2
! 227: nf1=initalgred(nfpol)
! 228: initalgred2(nfpol)
! 229: vp=primedec(nf,3)[1]
! 230: idx=idealmul(nf,idmat(5),vp)
! 231: idealinv(nf,idx)
! 232: idy=ideallllred(nf,idx,[1,5,6])
! 233: idealadd(nf,idx,idy)
! 234: idealaddone(nf,idx,idy)
! 235: idealaddmultone(nf,[idy,idx])
! 236: idealappr(nf,idy)
! 237: idealapprfact(nf,idealfactor(nf,idy))
! 238: idealcoprime(nf,idx,idx)
! 239: idz=idealintersect(nf,idx,idy)
! 240: idealfactor(nf,idz)
! 241: ideallist(bnf,20)
! 242: idx2=idealmul(nf,idx,idx)
! 243: idt=idealmulred(nf,idx,idx)
! 244: idealdiv(nf,idy,idt)
! 245: idealdivexact(nf,idx2,idx)
! 246: idealhermite(nf,vp)
! 247: idealhermite2(nf,vp[2],3)
! 248: idealnorm(nf,idt)
! 249: idp=idealpow(nf,idx,7)
! 250: idealpowred(nf,idx,7)
! 251: idealtwoelt(nf,idy)
! 252: idealtwoelt2(nf,idy,10)
! 253: idealval(nf,idp,vp)
! 254: idmat(5)
! 255: if(3<2,print("bof"),print("ok"));
! 256: imag(2+3*i)
! 257: image([1,3,5;2,4,6;3,5,7])
! 258: image(pi*[1,3,5;2,4,6;3,5,7])
! 259: incgam(2,1)
! 260: incgam1(2,1)
! 261: incgam2(2,1)
! 262: incgam3(2,1)
! 263: incgam4(4,1,6)
! 264: indexrank([1,1,1;1,1,1;1,1,2])
! 265: indsort([8,7,6,5])
! 266: initell([0,0,0,-1,0])
! 267: initrect(1,700,700)
! 268: nfz=initzeta(x^2-2);
! 269: integ(sin(x),x)
! 270: integ((-x^2-2*a*x+8*a)/(x^4-14*x^3+(2*a+49)*x^2-14*a*x+a^2),x)
! 271: intersect([1,2;3,4;5,6],[2,3;7,8;8,9])
! 272: \precision=19
! 273: intgen(x=0,pi,sin(x))
! 274: sqr(2*intgen(x=0,4,exp(-x^2)))
! 275: 4*intinf(x=1,10^20,1/(1+x^2))
! 276: intnum(x=-0.5,0.5,1/sqrt(1-x^2))
! 277: 2*intopen(x=0,100,sin(x)/x)
! 278: \precision=38
! 279: inverseimage([1,1;2,3;5,7],[2,2,6]~)
! 280: isdiagonal([1,0,0;0,5,0;0,0,0])
! 281: isfund(12345)
! 282: isideal(bnf[7],[5,1;0,1])
! 283: isincl(x^2+1,x^4+1)
! 284: isinclfast(initalg(x^2+1),initalg(x^4+1))
! 285: isirreducible(x^5+3*x^3+5*x^2+15)
! 286: isisom(x^3+x^2-2*x-1,x^3+x^2-2*x-1)
! 287: isisomfast(initalg(x^3-2),initalg(x^3-6*x^2-6*x-30))
! 288: isprime(12345678901234567)
! 289: isprincipal(bnf,[5,1;0,1])
! 290: isprincipalgen(bnf,[5,1;0,1])
! 291: isprincipalraygen(bnr,primedec(bnf,7)[1])
! 292: ispsp(73!+1)
! 293: isqrt(10!^2+1)
! 294: isset([-3,5,7,7])
! 295: issqfree(123456789876543219)
! 296: issquare(12345678987654321)
! 297: isunit(bnf,mod(3405*x-27466,x^2-x-57))
! 298: \\ J
! 299: jacobi(hilbert(6))
! 300: jbesselh(1,1)
! 301: jell(i)
! 302: \\ K
! 303: kbessel(1+i,1)
! 304: kbessel2(1+i,1)
! 305: x
! 306: y
! 307: ker(matrix(4,4,x,y,x/y))
! 308: ker(matrix(4,4,x,y,sin(x+y)))
! 309: keri(matrix(4,4,x,y,x+y))
! 310: kerint(matrix(4,4,x,y,x*y))
! 311: kerint1(matrix(4,4,x,y,x*y))
! 312: kerint2(matrix(4,6,x,y,2520/(x+y)))
! 313: f(u)=u+1;
! 314: print(f(5));kill(f);
! 315: f=12
! 316: killrect(1)
! 317: kro(5,7)
! 318: kro(3,18)
! 319: \\ L
! 320: laplace(x*exp(x*y)/(exp(x)-1))
! 321: lcm(15,-21)
! 322: length(divisors(1000))
! 323: legendre(10)
! 324: lex([1,3],[1,3,5])
! 325: lexsort([[1,5],[2,4],[1,5,1],[1,4,2]])
! 326: lift(chinese(mod(7,15),mod(4,21)))
! 327: lindep([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)])
! 328: lindep2([(1-3*sqrt(2))/(3-2*sqrt(3)),1,sqrt(2),sqrt(3),sqrt(6)],14)
! 329: move(0,0,900);line(0,900,0)
! 330: lines(0,vector(5,k,50*k),vector(5,k,10*k*k))
! 331: m=1/hilbert(7)
! 332: mp=concat(m,idmat(7))
! 333: lll(m)
! 334: lll1(m)
! 335: lllgram(m)
! 336: lllgram1(m)
! 337: lllgramint(m)
! 338: lllgramkerim(mp~*mp)
! 339: lllint(m)
! 340: lllintpartial(m)
! 341: lllkerim(mp)
! 342: lllrat(m)
! 343: \precision=96
! 344: ln(2)
! 345: lngamma(10^50*i)
! 346: \precision=2000
! 347: log(2)
! 348: logagm(2)
! 349: \precision=19
! 350: bcurve=initell([0,0,0,-3,0])
! 351: localred(bcurve,2)
! 352: ccurve=initell([0,0,-1,-1,0])
! 353: l=lseriesell(ccurve,2,-37,1)
! 354: lseriesell(ccurve,2,-37,1.2)-l
! 355: \\ M
! 356: sbnf=smallbuchinit(x^3-x^2-14*x-1)
! 357: makebigbnf(sbnf)
! 358: concat(mat(vector(4,x,x)~),vector(4,x,10+x)~)
! 359: matextract(matrix(15,15,x,y,x+y),vector(5,x,3*x),vector(3,y,3*y))
! 360: ma=mathell(mcurve,mpoints)
! 361: gauss(ma,mhbi)
! 362: (1.*hilbert(7))^(-1)
! 363: matsize([1,2;3,4;5,6])
! 364: matrix(5,5,x,y,gcd(x,y))
! 365: matrixqz([1,3;3,5;5,7],0)
! 366: matrixqz2([1/3,1/4,1/6;1/2,1/4,-1/4;1/3,1,0])
! 367: matrixqz3([1,3;3,5;5,7])
! 368: max(2,3)
! 369: min(2,3)
! 370: minim([2,1;1,2],4,6)
! 371: mod(-12,7)
! 372: modp(-12,7)
! 373: mod(10873,49649)^-1
! 374: modreverse(mod(x^2+1,x^3-x-1))
! 375: move(0,243,583);cursor(0)
! 376: mu(3*5*7*11*13)
! 377: \\ N
! 378: newtonpoly(x^4+3*x^3+27*x^2+9*x+81,3)
! 379: nextprime(100000000000000000000000)
! 380: setrand(1);a=matrix(3,5,j,k,vvector(5,l,random()\10^8))
! 381: aid=[idx,idy,idz,idmat(5),idx]
! 382: bb=algtobasis(nf,mod(x^3+x,nfpol))
! 383: da=nfdetint(nf,[a,aid])
! 384: nfdiv(nf,ba,bb)
! 385: nfdiveuc(nf,ba,bb)
! 386: nfdivres(nf,ba,bb)
! 387: nfhermite(nf,[a,aid])
! 388: nfhermitemod(nf,[a,aid],da)
! 389: nfmod(nf,ba,bb)
! 390: nfmul(nf,ba,bb)
! 391: nfpow(nf,bb,5)
! 392: nfreduce(nf,ba,idx)
! 393: setrand(1);as=matrix(3,3,j,k,vvector(5,l,random()\10^8))
! 394: vaid=[idx,idy,idmat(5)]
! 395: haid=[idmat(5),idmat(5),idmat(5)]
! 396: nfsmith(nf,[as,haid,vaid])
! 397: nfval(nf,ba,vp)
! 398: norm(1+i)
! 399: norm(mod(x+5,x^3+x+1))
! 400: norml2(vector(10,x,x))
! 401: nucomp(qfi(2,1,9),qfi(4,3,5),3)
! 402: form=qfi(2,1,9);nucomp(form,form,3)
! 403: numdiv(2^99*3^49)
! 404: numer((x+1)/(x-1))
! 405: nupow(form,111)
! 406: \\ O
! 407: 1/(1+x)+o(x^20)
! 408: omega(100!)
! 409: ordell(acurve,1)
! 410: order(mod(33,2^16+1))
! 411: tcurve=initell([1,0,1,-19,26]);
! 412: orderell(tcurve,[1,2])
! 413: ordred(x^3-12*x+45*x-1)
! 414: \\ P
! 415: padicprec(padicno,127)
! 416: pascal(8)
! 417: perf([2,0,1;0,2,1;1,1,2])
! 418: permutation(7,1035)
! 419: permutation2num([4,7,1,6,3,5,2])
! 420: pf(-44,3)
! 421: phi(257^2)
! 422: pi
! 423: plot(x=-5,5,sin(x))
! 424: \\ploth(x=-5,5,sin(x))
! 425: \\ploth2(t=0,2*pi,[sin(5*t),sin(7*t)])
! 426: \\plothraw(vector(100,k,k),vector(100,k,k*k/100))
! 427: pnqn([2,6,10,14,18,22,26])
! 428: pnqn([1,1,1,1,1,1,1,1;1,1,1,1,1,1,1,1])
! 429: point(0,225,334)
! 430: points(0,vector(10,k,10*k),vector(10,k,5*k*k))
! 431: pointell(acurve,zell(acurve,apoint))
! 432: polint([0,2,3],[0,4,9],5)
! 433: polred(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
! 434: polred2(x^4-28*x^3-458*x^2+9156*x-25321)
! 435: polredabs(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
! 436: polredabs2(x^5-2*x^4-4*x^3-96*x^2-352*x-568)
! 437: polsym(x^17-1,17)
! 438: polvar(name^4-other)
! 439: poly(sin(x),x)
! 440: polylog(5,0.5)
! 441: polylog(-4,t)
! 442: polylogd(5,0.5)
! 443: polylogdold(5,0.5)
! 444: polylogp(5,0.5)
! 445: poly([1,2,3,4,5],x)
! 446: polyrev([1,2,3,4,5],x)
! 447: polzag(6,3)
! 448: \\draw([0,20,20])
! 449: postdraw([0,20,20])
! 450: postploth(x=-5,5,sin(x))
! 451: postploth2(t=0,2*pi,[sin(5*t),sin(7*t)])
! 452: postplothraw(vector(100,k,k),vector(100,k,k*k/100))
! 453: powell(acurve,apoint,10)
! 454: cmcurve=initell([0,-3/4,0,-2,-1])
! 455: powell(cmcurve,[x,y],quadgen(-7))
! 456: powrealraw(qfr(5,3,-1,0.),3)
! 457: pprint((x-12*y)/(y+13*x));
! 458: pprint([1,2;3,4])
! 459: pprint1(x+y);pprint(x+y);
! 460: \precision=96
! 461: pi
! 462: prec(pi,20)
! 463: precision(cmcurve)
! 464: \precision=38
! 465: prime(100)
! 466: primedec(nf,2)
! 467: primedec(nf,3)
! 468: primedec(nf,11)
! 469: primes(100)
! 470: forprime(p=2,100,print(p," ",lift(primroot(p))))
! 471: principalideal(nf,mod(x^3+5,nfpol))
! 472: principalidele(nf,mod(x^3+5,nfpol))
! 473: print((x-12*y)/(y+13*x));
! 474: print([1,2;3,4])
! 475: print1(x+y);print1(" equals ");print(x+y);
! 476: prod(1,k=1,10,1+1/k!)
! 477: prod(1.,k=1,10,1+1/k!)
! 478: pi^2/6*prodeuler(p=2,10000,1-p^-2)
! 479: prodinf(n=0,(1+2^-n)/(1+2^(-n+1)))
! 480: prodinf1(n=0,-2^-n/(1+2^(-n+1)))
! 481: psi(1)
! 482: \\ Q
! 483: quaddisc(-252)
! 484: quadgen(-11)
! 485: quadpoly(-11)
! 486: \\ R
! 487: rank(matrix(5,5,x,y,x+y))
! 488: rayclassno(bnf,[[5,3;0,1],[1,0]])
! 489: rayclassnolist(bnf,lu)
! 490: move(0,50,50);rbox(0,50,50)
! 491: print1("give a value for s? ");s=read();print(1/s)
! 492: 37.
! 493: real(5-7*i)
! 494: recip(3*x^7-5*x^3+6*x-9)
! 495: redimag(qfi(3,10,12))
! 496: redreal(qfr(3,10,-20,1.5))
! 497: redrealnod(qfr(3,10,-20,1.5),18)
! 498: reduceddisc(x^3+4*x+12)
! 499: regula(17)
! 500: kill(y);print(x+y);reorder([x,y]);print(x+y);
! 501: resultant(x^3-1,x^3+1)
! 502: resultant2(x^3-1.,x^3+1.)
! 503: reverse(tan(x))
! 504: rhoreal(qfr(3,10,-20,1.5))
! 505: rhorealnod(qfr(3,10,-20,1.5),18)
! 506: rline(0,200,150)
! 507: cursor(0)
! 508: rmove(0,5,5);cursor(0)
! 509: rndtoi(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
! 510: qpol=y^3-y-1;setrand(1);bnf2=buchinit(qpol);nf2=bnf2[7];
! 511: un=mod(1,qpol);w=mod(y,qpol);p=un*(x^5-5*x+w)
! 512: aa=rnfpseudobasis(nf2,p)
! 513: rnfbasis(bnf2,aa)
! 514: rnfdiscf(nf2,p)
! 515: rnfequation(nf2,p)
! 516: rnfequation2(nf2,p)
! 517: rnfhermitebasis(bnf2,aa)
! 518: rnfisfree(bnf2,aa)
! 519: rnfsteinitz(nf2,aa)
! 520: rootmod(x^16-1,41)
! 521: rootpadic(x^4+1,41,6)
! 522: roots(x^5-5*x^2-5*x-5)
! 523: rootsold(x^4-1000000000000000000000)
! 524: round(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
! 525: rounderror(prod(1,k=1,17,x-exp(2*i*pi*k/17)))
! 526: rpoint(0,20,20)
! 527: \\ S
! 528: initrect(3,600,600);scale(3,-7,7,-2,2);cursor(3)
! 529: q*series(anell(acurve,100),q)
! 530: aset=set([5,-2,7,3,5,1])
! 531: bset=set([7,5,-5,7,2])
! 532: setintersect(aset,bset)
! 533: setminus(aset,bset)
! 534: setprecision(28)
! 535: setrand(10)
! 536: setsearch(aset,3)
! 537: setsearch(bset,3)
! 538: setserieslength(12)
! 539: setunion(aset,bset)
! 540: arat=(x^3+x+1)/x^3;settype(arat,14)
! 541: shift(1,50)
! 542: shift([3,4,-11,-12],-2)
! 543: shiftmul([3,4,-11,-12],-2)
! 544: sigma(100)
! 545: sigmak(2,100)
! 546: sigmak(-3,100)
! 547: sign(-1)
! 548: sign(0)
! 549: sign(0.)
! 550: signat(hilbert(5)-0.11*idmat(5))
! 551: signunit(bnf)
! 552: simplefactmod(x^11+1,7)
! 553: simplify(((x+i+1)^2-x^2-2*x*(i+1))^2)
! 554: sin(pi/6)
! 555: sinh(1)
! 556: size([1.3*10^5,2*i*pi*exp(4*pi)])
! 557: smallbasis(x^3+4*x+12)
! 558: smalldiscf(x^3+4*x+12)
! 559: smallfact(100!+1)
! 560: smallinitell([0,0,0,-17,0])
! 561: smallpolred(x^4+576)
! 562: smallpolred2(x^4+576)
! 563: smith(matrix(5,5,j,k,random()))
! 564: smith(1/hilbert(6))
! 565: smithpol(x*idmat(5)-matrix(5,5,j,k,1))
! 566: solve(x=1,4,sin(x))
! 567: sort(vector(17,x,5*x%17))
! 568: sqr(1+o(2))
! 569: sqred(hilbert(5))
! 570: sqrt(13+o(127^12))
! 571: srgcd(x^10-1,x^15-1)
! 572: move(0,100,100);string(0,pi)
! 573: move(0,200,200);string(0,"(0,0)")
! 574: \\draw([0,10,10])
! 575: postdraw([0,10,10])
! 576: apol=0.3+legendre(10)
! 577: sturm(apol)
! 578: sturmpart(apol,0.91,1)
! 579: subcyclo(31,5)
! 580: subell(initell([0,0,0,-17,0]),[-1,4],[-4,2])
! 581: subst(sin(x),x,y)
! 582: subst(sin(x),x,x+x^2)
! 583: sum(0,k=1,10,2^-k)
! 584: sum(0.,k=1,10,2^-k)
! 585: sylvestermatrix(a2*x^2+a1*x+a0,b1*x+b0)
! 586: \precision=38
! 587: 4*sumalt(n=0,(-1)^n/(2*n+1))
! 588: 4*sumalt2(n=0,(-1)^n/(2*n+1))
! 589: suminf(n=1,2.^-n)
! 590: 6/pi^2*sumpos(n=1,n^-2)
! 591: supplement([1,3;2,4;3,6])
! 592: \\ T
! 593: sqr(tan(pi/3))
! 594: tanh(1)
! 595: taniyama(bcurve)
! 596: taylor(y/(x-y),y)
! 597: tchebi(10)
! 598: teich(7+o(127^12))
! 599: texprint((x+y)^3/(x-y)^2)
! 600: theta(0.5,3)
! 601: thetanullk(0.5,7)
! 602: torsell(tcurve)
! 603: trace(1+i)
! 604: trace(mod(x+5,x^3+x+1))
! 605: trans(vector(2,x,x))
! 606: %*%~
! 607: trunc(-2.7)
! 608: trunc(sin(x^2))
! 609: tschirnhaus(x^5-x-1)
! 610: type(mod(x,x^2+1))
! 611: \\ U
! 612: unit(17)
! 613: n=33;until(n==1,print1(n," ");if(n%2,n=3*n+1,n=n/2));print(1)
! 614: \\ V
! 615: valuation(6^10000-1,5)
! 616: vec(sin(x))
! 617: vecmax([-3,7,-2,11])
! 618: vecmin([-3,7,-2,11])
! 619: vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],2)
! 620: vecsort([[1,8,5],[2,5,8],[3,6,-6],[4,8,6]],[2,1])
! 621: \\ W
! 622: weipell(acurve)
! 623: wf(i)
! 624: wf2(i)
! 625: m=5;while(m<20,print1(m," ");m=m+1);print()
! 626: \\ Z
! 627: zell(acurve,apoint)
! 628: zeta(3)
! 629: zeta(0.5+14.1347251*i)
! 630: zetak(nfz,-3)
! 631: zetak(nfz,1.5+3*i)
! 632: zidealstar(nf2,54)
! 633: bid=zidealstarinit(nf2,54)
! 634: zideallog(nf2,w,bid)
! 635: znstar(3120)
! 636: getstack()
! 637: getheap()
! 638: print("Total time spent: ",gettime());
! 639: \q
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>